eQual: Informing Early Design Decisions

Arman Shahbazian
University of Southern California & Google
Los Angeles, CA, USA
shahbazian@google.com

Yuriy Brun
University of Massachusetts Amherst
Ambherst, MA, USA
brun@cs.umass.edu

ABSTRACT

When designing a software system, architects make a series of
design decisions that directly impact the system’s quality. The
number of available design alternatives grows rapidly with system
size, creating an enormous space of intertwined design concerns
that renders manual exploration impractical. We present eQual,
a model-driven technique for simulation-based assessment of ar-
chitectural designs. While it is not possible to guarantee optimal
decisions so early in the design process, eQual improves decision
quality. eQual is effective in practice because it (1) limits the amount
of information the architects have to provide and (2) adapts opti-
mization algorithms to effectively explore massive spaces of design
alternatives. We empirically demonstrate that eQual yields designs
whose quality is comparable to a set of systems’ known optimal
designs. A user study shows that, compared to the state-of-the-art,
engineers using eQual produce statistically significantly higher-
quality designs with a large effect size, are statistically significantly
more confident in their designs, and find eQual easier to use.

CCS CONCEPTS

- Software and its engineering — Software design engineer-
ing; Software implementation planning.

KEYWORDS

Software design, design decisions, optimization, design analysis

ACM Reference Format:

Arman Shahbazian, Suhrid Karthik, Yuriy Brun, and Nenad Medvidovic.
2020. eQual: Informing Early Design Decisions. In Proceedings of the 28th
ACM joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE "20), November 8—13, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3368089.3409749

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °20, November 8—13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11...$15.00
https://doi.org/10.1145/3368089.3409749

1039

Suhrid Karthik
University of Southern California
Los Angeles, CA, USA
skarthik@usc.edu

Nenad Medvidovic
University of Southern California
Los Angeles, CA, USA
neno@usc.edu

1 INTRODUCTION

For most software systems, architectural decisions are introduced
incrementally, as system information becomes available. Some de-
cisions are made quite early, but have long-lasting impact. Making
suboptimal decisions can lead to system inefficiency or to a costly
redesign later in the development process. This paper introduces
eQual, a technique that helps make better-informed design deci-
sions throughout the process by using simulation to help architects
understand the implications of specific design choices using the
partial information available at the time the decisions are made.

Consistently making optimal decisions early in the process may
be impossible because only partial information about the system
is known at that time. eQual’s goal is to compute relevant infor-
mation that helps make better decisions than is possible using the
state-of-the-art techniques. In fact, in Section 4, in a controlled user
study with 15 engineers, we demonstrate engineers using eQual
produce statistically significantly (p < 0.001) higher-quality designs
than those who use a state-of-the-art technique [29] and those who
do not use specialized tools. The effect size of the treatment is
large, meaning the designs they produce using eQual are of much
higher quality. We further show that eQual users are statistically
significantly (p < 0.05) more confident in their designs and prefer
eQual’s usability. Applied to a benchmark of systems with previ-
ously published ground-truth key design choices [81, 82], we show
that eQual recommends variants that are either optimal or are of
essentially the same quality as the optimal solutions. Finally, we
show that eQual is easier to use than prior tools. Overall, we show,
either directly and by transitivity via prior studies, that eQual out-
performs existing techniques within its problem scope, including
GuideArch [29], ArchDesigner [1], ArcheOpterix [2], ATAM [17],
CBAM [45], Doyle [25], and Noppen et al. [66].

The problem eQual tackles is hard because in any real-world sys-
tem, there are countless design decisions to be made [80, 85, 89, 90],
early architectural designs exhibit significant uncertainties [13, 29,
50], and the decisions intertwine many factors and trade-offs that
must be considered [15, 16, 69]. Ideally, architects carefully assess
the individual choices to make viable design decisions that satisfy
a system’s requirements. However, this is frequently not done
in practice [20]. A well publicized example is the Healthcare.gov
(a.k.a. “Obamacare”) portal, which was marred with serious prob-
lems [54, 65, 88] due to flawed architectural decisions [89, 90]:
its development costs, originally estimated at ~$100M, surpassed

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409749
https://doi.org/10.1145/3368089.3409749
https://doi.org/10.1145/3368089.3409749

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

$1.5B [51]. The root cause of such failures is known: evaluating de-
sign options is exceedingly complex. The space of system variants
rapidly eclipses human capabilities [36]. A solution that appears to
make sense intuitively may turn out to be wildly off the mark or,
in the best case, suboptimal.

Architectural design decisions span diverse concerns: system
structure, behavior, interaction, deployment, evolution, and non-
functional properties (NFPs) [85]. Every decision is a selection of
one of several possible alternatives for a given variation point in
a system. For example, in a system that may have multiple au-
thentication servers, e.g., for scalability, the servers comprise the
variation point, and the specific number is an alternative. During
the design of a system, an architect must make many such deci-
sions, for example, how many replicated data stores to use, how
to implement each data store (e.g., different relational or NoSQL
database implementations and their relevant parameters), what
implementation framework to use (e.g., different MVC-based Web
frameworks and their parameters), what architectural styles to use
(e.g., layered client-server that may yield an n-tiered architecture
vs. event-based that may result in distributed peers), what data
caching strategies to use, etc. An architecture variant is the set of
design decisions that result in the selection of an alternative for
each variation point in a system; in other words, a variant results
in a complete architecture for the system.

eQual is a model-driven technique for simulation-based explo-
ration and assessment of architectural designs on the cloud. We
initially proposed eQual specifically to help make well-informed
design decisions [79]. eQual’s goal is to help compute the impli-
cations of design decisions, even when only partial information is
available early in the process, suggesting an ordering on possible
variants with respect to specific quality concerns. The idea is that
while known information may be insufficient to make optimal de-
cisions, some alternatives can be shown to be better than others,
and that information can help engineers to explore huge spaces of
design decisions to improve their choices. eQual asks a bounded
number of relatively straightforward questions about the system
under design and the engineers’ preferences for the system and
then automatically builds the requisite system models, distributes
and runs simulations in the background, and delivers the ranked
list of variants that respect the engineers’ already-made design
choices. Engineers can accept eQual’s recommendations or adjust
their preferences and explore other variants.

eQual takes two inputs: (1) a software system model and (2) archi-
tects’ answers to a set of questions about the parameters captured
in the model. The system model is an artifact that typically already
exists as part of the normal design process [85]. The questions are
designed to be relatively simple to answer, and optional. Examples
of questions are “What is the appropriate interaction mechanism
for the selected components?” and “What is the maximum number
of authentication servers in the system?” eQual provides interac-
tive facilities for creating the system model in a domain-specific
language (DSL). eQual’s questions (1) bound the search space of
variants eQual will explore, and (2) identify the NFPs of interest.
eQual does not assume the architects will be able to answer the
questions (e.g., because of insufficient knowledge about the sys-
tem) or that system parameters can be rank-ordered (e.g., because

1040

Arman Shahbazian, Suhrid Karthik, Yuriy Brun, and Nenad Medvidovic

the parameters are qualitative). If the architect chooses not to an-

swer the questions, eQual may explore an unbounded search space.

eQual uses the system model and the specified bounds to generate

variants, intelligently distributes those variants on a set of cloud

nodes for simulation, and collects and processes the data using our

novel Bipartite Relative Time-series Assessment (BRTA) algorithm.

eQual repeats this process until it arrives at a set of satisfactory

variants based on the of-interest properties.

This paper’s primary contributions are:

(1) A method for automatically generating architectural assessment
models from simple inputs that architects provide.

