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Abstract. Today’s software systems rely heavily on complex resources, such as
humans. Human-intensive systems are particularly important in our society, espe-
cially in the healthcare, financial, and software development domains. One chal-
lenge in developing such systems is that the system design must account for the
constraints, capabilities, and allocation policies of their complex resources, par-
ticularly the humans. The resources, their capabilities, and their allocation poli-
cies and constraints need to be carefully specified, and modeled. Toward the goal
of supporting the design of systems that make effective use of such resources, we
introduce a resource specification language and a process-aware, discrete-event
simulation engine that simulates system executions while adhering to these re-
source specifications. The simulation supports (1) modeling the resources that
are used by the system, and the ways in which they are used, (2) experimenting
with different resource capability mixes and allocation policies, and (3) iden-
tifying such undesirable situations as bottlenecks, and inefficiencies that result
from these mixes and policies. The joint use of detailed resource specifications
and simulation supports rapid evaluation of human-intensive system designs. We
evaluate our specification language and simulation framework in the healthcare
domain, on a software system for managing a hospital emergency department.

1 Introduction

Many software systems constantly interact with humans and other complex resources.
Insufficient attention to these interactions at system design time can reduce the quality
and effectiveness of the system. In this paper, we tackle the development of software
systems that interact with complex resources. We argue that understanding both the
process the resources follow, and the resources themselves in terms of their availabil-
ity, skills, and constraints, early in the development process can improve system quality,
ease validation by directly involving domain experts and customers in the design pro-
cess, and allow for documentation of assumptions and requirements, communication
among the developers, and traceability and improved debugging.

We provide a language for formally specifying and modeling complex resources and
their interactions with one another and the software components, and an automated
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discrete-event simulator to support dynamically analyzing the effects of different re-
source mixes and resource-allocation policies.

We motivate and evaluate our work through a representative example scenario based
on a hospital’s emergency department (ED) modeled after the Baystate Medical Center
ED, in Springfield, MA, USA. An ED administrator is tasked with making the ED more
efficient. The ED sees an average of 288 patients per day, employs 26 doctors, 41 nurses,
5 triage nurses, and 16 clerks, and houses 48 beds, 2 x-ray rooms, and 4 CT-scan ma-
chines. The administrator notices that the patients’ average length of stay (LoS) is 297
minutes, exceeding the national average, and that patients spend, on average, 20 minutes
in the waiting room before being seen. Further, the doctors and nurses are underutilized
during the night and overutilized during the day. The administrator decides that the ED
needs a modern software system to manage patient care, billing, supplies, and staff. Part
of this system is a patient-management software component that will track each patient
and allocate doctors, nurses, and other resources. This component has to make deci-
sions about resource allocations, manage resources, such as beds and equipment, and
also interact with the human resources, such as doctors, nurses, and technicians. The
administrator’s goals are to (1) automate the patient handling process, (2) evaluate re-
source allocation policies, (3) understand the constraints that impact resource utilization
to develop shift schedules that balance utilization, and (4) understand the hospital’s ef-
ficiency bottlenecks. To design and implement the patient-management component, the
developers will need to interact with domain experts to model the process patients un-
dergo, and the involved resources. This model will serve as documentation, enable sim-
ulation to evaluate resource-allocation policies, detect resource utilization inefficiencies,
and support the administrator’s decisions about how to best spend money on resources.

This paper makes the following three contributions:

1. A precise resource specification language for capabilities, interactions, allocation
policies, and scheduling constraints of complex resources.

2. A process-aware discrete-event simulator JSim that respects the resource specifica-
tions and constraints.

3. A case study applying our approach to discover implications of resource allocation
and scheduling policies, and thus helping guide the design of a hospital ED patient-
management software system.

2 Resource Modeling

This section describes our language for specifying resources, their capabilities, and the
constraints and policies governing their allocation.

2.1 Resource Characteristics

We identified six aspects of resources that must be specified to enable accurately as-
signing resources to tasks:

1. the resource’s capabilities, (e.g. the tasks it may perform),
2. attributes (e.g., certifications and experience),
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3. a guard qualification of those capabilities and attributes based on the dynamic state
of the system (e.g., a doctor’s availability is affected by the number of patients she
is already caring for),

4. an assignment policy for enforcing resource constraints (e.g., the doctor who per-
formed a surgery is the one who discharges the patient),

5. a contention policy for activity selection when multiple activities require the same
resource instance (e.g., when one doctor is caring for multiple patients, the critical
patients must come first), and

6. a selection policy for resource selection when multiple resource instances satisfy
the needs of an activity (e.g., assigning a doctor to a new patient).