(2) The BRTA algorithm for analyzing simulation data to solve the
previously prohibitively inefficient variant-assessment problem.

(3) An architecture for seamlessly distributing and parallelizing
simulations to multiple computational (e.g., cloud) nodes.

(4) An ability to quickly explore and visualize many different design
alternatives until a satisfactory solution is reached.

(5) An evaluation of eQual’s scope, ease of use, effectiveness, and
scalability on real-world systems.

(6) An open-source eQual implementation, all evaluation scripts,
and data, and experimental replication package [78].

In the rest of our paper, Section 2 introduces Hadoop, used to
help describe and evaluate eQual. Section 3 describes eQual and
Section 4 evaluates it. Section 5 places our research in the context
of related work. Finally, Section 6 summarizes our contributions.

2 FOUNDATION

We first explain our choice of tools to which we compare our ap-
proach. We then introduce a simplified version of a widely used
system, which we will use to illustrate the approach in this paper.

2.1 Choice of State-of-the-Art Comparison

Software system design is a rich research field. Architects’ experi-
ence, knowledge of architectural styles and patterns, prior design
of similar systems, understanding of the deployment environment,
and many more attributes play a role in successful design. Existing
tools can help augment the architects’ knowledge to help produce
better designs. This makes evaluating eQual challenging: it is not
feasible to compare eQual to all different architecture tools in a
single conference paper. We restrict our comparison here to tools
that tackle the same problem scope as eQual. Our focus is neither to
develop a tool that provides all the useful types of information for
architects, nor to claim that the tool can produce optimal designs.
Instead, eQual’s goal is to help make better decisions than using a
particular set of tools designed to tackle the same problem scope.
We directly compare eQual to GuideArch [29] for three reasons.
First, GuideArch matches eQual’s problem scope by aiming to com-
pute the same type of information architects use in making design
decisions. Second, prior work has demonstrated that GuideArch
outperforms a large number of existing techniques in this problem
scope, including ArchDesigner [1], ArcheOpterix [2], ATAM [17],
CBAM [45], Doyle [25], and Noppen et al. [66]. By comparing
directly with GuideArch in the same dimensions, we can be con-
fident eQual outperforms these techniques as well. Third, since
GuideArch’s publication, despite improvement attempts [13, 30, 50,
76], GuideArch has remained the state of the art. GuideArch uses

eQual: Informing Early Design Decisions

Task scheduler

Computation Split computation into tasks

r Create jobs for tasks

Get next job from queue
Select a machine

Assign job to machine

Gather results, or create
new jobs

Figure 1: Model of the Hadoop system in DomainPro, a
domain-specific language [11].

Machine pool

Job

queue

Return
to pool

[NEEEEEEEEE.

fuzzy mathematical methods to automatically select a set of near-
optimal decisions from a large design space [29]. Letier et al. [13, 50]
built on GuideArch to reason about uncertainty in early require-
ments and designs using statistical decision analysis. However, that
approach only applies when the design spaces are reasonably small
and amenable to exhaustive search. Our experience and a large body
of literature show that real systems’ designs have massive decision
spaces that grow rapidly with the systems’ complexity (e.g., [36, 80—
82, 85]). Sedaghatbaf et al. [76] used evolutionary algorithms to
explore the effects of varying the numbers of system resources and
of reallocating software components across hardware hosts. These
very concerns have already been considered by GuideArch (and by
a GuideArch predecessor [56]), and ultimately the resulting facil-
ities improve neither GuideArch’s applicability nor its scalability.
Fahmideh et al. [30] applied GuideArch’s fuzzy-math approach to
find an optimal set of design decisions in another domain — design-
exploration of manufacturing systems — but did not improve the
underlying GuideArch capabilities. As a result, GuideArch has re-
mained the state-of-the-art approach with respect to a large number
of competitors [1, 5, 13, 21, 27, 30, 50, 56, 58, 76, 77].

At the same time, GuideArch has faced two obstacles to adoption.
First, it requires that architects supply potentially large amounts of
information, some of which they may not readily have. Second, its
effectiveness and scalability claims have only been evaluated via a
case study used to illustrate its features [29]. To address these limita-
tions, we have developed and extensively evaluated eQual, a model-
driven, simulation-based technique that tackles the same problem
space of early architectural design for large systems, but aims to
improve GuideArch’s ease of use, effectiveness, and scalability.

What our paper demonstrates is that eQual can improve the
process of making design decisions as compared to the tools within
its problem scope. It is likely that other tools that provide other
types of information useful for making design decisions can be
complementary to eQual, as Section 5 describes. This paper pro-
vides significant evidence that eQual can be a part of the solution to

1041

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

VARIATION POINT LowEeR BounDd | UPPER BoUND
Computation Size 500 2000
Redundancy Level 1 5

Pool Size 10 100
Machine Reliability 0.5 0.9
Processing Power 0.5 2

Figure 2: A selection of Hadoop’s variation points and their
representative bounds [11, 12].

making better, informed design decisions, but future work will cer-
tainly demonstrate ways to combine different kinds of information
with eQual’s to further improve the process.

2.2 Using eQual on an Example System

We use a simplified model of Hadoop from prior work [11, 12] as a
running example throughout the paper. In this model (shown in
Figure 1), a computation is the problem being solved, consisting
of many computational tasks. Tasks can be replicated, e.g., for
reliability [12]. A job is an instance of a task (i.e., one replica of
a task) and machines execute these jobs. A task scheduler breaks
up a computation into tasks, creates jobs as replicas of tasks, and
assigns jobs to machines in the machine pool. After returning a
response to the task scheduler, a machine rejoins the machine pool
and can be selected for a new task.

Although eQual has been used to analyze Hadoop’s entire design
space (over 100 design decisions [80]), for simplicity of exposition,
we highlight five variation points that affect Hadoop’s key NFPs:
(1) Computation Size, the number of tasks required to complete a
computation; (2) Redundancy Level, the number of machines that
run identical jobs; (3) Pool Size, the number of available machines;
(4) Machine Reliability, the probability of a machine returning the
correct result; and (5) Processing Power of each machine. We will
discuss other, non-numerical variation points below. Figure 2 de-
picts representative bounds for the five variation points obtained
from the previously published analysis [11, 12].

To use eQual, an architect specifies a design model (these models
typically already exist as part of normal design activities [71, 85])
and answers a set of simple design questions, such as “What are the
the lower and upper bounds on the number of system’s Pool Size?”
eQual provides interactive facilities for specifying this model and an-
swers. Next, eQual automatically generates a set of system variants
and uses discrete-event simulation to evaluate their impact on qual-
ity measures (specified by the architect as part of the model). The
results inform eQual’s selection of a next set of variants to explore.
eQual iterates this way until it arriving at a list of variants that opti-
mize desirable quality measures, and presents the architect with the
list to help understand the impact of the explored design decisions.

3 THE eQual APPROACH

eQual explores a system’s design space via four steps: (1) modeling,
(2) preparation, (3) selection, and (4) assessment. Steps (1) and (2)
are interactive and help the architect generate eQual’s inputs: a
design model and answers to a set of design-related questions.
Steps (3) and (4) are automated and produce a list of ranked system
variants. Steps (1) and (3) adapt existing solutions, while (2) and (4)

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

P
Architect’s Side

P
Controller’s Side

Arman Shahbazian, Suhrid Karthik, Yuriy Brun, and Nenad Medvidovic

o Analysis|
Global Reports
. . =
Design Environment e — 5 (4]
= o
. 2 Ranked i 2 Analysis Simulation Node
ArCh itect ; 8 Variants Ranked Variants g Reports Sim Configs
. System Design % Sim 2 . 1‘
Ranked (&) Answers o Configs., © S imulation
w & Variant Vartants | oo 5 Selection S £ Engine
i<} e
H H : Design = < S |Updates |
Visualization 8 o ¥ S . =]
Q =} . =] Sim & Simulation Data
£ S System Design 2 Configs. @ [Analysis
Q i (&) Reports
Questions, o Local
e Questions "o" Ranked Questions - g B = Asse::::\ent
Preparation 8 Variants Preparation U
N =
Interface nswers | O . . S
System Design

Figure 3: eQual’s architecture. The Design Environment and Simulation Engine components are provided by DomainPro [77].

are new contributions introduced by eQual. Steps (3) and (4) take
place iteratively: outputs of assessment feed back into selection,
helping eQual to choose better alternatives, thereby generating
improved variants. Figure 3 shows eQual’s architecture, with the
components performing the four steps denoted.

Critically, eQual’s inputs are types of artifacts architects must
consider and/or create as part of their regular tasks. Software de-
velopment typically involves modeling of the system’s architecture
(eQual’s step 1), even if informally [71, 85]. Likewise, the answers
to questions eQual asks (eQual’s step 2), which result in specifica-
tions of the desired behavioral properties in a system, are concerns
architects have to analyze regardless of whether they use eQual.
The remainder of this section details each of eQual’s four steps.

3.1 Modeling

eQual’s first input is a system’s architectural model amenable to
dynamic analysis. Several approaches create such models, including
ArchStudio [21], XTEAM [27], PCM [58], and DomainPro [77].
Any of these would suit our purpose. For eQual’s implementation,
we selected DomainPro [24, 77] because of its simple interface,
integrated support for of event-driven simulation, and model-driven
architecture (MDA) approach [64] that allows architects to define
variation points in their models and try different alternatives (albeit
completely manually).

As is common in MDA, a system is designed in DomainPro in two
phases. First, an engineer must create a metamodel using Domain-
Pro’s editor or reuse a previously defined metamodel. Second, the
system is designed by specializing and instantiating elements of this
metamodel. A metamodel is a collection of design building blocks
relevant to modeling systems of certain kinds or in certain domains
that defines a DSL. DomainPro invokes the appropriate model trans-
formation tool (a metainterpreter) to derive the implementation
semantics of the DSL types from the metamodel. Subsequently,
DomainPro generates a domain-specific model editor, simulation
generator (as well as a code generator, which we do not use in
eQual), all configured with the DSL’s custom semantics.

DomainPro provides a built-in metamodel for component-based
architectures [62]. The Hadoop model in Figure 1 shows the spe-
cialization and instantiation of this metamodel’s elements and their

1042

depiction in the resulting visual DSL [77]. A Computation is a Do-
mainPro Operation depicted as a circle; each activity in the Task
Scheduler Component is a DomainPro Task depicted as an oval; Ma-
chine Pool is a DomainPro Resource depicted as the cloud shape
containing the filled-in circles; data-flows are DomainPro Links
represented with wide arrows; and so on. Figure 1 omits the Do-
mainPro Parameters of each modeling element for clarity; several
key parameters are shown in Figure 2.

We use this example for illustration. Details of DomainPro and
Hadoop’s visual DSL from Figure 1 are not necessary for under-
standing eQual and are beyond the scope of this paper.

3.2 Preparation

eQual’s second input consists of answers to a set of questions that
fall in two categories: the system’s (1) variation points and (2) prop-
erties of interest (e.g., performance). eQual formulates these ques-
tions in terms of the system’s model and its parameters, presenting
specific choices intended to be straightforward for architects.

3.2.1 Questions Regarding Variation Points. eQual divides variation
points into (1) system parameters that are numerical or can be rank-
ordered and (2) system parameters that are inherently qualitative.
For a variation point V from the first category, eQual asks architects
three questions:

(i) What is V’s lower bound?
(if) What is V’s upper bound?
(iii) What is the desired function for exploring V?

The lower and upper bounds capture acceptable ranges of alterna-
tives for each variation point. Exploration functions enable archi-
tects to customize how eQual samples the specified ranges during
design exploration (Sections 3.3, 3.4). For example, in Hadoop, the
Pool Size variation point’s lower bound is 10 and upper bound is
100 (Figure 2). eQual’s prototype provides 12 exploration functions:
Uniform, Poisson, Gamma, etc.

eQual also allows architects to provide lists of concrete values in-
stead of ranges. This reduces the search space if specific preferences
for certain numerical and rank-ordered parameters (category 1) are
known a priori. This option is necessary in the case of qualitative
parameters (category 2): Architects must enumerate all relevant

eQual: Informing Early Design Decisions

alternatives for each qualitative parameter; in turn, eQual must
select every alternative (Section 3.3) and assess each resulting ar-
chitectural model for properties of interest (Section 3.4).

For example, let us assume that an architect wishes to explore
different RPC mechanisms in Hadoop via three qualitative design
parameters associated with DomainPro’s Links: (1) Invocation Type,
which can be explicit or implicit; (2) Synchrony, which can be syn-
chronous, time-out-synchronous, or aynchronous; and (3) Delivery
Guarantees, which be at-least-once, at-most-once, exactly—once, or
best-effort. In the general case, eQual must explore 2 X 3 X 4 = 24
combinations of alternatives for these three parameters for each
combination of alternatives selected for the category 1 variation points.
Note that this growth in the decision space can be stemmed if ar-
chitects are able to identify specific preferred design choices. For
example, a decision to configure Hadoop’s ipc.Client module to
support explicit, asynchronous calls with at-most-once semantics
would require that the architects eliminate from the eQual model
the undesired alternatives for the three parameters, which would
reduce the number of combinations of alternatives from 24 to 1.

A prior analysis [80] identified well over 100 design decisions
made during part of Hadoop’s development. Hadoop’s architects
considered 2-8 alternatives per variation point. The resulting deci-
sion space quickly eclipses human abilities. For example, a minor
version involving only 4 new design decisions and 5 alternatives
per decision will have over 500 variants. By contrast, the entire
burden eQual places on architects is to answer 4 X 3 = 12 questions
about the variation points.

We do not expect architects to be able to answer the above ques-
tions right away. eQual allows several possibilities: (1) Architects
may know the exact answer to a question. (2) They may be able
to provide only a partial answer, such as a variation point’s lower
bound. (3) They may be unable to answer a question, leaving the
range of alternatives unbounded.

3.2.2 Questions Regarding Non-Functional Properties. eQual’s sec-
ond set of questions deals with the system’s NFPs, which are the
basis for assessing design alternatives (Section 3.4). The NFPs are de-
termined from system requirements and domain characteristics. For
example, in Hadoop, prior work identified four properties [11, 12]:
(1) Reliability (ratio of tasks that have to be restarted to all tasks),
(2) Machine Utilization, (3) Execution Time, and (4) Cost (total num-
ber of executed jobs). Each property has to be tied to an aspect of the
output of the system’s dynamic analysis. In DomainPro and other
approaches that use discrete-event simulation (e.g., Rhapsody [43]),
system state is captured at the times of event occurrences. Hence,
the output is a set of time-series objects.
For a non-functional property P, eQual asks three questions:

(i) What time-series object is of interest?

(ii) Is P directly or inversely related to overall system quality?

(iif) What is P’s importance coefficient?