We designed our resource-specification language around the ability to easily and
precisely specify each of the above aspects. In our language, a resource is a collection of
capabilities and attributes. Each of a resource’s capabilities is qualified with a guard, a
predicate that can specify constraints and policies for allocating resources. For example,
the specification of a resource with two capabilities, triage and treat, may have
guards indicating that the resource’s triage skills are high for all patients except gunshot-
wound patients, and are particularly low late in the evening.

Each capability’s contention policy specifies how the system decides what to do
when that resource is requested by multiple activities. The contention policy is eval-
uated dynamically, based on an activity’s priority, resource needs, and attributes. For
example, a doctor may be allocated to patients on a first-come first-served basis, based
on the severity of the illness, randomly, or some combination of these.

Finally, each capability’s selection policy similarly specifies which of a set of suitable
resources (e.g., a set of qualified and available doctors) is chosen. Again, this policy is
evaluated dynamically.

2.2 Resource Model

Attribute

CapabilityCapacity

Effort Needed

Reservation ConstraintAssignment Constraint

1

0..1
1

1

Guard

Assignment Capacity

Reservation Capacity

1
1

1

0..1

Contention Policy

1
1

Selection Policy

1

1

Resource
1 0..*

1
1

1

1..*

1

1

Policy

1

1

1

1

1

1

1

1

1

1

FIFO Priority Problem Specific LRU MRU Problem Specific

Fig. 1. The metamodel of a resource specification describes
the static relations of the entities that define a resource

Figure 1 shows the static
relations among the entities
that define a resource. This
metamodel is an extension
of an earlier, less expres-
sive resource metamodel [14].
As already noted, a resource
is composed of capabilities,
tasks the resource can per-
form, and attributes, which
describe the characteristics of
the resource. Thus, for exam-
ple, a cost attribute should be
included in the specification of
the doctor resource if the cost
effectiveness of the doctor is
to be analyzed. A particularly
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Attribute Declaration

<declare−attribute name="location" type="string" />
<declare−attribute name="working" type="boolean" />

Resource Model

<resource type="TrRN">
<attribute name="location" value="" />
<attribute name="working" value="" />
<capacity assignment_available="1" />
<capability name="Triage">
<assignment guard="working==true" effort_needed="1"

contention_policy="FIFO" selection_policy="LeastUtilizedFirst : ProblemSpecific" />
</capability>
</resource>

Resource Instances

<instantiate type="TrRN" number="2" />
<instance type="TrRN" id="1" set_attribute="location" value="shared" />
<instance type="TrRN" id="1" set_attribute="working" value="true" />
<instance type="TrRN" id="2" set_attribute="location" value="shared" />
<instance type="TrRN" id="2" set_attribute="working" value="true" />

Fig. 2. The resource model for the process of handling patients specifies a triage nurse resource
(TrRN). The attributes of the resource model (top) are used by the triage nurse model (middle).
Two instances (bottom) of the resource show two sample triage nurses.

key attribute is capacity, comprised of assignment capacity and reservation
capacity, This attribute bounds the number of activities a resource may participate
in simultaneously, and is used to ensure that the simulator does not allocate to any re-
source more activities than that resource can handle. Both assignment and reservation
capacities are needed because, for example, a doctor may care for multiple patients (up
to the reservation capacity bound), but can only work on one at a time (assuming the
assignment capacity is set to 1).

Figure 2 shows an example of a resource specification. It defines the attributes of
the resource model (top), the resource model itself (middle), and two instances of triage
nurse resources (TrRN).

Allocating resources to a given activity requires knowing more than the capability
and capacity of the resources. It also requires knowing (1) the availability of each
resource, (2) the (estimated) effort the given activity requires from a resource, and
(3) constraints on reserving and assigning to each resource. Each capability consists
of a reservation and an assignment constraint. Each constraint is specified in the form
of a guard, a Boolean expression defined over the dynamic variable values of the pro-
cess. For example, an assignment guard might be used to specify that only a triage nurse
who is working can be assigned as a resource to an activity (<assignment guard =
"working==true"> in Figure 2). The guards can also specify what shift a nurse works,
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Step Resource request specification

Triage triage_nurse: Triage, blocking
Register clerk: Register, blocking
PlaceInBed bed: PlaceInBed, blocking
Treat reserved_doctor: MDTreat, 1, replaceable, blocking
Treat reserved_nurse: RNTreat, 1, replaceable, blocking
RNAssess, RNDischarge nurse: RNTreat, blocking, reserved_nurse
MDAssess, Procedure, MDDischarge doctor: MDTreat, blocking, reserved_doctor

Fig. 3. Resource request specifications. Each step in Figure 4 has a resource request specification
associated with it.

when the nurse takes breaks and eats meals, and when personal considerations allow
the nurse to work late, or leave early.

Human resources exert effort in performing activities, whereas other resources (e.g.,
beds and equipment) do not. For resources that exert effort, the amount of effort can be
estimated using optional skill level and experience attributes. (Our triage nurse
example does not employ these optional attributes.)

Finally, constraints on resource contention (multiple activities requesting the same
resource instance) and activity contention (multiple resource instances capable of pro-
viding the capability requested by a given activity) are specified by the contention pol-
icy and selection policy, respectively. First-come first-serve (FIFO) is an example of a
built-in policy, but custom policies can be defined as arbitrary functions over the dy-
namic variables of the process. Least utilized resource first (LeastUtilizedFirst,
see Figure 2) is an example of a custom policy. Other built-in policies not shown in
Figure 2 include least (LRU) or most (MRU) recently used policies, and a policy based on
the priority of the request (Priority).

2.3 Resource Request Model

The resource model includes specifications of resource requests. We separate resource
requests from process activities (described in Section 3) into two types, a reservation
request and an assignment request. Each activity generates a separate request for each
resource it needs. Figure 3 shows several examples of resource requests:

Reservation Request: reserved-resource: capability, count, [replaceable,] blocking | nonblocking
Assignment Request: resource: capability, blocking | nonblocking [, reserved-resource]

Both reservation and assignment requests ask for an available resource that performs
a particular capability. Which resource is returned depends on the dynamic state of the
process. For example, a doctor may be assigned to drawing a patient’s blood, but only
when all nurses are fully assigned, and only when the blood draw task is considered to
require a small amount of effort and a low skill level. Our request model supports the
use of blocking requests (see the blocking and nonblocking keywords in the request
definitions) to ensure that only fully qualified resources are allocated to the activity.
The replaceable keyword means that a resource may be replaced by another, under
certain situations.
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3 Process Modeling

Our approach represents processes by an executable language that describes a sequences
of steps. Each step specifies the need for one or more resources. We use of the Little-
JIL process definition language [19], which has been used in previous work to support
the definition of complex processes in the medical, election, software development, and
other domains [3, 13, 15, 20, 21]. Little-JIL is not a contribution of this paper. We did,
however, enhance Little-JIL by augmenting each step specification with an allocation
(either reservation or assignment) request.

We now outline the Little-JIL features most relevant to our work on resource spec-
ification. We refer the reader to prior work for a complete language definition [19].
A Little-JIL activity specification is defined using hierarchically decomposed steps. A
step represents an activity or a task that is part of the modeled process. Each step has
a name and a set of badges to represent control flow among its substeps, its interface
(a specification of its input and output artifacts and the resources it requires), and the
exceptions it handles. A step with no substeps is called a leaf step and represents an
activity to be performed without any explicitly defined process guidance.

Every non-leaf step has a sequencing badge (an icon embedded in the left portion
of the step bar), which defines the order of substep execution, such as sequential (right
arrow), in parallel (equal sign), one chosen from a set (circle with a horizontal line), or
in sequence in which substeps are to be tried as alternatives (right arrow with an × on its
tail). The latter two kinds of steps enable specification of certain kinds of uncertainties
that might arise during process execution.

Each Little-JIL step interface specifies the types of resources the step requires. Al-
locating a resource instance to the step happens dynamically, during process execution

(1) (2) 

(8) 

(7) (6) (4) (3) 

(5) 

Fig. 4. A patient treatment process, specified with the
Little-JIL process model language [19]. This high-level
model abstracts away lower-level steps, denoted in (paren-
theses). The full, detailed model can be found at
http://people.cs.umass.edu/~shin/ed/.

by the resource manager. We
use the ROMEO resource
manager [12]. Every step re-
quires at least one resource,
specially designated as the
step’s agent. Little-JIL agents
may be either humans or auto-
mated devices.