For example, in the case of Hadoop’s Machine Utilization, the
relevant time-series object captures idle capacity of the machine
pool in the model discussed above. The direction of the relationship
is inverse (lower idle capacity means higher utilization); and the
importance coefficient may be set to 3 (an ordinal value between 1
and 5, that would treat Machine Utilization as more important than,
e.g., Cost whose coefficient is 1, and less important than Reliability

1043

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

whose coefficient is 5). Thus, for the above example of a minor
version with 4 variation points, given Hadoop’s 4 properties of
interest, an architect using eQual would have to answer a total
of 24 questions: 12 questions each for the variation points and
properties.

eQual’s aim is to elaborate the information architects already must
take into account. In practice, architects often ignore, accidentally
omit, indirectly consider, or incorrectly record information cap-
tured by these questions [85]. By (1) strictly bounding the number
of questions, (2) consolidating them into one place, and (3) giving
them a standard format, eQual aims to convert this frequently hap-
hazard process into methodical design. As the architects explore
the design alternatives and gain a better understanding of the sys-
tem, they are able to go back and add, remove, or change their
answers.

3.3 Selection

The system’s design model (Section 3.1) and the answers pertain-
ing to the system’s variation points and properties (Section 3.2)
are inputs of the selection step, whose objective is to explore the
space of design variants intelligently and tractably. For example, in
Hadoop, this can help engineers explore the effects of non-trivial de-
cisions, such as: What yields better reliability at an acceptable cost,
a greater number of less-reliable machines or fewer more-reliable
machines?

Selection begins by generating an initial set of variants, i.e., by
making an initial selection of alternatives for the system variation
points using the information provided by architects during prepa-
ration (Section 3.2). We call this initial set seed variants, and the
process eQual uses to pick the seed and later variants selection
strategy. Seed variants feed into assessment (Section 3.4), where
eQual comparatively analyzes them. Assessment feeds its ranking
of variants back to selection (recall Figure 3), which uses this in-
formation to generate an improved set of variants during the next
iteration.

Two factors determine selection’s effectiveness: (1) how seed
variants are generated and (2) how information from assessment
is used to generate subsequent variants. In principle, eQual allows
any selection strategy. The goal is to enable an architect to control
the selection step’s number of iterations and generated variants
to fit her needs, specific context, and available computational re-
sources.

Our prototype implements two selection strategies based on the
genetic evolutionary-algorithm paradigm: random and edge-case
seeding. Random seeding chooses seed variants randomly. Edge-
case seeding aims to generate variants containing either side of a
boundary condition provided to eQual. For example, variants in
Hadoop would be generated by selecting all lower-bound values
from Figure 2 (500, 1, 10, 0.5, 0.5), all upper-bound values (2000,
5, 100, 0.9, 2), and combinations of upper-bound values for some
variation points and lower-bound values for the remaining variation
points, e.g., (2000, 5, 100, 0.5, 0.5). Note that edge-case seeding is
not possible with options that are nominal, i.e., do not have binary
or numerical values.

Both strategies quickly prune the space of variants and arrive at
good candidate designs (see Section 4). We aim to preserve Pareto

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

optimal [14] solutions at each step as this provides an intuitive way
to explore extreme effects of decisions.

3.4 Assessment

To assess a variant’s quality, eQual dynamically analyzes it via sim-
ulation. We chose simulation-based analysis because simulations
are representative of a system’s real behavior due to their inherent
nondeterminism [46]. eQual relies on discrete-event simulations,
generating outputs in the form of time-series objects. Comparing
different variants thus requires an analysis of their simulation-
generated time-series. Although there are dozens of similarity
metrics, in most domains (e.g., robotics, speech recognition, soft-
ware engineering) Dynamic Time Warping (DTW) has been shown
to perform better than the alternatives [23]. We thus use DTW.

For each design variant, eQual generates a single time-series
object for each NFP. For Hadoop, that means four time-series per
variant, corresponding to the system’s (1) Reliability, (2) Execution
Time, (3) Machine Utilization, and (4) Cost. Each data point in a time-
series corresponds to the computed value for the given property at
the given time.

Depending on the direction of the relationship of a property
with overall system quality, we aim to find the variant that has
yielded the time-series with the highest (direct relationship, e.g.,
for Reliability) or lowest (inverse relationship, e.g., for Cost) values
for that property. To this end, we need to compare each time-series
with the optimum time-series. The optimum time-series for a given
NFP is a constant time-series each of whose data points is equal
to the highest (or lowest) value of the property achieved across
all simulations. This comparison requires having access to all of
the simulation-generated data in one place, and computing the
global optimum and distances from it. This may entail transferring
hundreds of megabytes of data per variant, and having to redo all of
the calculations each time a new variant changes the optimum time-
series. Such a solution would be prohibitively costly in scenarios
with multiple iterations involving thousands of variants.

To address this problem, we devised the Bipartite Relative Time-
series Assessment technique (BRTA), which distributes the time-
series analysis. As indicated in Figure 3, multiple nodes are tasked
with assessing different subsets of variants via simulation. Each
node behaves in the manner described above: it performs a discrete-
event simulation of the design variants with which it is tasked,
computes an optimum time-series, and uses DTW to compare the
individual time-series with the optimum. Note that the optimum
time-series is a local optimum since the other nodes will perform
the same tasks on their variants. In addition, for each node, BRTA
calculates the range (minimum-to-maximum) for the time-series
computed locally, as well as the normalized distance (distance di-
vided by the number of points in the time-series).

Instead of returning all simulation-generated data to the assess-
ment node (recall Figure 3), BRTA only sends a summary containing
the above measurements. The global assessment algorithm gathers
these summaries and calculates the distance to the global optimum
time-series for each time-series as follows:

D, = {Maxg -0;+ Dy (if direct)
9 O; — Ming + Dy (if inverse)

1044

Arman Shahbazian, Suhrid Karthik, Yuriy Brun, and Nenad Medvidovic

/\Re|labl|lty

> Cost

~ Utilization

Execution ~
Time

N

Figure 4: eQual’s radar diagram for two candidate Hadoop
variants, showing their respective values for four properties
of interest.

Dy is distance to the global optimum; O is the local optimum; D,
is distance to the local optimum; Maxg (Ming) is the global max
(min) value among all time-series of a NFP. We formally prove this
formula’s correctness in our experimental replication package [78].

BRTA’s reduction in the amount of transferred data directly
facilitates eQual’s support for exploring many design alternatives.
The updated BRTA summaries include the globally normalized
values for each time-series in each variant and, are used to rank
the variants. To use the Dy values of different NFPs to calculate
the overall utility of a design variant, we linearly rescale them to
a value between 0 and 1. The overall quality of the system, then,
is the average, weighted by the importance coefficients provided
by the architects (as described in Section 3.2), among all of these
values.

When multiple variants have comparable qualities, eQual also
allows architects to visually compare them. Figure 4 shows an
example of such a visualization: the architects may use this visual-
ization to decide between the variant that emphasized Reliability
and the variant that balanced the NFPs more evenly.

4 EVALUATION

We have implemented eQual on top of DomainPro [77], resulting
in 4.7K C# and 1.0K JavaScript SLoC added to DomainPro. To aid
in eQual’s evaluation, we also built a utility totaling an additional
1.0K C# and 0.2K MATLAB SLoC, as detailed in Section 4.2.

We conduct analytical and empirical evaluations of eQual’s tar-
geted problem scope, usability, effectiveness in finding high-quality
solutions, and scalability; and a controlled user study further tar-
geting eQual’s scope, usability, and effectiveness. We especially,
but not exclusively, focus on eQual’s comparison to GuideArch, the
state-of-the-art approach for exploring early architectural designs.