Figure 4 shows an example
high-level process definition
in Little-JIL that specifies the
process of handling patients
in an ED. When a patient ar-
rives, she is received, which
consists of being triaged, reg-
istered, and then placed in a
bed. Being placed in a bed in-
volves being treated: assessed
by a nurse and then a doc-
tor, undergoing procedures,

http://people.cs.umass.edu/~shin/ed/
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Fig. 5. A view of the resource-aware JSim discrete-event process simulator that focuses on
ROMEO, the resource management component

and being discharged, first by a doctor and then by a nurse. Finally, the bed is cleaned
and made available for assignment to support the treatment of another patient.

While this process activity flow is relatively simple, its execution depends on de-
tails of the resource model that may contain intricate dependencies among the doctors,
nurses, beds, and other resources.

4 JSim Resource-Aware Simulator

The final piece of our approach is a discrete-event simulator that simulates processes
whose activities are modeled in Little-JIL, and whose resources are modeled in ROMEO.
To this end, we have extended JSim [14], an existing discrete-event simulator of Little-
JIL/ROMEO processes. Our extensions include support for (1) resource instances,
(2) the two-phase resource reservation and allocation, and (3) contention policy con-
strains to select preferred requests, selection policy constrains to select preferred re-
sources. These extensions enable the simulator to support such scenarios as (1) allowing
doctors to have varying shift constraints, (2) enforcing the same doctor always handles
a given patient, unless the doctor’s shift ends, at which point the patient is handed off to
a new doctor, (3) enabling a variety of scheduling policies, such as handing the sickest
patient first, or using the least utilized resource first. Additionally we have redesigned
the simulator’s architecture to improve the separation of concerns and localization of
key aspects of the system.

Figure 5 shows the extended JSim architecture, focusing on the resource handling
aspects of the simulator. The architecture separates the activity issues from resource
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concerns, which makes it easy to keep track of resource allocations, utilizations, wait-
ing times, and other properties that other simulators have difficulty reporting (see Sec-
tion 6). In addition, extended JSIM treats resource constraints as a separate concern,
which eases changing them, facilitating experimentation with different resource alloca-
tion strategies.

The Little-JIL Interpreter is an abstract representation of a number of JSim compo-
nents not related to resource management. The activity coordination artifact represents
the Little-JIL activity definition. The agent behavior artifact specifies details (such as
speed and cost) of the way in which resource instances provide their capabilities. The
discrete event clock is an event arrival stream that triggers the execution of process ac-
tivities. During simulation, activities first acquire and then release resources by sending
requests to ROMEO, which evaluates the dynamic guards and constraints on each re-
source and determines which resources satisfy the request, and responds with either a
satisfactory resource, or a message that the needed resource is unavailable.

The Request Manager receives and responds to reservation, assignment, and release
requests, which are queued by contention policies in the resource model. The Allo-
cation Manager allocates resources in collaboration with the Resource Selector, Con-
straint Manager, and Repository Manager components. When the Allocation Manager
receives an allocation request for a capability, the Repository Manager identifies can-
didate resources, the Constraint Manager evaluates the resources’ guard constraints to
remove unsuitable resources, and the Resource Selector evaluates the selection policies
to select a candidate. For a release request, the Allocation Manager interacts with the
Repository Manager to adjust released resources’ allocated capacity values.

This architecture yields flexibility for exploring resource constraint specifications
effectively. For example, the Request Manager can be instrumented to record the history
of requests, and identify resource bottlenecks by finding which resources spend the
most time waiting for activities, and which activities spend the most time waiting for
resources. The Allocation Manager likewise can be instrumented to record the resource
allocation history and compute resource utilization levels over various time granularities
(e.g., hourly), even taking into account resource unavailability due to such events as
lunch times and breaks.

5 Case Study: Emergency Department

We evaluated our approach by using our resource-aware discrete-event simulator to
expedite the simulation and evaluation of a range of ED operations management strate-
gies. Our aim was to show that our approach can suggest the characteristics and design
of a system that has superior operational behavior, and that respects even very intricate
resource characteristics and constraints. We used specifications of various ED opera-
tional practices, resource characteristics and mixes, and allocation approaches to run
JSim simulations aimed at understanding the effects of these specifications on such key
operational characteristics as patient waiting time, resource allocation levels, and over-
all costs. Our domain expert, who both helped us develop the specifications and validate
the models and simulation results, has decades of experience as an emergency physician
and an ED manager at the Baystate Medical Center Emergency Department, in Spring-
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field, MA, USA. He further has significant experience with research in discrete-event
simulation of EDs [2].

5.1 Emergency Department Characteristics

ED resources range from beds, blood, and x-ray devices, to a spectrum of human re-
sources, from receptionists and porters, to nurses of varying kinds, to doctors with
various specialties and skill levels. Resources are always scarce in order to keep down
the costs of operating the ED. Therefore, wise allocation of these resources is necessary
to assure timely and competent care. A full description of the ED activities, resources,
constraints, and policies is beyond the scope of this paper. Instead, we describe only
a few details to illustrate the complexity of the models. Some ED characteristics that
posed interesting challenges for us include:

Six acuity levels: ED patients are classified into six acuity levels based on the sever-
ity of their ailments. The care process varies based on the acuity. A level-six (sickest)
patient is immediately allocated a doctor (MD), a nurse (RN), and a bed. These patients
also get highest priority in x-ray room and CT room allocation. In contrast, a level-one
patient undergoes fewer procedures, each of which with a lower resource allocation
priority.

Arrivals: Our process definition allows patients to arrive in two ways: Critical pa-
tients, by definition, always arrive by ambulance, while other patients arrive on their
own. Critical patients are the sickest (acuity level six), while the others are categorized
into the remaining five acuity levels. Patient arrival rates over the 24-hour period are
specified by a Poisson distribution, based on actual arrival rates at the Baystate Medical
Center.

Staffing: Human resources work on a shift system; the number of available humans
varies over 24 hours. Typically, an MD or an RN will work one of three different 8-
hour shifts, although our simulations suggest greater flexibility in the start times and
durations of shifts could lead to shortening the patients’ LoS.

Same MD-RN constraints: A patient assigned to a bed is cared for by the same MD
and RN throughout the stay, with changes only when the MD’s or RN’s shifts end, or
they are on a break.

Workload: Estimates of the effort required to perform activities are specified by
triangular distributions, based on the Baystate Medical Center data. These estimates,
along with the specifications of the skill levels of the resources, dictate the amount of
time required by each of the activities.

Fast & Main tracks: The ED operates two tracks. The fast track cares for low
acuity patients (levels 1–3), and the main track, high acuity (4–6). Each track has its
own beds and MD and RN resources. At night, the fast track closes and its patients are
transferred to the main track. During this transfer, fast track resources are deallocated
and appropriate main track resources are allocated for the patients.

5.2 Emergency Department Activity Model

While we omit the full models from this paper, for exposition, we present a small subset
of the ED process and resource specifications. Figure 6 illustrates the patient-testing
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Fig. 6. The Little-JIL definition of the patient testing pro-
cess, which is part of the care an acuity-level-four patient
undergoes in an ED

process for an acuity-level-
four patient. The AL4Test
step at the root is a parallel
step, meaning the lab test
process, AL4LabProc, can
be done in parallel with
AL4Test. The 70% an-
notation on AL4LabProc’s
pre-requisite means that 70%
of acuity-level-four patients
require the lab test. For the
other tests, a nurse checks
a patient’s ECG (RNECG),
and then a doctor checks the
ECG result (MDCkECG), since
AL4ECGProc is a sequential
step. After the ECG test,
a nurse gives a medication
to the patient (RNMedHi),
and the patient is transferred
to the CT or x-ray room.
This behavior is represented by the AL4XrayOrCTOrNothing choice step, which
means only one of its child steps will be executed, with step pre-requisites indi-
cating the probability of each alternative. While space constraints prevent us from
describing the full patient care process and resource models, they can be found at
http://people.cs.umass.edu/~shin/ed/.