4.1 eQual’s Scope & Usability

Our usability evaluation measures how easy eQual is to apply in
practice. We present an analytical argument for eQual’s usabil-
ity and results of its empirical evaluation. We also illustrate that
eQual’s problem scope matches GuideArch’s.

4.1.1 Analytical Argument. Section 3.2 discussed the questions
eQual asks of architects. Let us assume that a system has Ny, vari-
ation points and N, properties. For each of them, eQual asks a
three-part question. The maximum number of field entries eQual
requires an architect to make is thus 3 X (Ny, + Np). Recall that
the architect has the option of not answering some (or any) of the
questions.

eQual: Informing Early Design Decisions

As discussed above, our analysis of Hadoop has relied on previ-
ously identified four critical NFPs [11, 12]. Prior research suggests
that there are usually 4-6 NFPs of interest in a software project, and
rarely more than 10 [4]. Moreover, a recent study [80] showed that
the number of variation points per Hadoop version ranged between
1 and 12 [80]. Taking the largest number of variation points for a
single Hadoop version and the four properties, an architect using
eQual would have to provide no more than 48 answers to explore
the 4-dimensional decision space of at least 2'% system variants.

Notably, eQual assumes neither that NFPs can be rank-ordered
(unlike GuideArch [29] and its predecessor [56]), nor that archi-
tects can provide specific fitness functions for them (unlike prior
work [81-83]). Section 4.2 will more formally define and discuss
fitness functions.

4.1.2 Empirical Comparison to the State-of-the-Art. We modeled
Hadoop in GuideArch. We considered other approaches, but found
them unsuitable for direct comparison. Beyond approaches already
discussed in the Introduction, model-driven solutions [31, 40] target
design-space exploration, but require manual specification of model-
transformation rules and tackle challenges such as finding the best
orchestrations of the rules. Several solutions for optimizing cyber-
physical systems [6, 41, 59] rely on simulations but are intimately
tied to the underlying domain. For example, AutoFocus [10, 41]
targets reactive systems, in which modeling elements are domain-
specific abstractions (e.g., electronic control unit) and constraints
are linked to the domain’s semantics (e.g., traffic-light behavior).
As another example, OpenMDAO [35, 59] numerically optimizes
designs of multidisciplinary systems such as aircraft, and relies on
the availability of mathematical models for properties such as lift,
thermodynamics, etc.

We compared eQual and GuideArch models in terms of num-
bers of field entries and time required to complete them. We
used Hadoop because the details of the case study published with
GuideArch’s authors are no longer available. GuideArch helps archi-
tects make decisions using fuzzy math [93] to deal with uncertain-
ties about system variation points. GuideArch uses three-point esti-
mates: architects must provide (1) pessimistic, (2) most likely, and (3)
optimistic values to describe the effects of their decisions on NFPs.
For instance, in the case of Hadoop’s Processing Power, for each
decision (e.g., using machines with 2GHz CPUs) architects have to
specify the three values for Utilization, Execution Time, and Cost.

GuideArch does not require the creation of a system model. How-
ever, GuideArch’s usefulness is contingent on the accuracy of its
inputs, which requires in-depth knowledge of the system’s domain
and behavior. Its authors acknowledge that, even for architects who
are intimately familiar with a system, it may be challenging to ac-
curately estimate, e.g., the pessimistic value of resource Utilization
or the most likely system Reliability. For this reason, GuideArch’s
authors recommend that architects obtain this information by ana-
lyzing prior data, looking at similar systems, studying manufacturer
specifications, and consulting publications [29]. These are non-
trivial tasks, likely to rival the modeling effort required by eQual.

The specification of NFPs in GuideArch is similar to eQual. How-
ever, as discussed above, the specification of variation points is
different, which, in turn, impacts the modeling and analysis of

1045

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

available options. GuideArch requires that all options be specified
discretely, and cannot explore ranges.

We highlight an experiment representative of the side-by-side
use of the two techniques: We selected five options for each of
Hadoop’s variation points from Figure 2, totaling 25 alternatives.
For example, instead of simply specifying the range 10-100 for
Pool Size—which is allowed by eQual but not by GuideArch—we
explicitly provided 10, 25, 50, 75, and 100 as the options. The next
step was to specify how each decision affects the system’s NFPs. In
doing so, we had to fill in a 25 X 12 matrix in GuideArch. For eQual,
we had to answer 27 questions: 3 X 5 for the five variation points,
and 3 X 4 for the four NFPs. Overall, it took one of this paper’s
authors more than four hours to complete over 350 mandatory
fields in GuideArch. By contrast, it took the same author under six
minutes to answer the 27 questions required by eQual.

This discrepancy only grows for larger problems (e.g., more vari-
ation points or more options within a variation point). In general,
if Tf is the number of field entries in GuideArch, Np the number of
properties, Ny the number of variation points, and a; the number
of alternatives for variation point v;, then

i=1
The number of GuideArch field entries grows quadratically in the
number of properties and variation points. The number of field
entries in eQual grows linearly: 3 X (Ny, + Np). This results in a foot-
print for eQual that is orders of magnitude smaller than GuideArch’s
when applied to large systems.

4.2

Most other approaches concerned with design quality (e.g., [5, 21, 27,
58, 77]) focus on single variants and do not explore design-decision
spaces (see Section 5 for further details). Prior work [28] has shown
that those techniques that aid engineers with arriving at effective
designs (e.g., ArchDesigner [1]) underperform GuideArch in the
quality of their top-ranked designs. For these reasons, we evaluated
eQual’s effectiveness by directly comparing it with GuideArch as
the leading competing approach. We then separately assessed the
quality of eQual’s results on systems with known optimal config-
urations, in the process further highlighting eQual’s scope. Our
results indicate that eQual produces effective designs, of higher
quality than competing work.

eQual’s Scope & Effectiveness

4.2.1 Head-to-Head Comparison with State-of-the-Art. Both eQual
and GuideArch use known optimization methods. Their absolute
effectiveness is difficult to determine as it requires that the modeled
systems’ ground-truth results be known, but we can compare their
effectiveness relative to one another.

To that end, we analyzed the Hadoop models created with eQual
and GuideArch as described in Section 4.1 and compared the top-
ranked variants they returned. For example, in the experiment high-
lighted in Section 4.1, both tools produced Hadoop variants that
were equally reliable (94%), had equal machine utilization (99%),
and comparable cost (17 for GuideArch vs. 19 for eQual). How-
ever, eQual’s top-ranked variant was nearly 7.5 times faster than
GuideArch’s (154s vs. 1,135s.). In fact, we observed that GuideArch
consistently selects variants with lower machine reliability but
higher redundancy than those selected by eQual.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

System | Domain Var. Points | Terms | Size
Apache | Web Server 11 9 10°
BDB C | Berkeley DB C 10 10°
BDBJ | Berkeley DB Java 8 10°
Clasp Answer Set Solver 10 17 100
LLVM | Compiler Platform 7 8 107
AJStats | Analysis Tool 3 4 107

Figure 5: Systems used to evaluate eQual’s effectiveness.
Var. Points is number of variation points; Terms is number
of terms in systems’ fitness models; Size is number of design-
space variants.

We acknowledge that we are intimately familiar with eQual.
However, the author who performed the analysis has extensive ex-
perience with GuideArch. Moreover, we have a good understanding
of Hadoop and made every effort to use GuideArch fairly, consult-
ing its authors regularly. Ultimately, the quality of the variants
GuideArch recommends depends heavily on the architect’s ability
to predict the effects of the design decisions on the system’s NFPs,
a non-trivial task regardless of one’s familiarity with GuideArch.