Step Resource request specification

RNECG, RNMedHi, RNReassHi nurse: RNTreat, blocking, reserved_nurse
MDCkECG, MDCkCT, MDCkXray, MDCkLab doctor: MDTreat, blocking, reserved_doctor
CT ct_room: CTScan, blocking
XrayHi x-ray_room: X-rayScan, blocking

Fig. 7. The resource request specifications associated with each step in Figure 6

Figure 7 shows the resource requests made by the leaf steps of the process. All re-
quests are blocking, meaning step execution cannot begin until the resource is assigned.
For each patient, the MD and RN requests can only be satisfied by the previously re-
served resources.

5.3 Emergency Department Resource Model

Figure 8 describes the resource model for MD, and shows three example instances of MDs.
The full model (omitted here), also defines the RN, TrRN, clerk, bed, x-ray room, and

http://people.cs.umass.edu/~shin/ed/
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Attribute Declaration

<declare−attribute name="location" type="string" />
<declare−attribute name="shift" type="string" />

Resource Model

<resource type="MD">
<attribute name="location" value="" />
<attribute name="shift" value="" />
<capacity assignment_available="1" reservation_available="1"/>
<capability name="MDTreat">
<reservation

guard="location==artifact(patient.location) && time>=start(shift) && time<end(shift)"
contention_policy="SickestFirst : ProblemSpecific"
selection_policy="LeastUtilizedFirst : ProblemSpecific"
effort_needed="0" />

<assignment
guard="location==artifact(patient.location) && time>=start(shift) && time<end(shift)"
contention_policy="SickestFirst : ProblemSpecific"
selection_policy="LeastUtilizedFirst : ProblemSpecific"
effort_needed="1" />

</capability>
</resource>

Resource Instances

<instantiate type="MD" number="3" />
<instance type="MD" id="1" set_attribute="location" value="main−track" />
<instance type="MD" id="1" set_attribute="shift" value="7AM−−3PM" />
<instance type="MD" id="2" set_attribute="location" value="main−track" />
<instance type="MD" id="2" set_attribute="shift" value="3PM−−11PM" />
<instance type="MD" id="3" set_attribute="location" value="main−track" />
<instance type="MD" id="3" set_attribute="shift" value="11PM−−7AM" />

Fig. 8. The MD resource model, specifying attributes, capabilities, and allocation policies

CT room resources. Human resource attributes include their work shift and location
(fast track or main track), and bed attributes include a location.

Every capability of every MD and RN resource has a guard that specifies when the
resource is available to provide the capability. One use of this guard is specifying that
fast track doctors are only available for fast track patients and only during their shifts.

In our ED model, MD and RN resources are always reserved before being assigned
(whereas our language also allows for assignment without reservation). When a shift
change occurs, a reserved resource becomes unavailable, prompting ROMEO to re-
serve a replacement. This approach enforces both same MD-RN constraints, and ED shift
change policies. A similar approach allows for fast track and main track bed resource
allocation policies.
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(b) Mixed-priority scheduling policy

Fig. 9. Using the mixed-priority scheduling policy greatly reduces the LoS for patients across all
acuity levels

5.4 Simulation Results

Effective ED management has multiple competing goals, including decreasing patients’
LoS, increasing net revenue, and increasing service quality. An ED can decrease pa-
tients’ LoS by hiring more staff and building more facilities; but this increases cost and
reduces net revenue. Thus, EDs seek resource allocation approaches that decrease pa-
tients’ LoS without increasing cost or sacrificing quality. While LoS and revenue are
straightforward to measure, there are multiple ways to measure quality of care. Be-
cause handoffs can cause miscommunication we use the number of patient handoffs
due to shift changes to measure care quality.

We next present the results of three ED simulation studies that demonstrate how our
approaches and tools can expedite exploring the effects of changing resource mixes and
allocation strategies on LoS, resource utilization levels, and number of handoffs.

Situation 1: The ED wishes to explore how different resource allocation
policies affect the patients’ LoS.

Our domain expert wanted to explore the consequences of changing the sickest-first
policy to treat acuity levels 1–4 as equal. Figure 9 shows how the two policies affect
the LoS. Figure 9(a) shows that with the sickest-first policy, the average LoS for all pa-
tients is 388 minutes. Low acuity patients experience high LoS variation because they
are resource-starved when there are many sicker patients. Figure 9(b) shows that with
the mixed-priority policy, overall LoS is decreased to 275 minutes, and the starvation
problem for low acuity patients is ameliorated. Our approach expedited this study by re-
quiring only a simple modification to the resource specification (contention_policy
= "MixedPriority : ProblemSpecific") and a simple definition of the policy.

Situation 2: ED beds fill quickly and waiting time increases when patient
arrival rates increase. The ED seeks guidance about what investments are
likely to be most cost-effective in reducing waiting time.

EDs routinely deal with the problem of insufficient numbers of beds by creating hall-
way beds, beds placed in the ED hallways. This is a low-cost, temporary solution, but
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tients 1 hour before their shifts end

hallway beds cause problems of privacy, noise, and poor traffic flow. We modeled the
allocation of hallway beds specifying that they are only allocatable to stable patients,
and only when the ED is sufficiently crowded. Figure 10 shows how bed utilization
decreases dramatically when hallway beds are added. Hallway beds decrease the wait-
ing times for both tracks, with overall patient LoS dropping from 388 to 159 minutes.
Our approach expedited this study by requiring only a modest change to a guard in the
specification of the hallway bed resource.

Situation 3: The ED recognizes that handoffs are error-prone and seeks a
strategy for reducing handoffs.

Our domain expert suggested that if an MD does not accept new patients in the last
hour of the shift, that time might be used for more careful handoffs, leading to better
quality of care, but increasing patient LoS. Figure 11 compares the number of handoffs
in each track when MDs do and do not accept new patients in the last hour of their
shifts. The main track handoffs reduce significantly, while the fast track improvement
is relatively small. However, this changed working policy causes an increase in overall
LoS from 159 to 170 minutes. Our approach expedited this study, again by requiring
only a modest change to a guard (reservation_guard = time >= start(shift)
&& time < end(shift)-1) for the MD and RN resources.

5.5 Discussion

Complex domains like hospital EDs benefit substantially from systems that enforce
careful resource management and respect resource complexity and constraints. The de-
sign of such systems can be suggested by analysis of simulations that reflect accurately
and precisely the effects of resource policies on overall system characteristics.

Our work has shown that flexibility in resource specification and management, fa-
cilitated by its implementation as a separate architectural component, can expedite the
rapid development and evaluation of simulations that can serve as prototypes of such
systems. Our approach and tools helped us to model behavior such as shift changes and
handoffs easily. We showed that easy modifications to resource specifications sufficed
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to support creating simulations that compared resource scheduling strategies, and allo-
cation criteria, and that introduced new resources types and uses. The architecture of
our simulation approach facilitated these comparisons by concentrating needed changes
in the resource and constraint management components.

6 Related Work

Simulating less-detailed resource models is common, exploring domains such as soft-
ware development [1, 7, 11], healthcare [2, 4, 10] and other domains that employ intri-
cate processes. Some discrete-event simulation approaches offer enhanced flexibility in
defining process event flow [5, 18]. Others have built distributed discrete-event simula-
tors [6, 17] to exploit the power of a distributed environment, but have not focused on
the resources.

System dynamics approaches [7,8] incorporate resource issues more prominently, in-
tegrating representations of both discrete and continuous dynamics into discrete-event
simulations. However, even these approaches fail to represent humans behavior in suf-
ficient detail. Incorporating human behavior in software development, Hanne et al. [16]
discuss how human factors influence software development productivity, but focuses on
the relation between productivity and learning, time pressure, and other psychological
factors. However, their work considers these human factors only as stochastic variables.
Lee et al. [9] propose a simulation framework with resource management modules for
resource intensive service and business modeling, but their resource models are sim-
plistic, and do not address how system context can dynamically change a resource’s
capabilities and allocation constraints.

7 Contributions and Future Work

We have developed a resource specification language that allows for precise specifica-
tion of the capabilities of complex resources, their interactions with one another and
with processes that use them, their allocation policies, and their scheduling constraints.
We evaluated our language by specifying, in considerable detail, a hospital emergency
department’s patient handling software component that tracks patients and assigns re-
sources. This evaluation showed that our language is expressive enough to describe
complex resources, such as humans, restrictions on their use, and constraints on their
allocation policies. Our work suggests that discrete event simulations based on careful
resource specification can expedite the design of complex human-intensive systems.

Encouraged by these results, we next will explore (1) developing measures of the
reliability of these simulations, (2) identifying static analysis approaches to validating
the correctness of these simulations, and (3) measuring flexibility and implementation
speed gains deriving from separating resource management from activity management.
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