4.2.2 Evaluation on Systems with Known Optimal Designs. We fur-
ther evaluated eQual’s effectiveness against known fitness models
of six real-world systems, summarized in Figure 5. Fitness mod-
els describe the NFPs of a system using its variation points and
their interactions. These models were obtained by Siegmund et
al. [81, 82] and shown to accurately predict the NFPs of highly
configurable systems. The fitness models aim to detect interac-
tions among options (or features) and evaluate their influence on
the system’s non-functional attributes. Each has been obtained by
numerous measurements of different variants of a software sys-
tem. We decided to use these models because they are analogous
to our objective in eQual, despite being applied to systems that
are already deployed. Furthermore, the subject systems’ resulting
decision spaces range from 100K to 1 quadrillion variants, making
them attractive for testing eQual’s range of applicability.

A fitness model is a function from variants to a fitness mea-
surement Q: C — R, where fitness can be an aggregation of any
measurable NFP that produces interval-scaled data. The model is de-
scribed as a sum of terms over variation option values. The model’s
individual terms can have different shapes, such as n- ¢(X), n- ¢(X)?
or n- ¢(X)- m [81]. For illustration, a configurable DBMS with
options encryption (E), compression (C), page size (P), and database
size (D) may have the following fitness model:

Q(c) =50 + 20- ¢(E) + 15-¢(C) — 0.5- ¢(P) + 2.5- ¢(E)- ¢(C)- ¢(D)
In general, the fitness models are of the following form:

Q)= fo+ D, Be(i).c()
i..jeO
Po represents a minimum constant base fitness shared by all variants.
Each term of the form ®(c(i)..c(j)) captures an aspect of the overall
fitness of the system.

Because only aggregate fitness models were available to us, with-
out loss of generality, we treated each term as an individual NFP
of a given system, and translated its coefficients into eQual’s coef-
ficients. Then, using the formula of each term, we generated the

1046

Arman Shahbazian, Suhrid Karthik, Yuriy Brun, and Nenad Medvidovic

Random Edge-Case
System | Default | Mean o Mean o
Apache | 0.264 0.311 | 0.146 | 0.899 | 0.163
BDB C 0.763 0.564 | 0.325 | 0.983 | 0.035
BDB J 0.182 0.517 | 0.408 | 1.000 | 0.000
Clasp 0.323 0.352 | 0.174 | 0.859 | 0.179
LLVM 0.253 0.235 | 0.234 | 0.902 | 0.219
AJStats | 0.856 0.780 | 0.269 | 0.963 | 0.048
Overall | 0.440 0.460 | 0.592 | 0.934 | 0.107

Figure 6: Comparison between the two seeding strategies
employed by eQual, and the quality of solutions commonly
selected by architects (Default, from [81].) Mean lists the
mean fitness score.

corresponding constant time-series representing the term. These
time-series were subsequently passed to eQual for exploration. To
measure eQual’s effectiveness, we normalized each variant’s fitness
and calculated the fitness of the best variant found by eQual using
the ground-truth fitness models. We then calculated that variant’s
distance from the global optimum. We call this the Optimal Prox-
imity. These steps were accomplished via an extension to eQual
totaling 1K C# SLoC and an additional 0.2K MATLAB SLoC to tune
and visualize the resulting eQual models.

Figures 6 and 7 depict the results of applying eQual on our six
subject systems using the two strategies discussed in Section 3.3:
random seeding and edge-case seeding. Figure 6 compares eQual’s
two strategies against the solutions yielded by using the default
values suggested by the six systems’ developers [81]. These results
were obtained by setting the cross-over ratio for the genetic algo-
rithm to 0.85 and the mutation rate to 0.35, using 4 generations of
size 200. These hyper-parameters were obtained over nearly 30,000
test executions, by using grid-search to find the most suitable pa-
rameters on average. The results in Figure 6 show that, in most
cases, even the purely random seeding strategy for eQual is at least
as effective as the default values suggested by the developers. On
the other hand, the edge-case strategy finds superior variants that
on average exhibit over 93% of the global optimum. Figure 7 pro-
vides additional detail, showing the distribution of running eQual
on the six subject systems 100 times using the edge-case strategy,
with generation sizes of 50, 100, and 200. Note that, with a larger
number of generations, eQual is able to produce variants that, on
average, tend to match the reported global optimum for each sys-
tem; in the case of Clasp, the lone exception, the quality of eQual’s
suggested variant was still over 90% of the global optimum.

4.3 Scope, Usability, & Effectiveness User Study

We conducted a within-subject controlled experiment with 15 par-
ticipants using eQual and GuideArch to measure (1) whether users
were more likely to produce higher-quality designs using GuideArch,
eQual, or without any tool support, and (2) whether the users pre-
ferred using GuideArch, eQual, or neither tool.

All participants had industrial experience developing software
systems, working for companies such as, Google, Facebook, Sam-
sung, and Cloudera. On average, the participants had 11 years
of programming experience (minimum 4, maximum 24) and 6.5

eQual: Informing Early Design Decisions

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

AJStat BDB J BDB C
z : 2 z : z :
Ell=E = = Em—— \ R - =
= 1 €1 ; = = -
2 : : 2 : 2
& 0.9 b £ 09 b E00 b i
= = E T !
£ : : £ ' E | |
3= : : g : g !
B .8 feroeee e S 0.8 et B 0.8 [
o o o L +
50 100 200 50 100 200 50 100 200
Generation Size Generation Size Generation Size
Apache Clasp LLVM
> 1 : z 1r - —_ : > 1 —_ : -
B B3 i £ | =
: O s &5 B8] o
X i x : ; X
= e : e
A 0.5 R A 0.5 . T . [A 05 T
= = ; € =
g i | g | JI_ g | JI_
3 =] 3
Y R A & obnip e
50 100 200 50 100 200 50 100 200

Generation Size

Generation Size

Generation Size

Figure 7: Optimal Proximity distribution of the best variant generated by eQual using generation sizes of 50, 100, and 200. Each
box plot comprises 100 executions of eQual’s exploration function using the edge-case strategy.

years of software design experience (minimum 1, maximum 15).
Additionally, 60% of participants work on software design tasks
“somewhat regularly” or “always”. Two-thirds of participants re-
ported that they use models to describe their software “somewhat
regularly” or “always”.

Each participant was asked to work with three systems selected
from the set in Figure 5: Apache HTTPD (an HTTP server), Berkeley
DB C (an embedded database library), and LLVM (a compiler infras-
tructure). For each system, participants were given a performance
objective and variation points for which they had to determine the
optimal options. The participants were provided with documents
that described each system, its variation points under consideration,
and online resources with more information about the system.

Each participant took part in three treatments: using no tool
(the control), GuideArch, and eQual. The order of treatments was
randomized, as was the assignment of treatments to subject systems.
Participants were given at least one hour to complete the study, but
were allowed to keep working until they finished. They answered
questions about each treatment as they progressed through the
experiment. At the end, participants were asked to compare the
different treatments.

In their assessment of eQual, we provided the participants with
screenshots to describe aspects of the system models that depended
on DomainPro [77]. The objective was to minimize the impact
on the study’s results of DomainPro’s details incidental to eQual
(e.g., metamodeling features). For GuideArch, participants used the
online version of the tool [37]. Finally, in the control treatment,
they performed the tasks manually.

We compared the top-ranked solution for each treatment sub-
mitted by the participants. We normalized the results to determine
their distance from the respective global optimum, resulting in
a quality score between 0 and 1. We compared the distributions

1047

of the qualities of the designs produced for the three treatments.
The median resulting system quality was 0.872 (mean 0.755) for
the GuideArch group, 1.0 (mean 0.999) for eQual, and 0.879 (mean
0.719) for control. We applied the Mann-Whitney U Test and found
the difference between median system qualities for GuideArch and
eQual to be statistically significant (p = 0.00014) and the effect
size large (r = 0.70). Likewise, the difference between median
system qualities for the control group and eQual was statistically
significant (p < 0.00001) and the effect size large (r = 0.85).

Participants reported confidence in their solutions on a Likert
scale [53], from Very Unsure (1) to Very Confident (5). eQual users
had a mean confidence of 4.07, GuideArch users 3.07, and con-
trol group 3.14. Student’s t-tests pairwise comparing eQual vs.
GuideArch and eQual vs. control group showed statistical signifi-
cance, with respective p values of 0.03 and 0.02.

Participants also rated two usability aspects of each treatment
on a Likert scale. They rated each treatment’s required effort, rang-
ing from Very Intensive (1) to Very Easy (5). The mean scores
for the eQual, GuideArch, and control groups were 4.00, 2.46, and
2.07, respectively. Student’s t-tests pairwise comparing eQual vs.
GuideArch and eQual vs. control group showed statistical signifi-
cance, with respective p values of 0.0028 and 0.00037. Additionally,
participants rated the user friendliness of each treatment, rang-
ing from Very Challenging (1) to Very Friendly (5). The mean
scores for the eQual, GuideArch, and control groups were 4.53, 2.67,
and 2.71, respectively. Again, Student’s t-tests pairwise compar-
ing eQual vs. GuideArch and eQual vs. the control group showed
statistical significance, with respective p values of 0.00021 and
0.0012.

These results show that participants saw value in using eQual
and found its interface more intuitive than GuideArch’s.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

4.4 eQual’s Scalability

To evaluate eQual’s scalability, we used Google Compute Engine
(GCE) with Hadoop. We created 16 n1-standard-1 nodes (the most
basic configuration available in GCE, with 1 vCPU and 3.75 GB
RAM) as simulation nodes, and a single n1-standard-2 node (2 vCPU
and 7.5 GB RAM) as the central controller node. All nodes were
located in Google’s us-centrall-f datacenter. We used the variation
points and NFPs described in Section 3.

Number of Nodes. We evaluated eQual’s observed speed-up when
increasing the number of simulation nodes. We used the general
genetic algorithm for 8 generations and the generation size of 256
variants, totaling 2,048 variants. We did this with 2, 4, 8, and 16
nodes, and for three values of the Computation Size variation point
(denoted with C in Figure 8). As shown in Figure 8(a), the execution
time was inversely proportional to the number of nodes, suggesting
that our approach can be scaled up optimally by adding more nodes.
Using more powerful nodes can further speed up the computation.
Note that each data point in Figure 8(a) consists of 2,048 simulations.
Overall, we simulated more than 24,500 design variants.

Number of Events. We also measured the impact of increasing
the number of events generated during a simulation. This is in-
dicative of how well eQual performs on larger models. The total
number of events generated in Hadoop is nondeterministic. How-
ever, based on the characteristics of the model, we hypothesized
that increasing the Computation Size should increase the number of
events roughly linearly if other variation points remain unchanged.
We evaluated this hypothesis by using the average sizes of the
time-series object files generated during simulation as a reasonable
proxy for the number of events. Figure 8(b) shows that, on average,
the total number of events is directly proportional to Computation
Size. Coupled with the performance that eQual demonstrated for
the same values of Computation Size (Figure 8(a)), this is indicative
of eQual’s scalability as numbers of simulation events grow.

Number of Variants. Finally, we studied eQual’s performance as
the numbers of design variants increase. We modified the genetic
algorithm configurations to use five generation sizes: 16, 32, 64,
128, and 256. For each size, we ran eQual for 8 generations, on 4, 8,
and 16 nodes. Figure 8(c) shows that eQual is able to analyze over
2,000 design variants in ~120 min. on 4 nodes, with a speed-up that
is linear in the number of nodes, down to ~30 min. on 16 nodes.

4.5 Threats to Validity

While eQual’s evaluation finds it is easy to use, scales well, has a
small footprint, and finds accurate solutions, we take several steps
to mitigate possible threats to our work’s validity.

The controlled experiment had two potential validity threats
that arose from practical considerations. We believe these do not
impact the design quality or usability results. The first considera-
tion is the participants’ use of existing ground-truth models, rather
than creating their own. This was necessary to enable objective
comparison between the user-generated solutions. Moreover, these
models were produced by a third party [81, 82]. The second threat
stemmed from having to execute the study in a limited amount
of time. Recall from Section 4.3 that we relied on screenshots of
previously developed architectural models to explain the full scope
of eQual (notably its DomainPro modeling substrate). Furthermore,

1048

Arman Shahbazian, Suhrid Karthik, Yuriy Brun, and Nenad Medvidovic

‘:" 20000 - . -~
b= —te— (C=500 =@ -C=1000 C=2000
= 15000
g
‘S 10000
B o . _
5000 -~
5 o . _TE-
] 0 =
= 2 4 8 16
Number of Simulation Nodes
(a)
o 100
% L
<
5
= 50
=t .
= _
=1
= — Q; —
»n 0
C=500 C=1000 C=2000
Computation Size (C)
(b)
=
g 8000 n=4 -® -n=8 —t—n=16
= 6000
=
.S Y)
£ 4000 -
3 -7
& 2000 - d
= -
é 0
0 500 1000 1500 2000

Number of Alternatives

(c)

Figure 8: eQual’s scalability with number of (a) simulation
nodes, (b) events, and (c) variants.

we summarized subject systems to enable participants to under-
stand the salient aspects of each system relatively quickly. Finally,
we asked the participants to consider only a single NFP. We believe
that the cumulative effect of thus simplified scenarios may have
worked in favor of the control groups. At the same time, we posit
that the net effect on eQual and GuideArch was mostly neutral:
the reduction in modeling effort, which favored eQual, is balanced
out by providing a system “digest” and focusing on a single NFP,
favoring GuideArch.

Two constituent parts of eQual help mitigate the threats to its
construct validity: (1) the dynamic analysis of system designs by
simulation and (2) creating assessment models based on DTW. In
the past, these two solutions have been extensively used to great
success. Discrete event simulations have been used in a plethora of
domains (e.g., avionics, robotics, healthcare, computer networks,

eQual: Informing Early Design Decisions

finance, etc.) [84, 86], and the bedrock of our assessment mod-
els, DTW, is so prevalent that it is “difficult to overstate its ubig-
uity” [23, 70]. DTW also subsumes Euclidean distance [23] as a
special case [70], which increases eQual’s range of applicability.
The threat to the external validity of our work is mitigated by
the incorporation of an MDA-based approach (namely, Domain-
Pro). MDA solutions have been shown to be sufficiently robust and
scalable, and are widely used in research and industry [42, 47].

5 RELATED WORK

eQual builds on a large body or work that has explored support for
making design decisions via static or dynamic analysis of software
models [45, 69]. Static analyses (e.g., [8, 34, 60]) tend to require
architects to develop complex mathematical models, imposing steep
learning curves, modeling effort, and limits on system scalability.
Depending on the mathematical models they rely on (e.g., Markov
chains [33], event calculi [48], or queueing networks [9]), these tech-
niques are confined to specific kinds of software system models [2].

While they come with shortcomings of their own (e.g., false
negatives, long execution times), dynamic analysis techniques—i.e.,
architectural model simulations [27, 55]—are more capable of cap-
turing the nondeterminism reflective of reality [46]. Despite notable
efforts, especially in domains with well understood properties (e.g.,
stream-based systems [22], reactive hybrid systems [10, 41, 87],
numerical optimization of aircraft designs [35, 59]) simulations of
software architectural models [57, 91] have not been employed as
widely as static analyses [2], for at least four reasons. First, creating
simulatable system design models is difficult [27]. Second, running
simulations is time consuming, mandating that scalability be ex-
plicitly addressed [68]. Third, quantitative assessment of variants
is a complex computational problem because of the involved trade-
offs [61]. Finally, analysis and understanding of massive datasets
may be necessary to assess system behavior. eQual has built-in
features to explicitly deal with each of these problems.

Rule-based approaches identify problems in a software model
and rules to repair them. MOSES uses stepwise refinement and
simulation for performance analysis [19]. ArchE helps meet the
quality requirements during the design phase by supporting modi-
fiability and performance analysis [60]. DeepCompass relies on a
Pareto analysis to resolve conflicting goals of performance and cost
between different embedded-system architecture candidates [7].
PUMA facilitates communication between systems designed in
UML and NFP prediction tools [92]. FORMULA aims to reduce the
design-space size by removing candidates based on a user-defined
notion of design equivalence [44]. Unlike eQual, each of these ap-
proaches is limited by its predefined rules and cannot explore the
complete design space.

Metaheuristic approaches treat architecture improvement as an
optimization problem. ArcheOpterix [2], PerOpteryx [49], and
DeSi [56] use evolutionary algorithms to optimize system deploy-
ment with respect to quality criteria. PerOpteryx offers predefined
degrees of freedom for optimizing deployment. The optimization
strategy PerOpteryx uses can be incorporated into eQual, with
allowances for eQual’s broader scope. AQOSA supports modeling
based on AADL and performance analysis tools, and evaluates de-
sign alternatives based on cost, reliability, and performance [52].

1049

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

SASSY targets SOAs, selecting services and a pattern application to
fulfill quality requirements [63]. Metaheuristic simulation has been
used to reconfigure a legacy application for the cloud [32]. Linear
programming has been used to find minimum-cost configurations
on the cloud [3]. DESERT explores design alternatives by model-
ing variations in a tree and using Boolean constraints to eliminate
infeasible solutions [26]. DESERT-FD automates constraint genera-
tion and design exploration [26]. GDSE uses meta-programming
of domain-specific design exploration problems and expresses con-
straints for solvers to generate solutions [72]. eQual uses meta-
heuristic search to find solutions within large design spaces, but
focuses on NFPs and lowering the burden on architects.

Software Product Lines (SPLs) support configuring software ar-
tifacts for a set of requirements [18, 39, 74, 83]. Unlike SPLs, eQual
neither adds nor removes features in a product. SPLs can use ge-
netic algorithms to optimize feature selection [38], but this requires
developers to create objective functions to measure variants’ fitness.
Optimizing configurable systems, despite being aimed at already
deployed systems, has clear relations to eQual. Among these tech-
niques we used the studies by Siegmund et al. [81, 82] to evaluate
the effectiveness of eQual. Oh et al. [67], and Sayyad et al. [73] have
devised techniques to more efficiently explore the space of system
configurations, which can complement eQual’s exploration strate-
gies. SPLs can also be modeled as a combination of a core model,
representing one variant (product) and a set of A-models for the
differences with other variants [75]. A-modeling is a way to model
feature variability, whereas eQual employs search-based strategies
on an underlying architectural model of a system to explore its
design variants.

6 CONTRIBUTIONS

Our work provides an important step in narrowing the chasm be-
tween the needed and available support for making and evaluating
early architectural design decisions. Our approach, eQual, guides
architects in making informed choices, by quantifying the conse-
quences of their decisions throughout the design process. Critically,
eQual provides structure and automated support to the architects’
already existing tasks. eQual does so while being able to navigate
efficiently through massive design spaces. eQual is able to simul-
taneously match or better the state-of-the-art in terms of four key
dimensions: problem scope, usability, effectiveness, and scalability.
While our results show promise, further work is needed to im-
prove eQual’s practical effectiveness. Thus far, we have assumed
that architects know the relative importance of NFPs in their sys-
tems. Our goal is to actively guide architects in design hot-spot
identification and to help their understanding of the NFPs’ relative
importance. Moreover, combining eQual with software architec-
ture recovery will extend its applicability to existing systems with
legacy architectures. Our successful application of eQual to systems
with known fitness models [81, 82] supports this idea’s viability.

ACKNOWLEDGMENTS

This work is supported by the U.S. National Science Foundation
under grants CCF-1453474, CCF-1618231, CCF-1717963, and CNS-
1823354, and by the U.S. Office of Naval Research under grant
NO00014-17-1-2896.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

REFERENCES

[1] Tariq Al-Naeem, Ian Gorton, Muhammed Ali Babar, Fethi Rabhi, and Boualem Be-

(6

[7

[10

[11

[12

[13

[14

[15

[16

(17

[18

[19

[20

[21

[22

=

[

]

]

]

]

]

]

]

natallah. 2005. A quality-driven systematic approach for architecting distributed
software applications. In International Conference on Software Engineering (ICSE).
244-253.

Aldeida Aleti, Barbora Buhnova, Lars Grunske, Anne Koziolek, and Indika Mee-
deniya. 2013. Software architecture optimization methods: A systematic literature
review. IEEE Transactions on Software Engineering (TSE) 39, 5 (2013), 658—683.
Danilo Ardagna, Giovanni Paolo Gibilisco, Michele Ciavotta, and Alexander
Lavrentev. 2014. A multi-model optimization framework for the model driven
design of cloud applications. In Search-Based Software Engineering. Springer,
61-76.

Jagdish Bansiya and Carl G Davis. 2002. A hierarchical model for object-oriented
design quality assessment. IEEE Transactions on Software Engineering (TSE) 28, 1
(2002), 4-17.

Steffen Becker, Heiko Koziolek, and Ralf Reussner. 2009. The Palladio component
model for model-driven performance prediction. Journal of Systems and Software
82, 1(2009), 3-22.

Torsten Blochwitz, Martin Otter, Martin Arnold, Constanze Bausch, Christoph
Clauf}, Hilding Elmqvist, Andreas Junghanns, Jakob Mauss, Manuel Monteiro,
Thomas Neidhold, Dietmar Neumerkel, Hans Olsson, Joérg-Volker Peetz, and Su-
sann Wolf. 2011. The functional mockup interface for tool independent exchange
of simulation models. In International Modelica Conference. Dresden, Germany,
105-114. https://doi.org/10.3384/ecp11063105

Egor Bondarev, Michel RV Chaudron, and Erwin A de Kock. 2007. Exploring
performance trade-offs of a JPEG decoder using the DeepCompass framework.
In International Workshop on Software and performance. 153-163.

Bas Boone, Sofie Van Hoecke, Gregory Van Seghbroeck, Niels Joncheere, Viviane
Jonckers, Filip De Turck, Chris Develder, and Bart Dhoedt. 2010. SALSA: QoS-
aware load balancing for autonomous service brokering. Journal of Systems and
Software 83, 3 (2010), 446—456.

Aleksandr Alekseevich Borovkov. 1984. Asymptotic methods in queuing theory.
John Wiley & Sons.

Manfred Broy, Jorge Fox, Florian Hélzl, Dagmar Koss, Marco Kuhrmann, Michael
Meisinger, Birgit Penzenstadler, Sabine Rittmann, Bernhard Schitz, Maria
Spichkova, and Doris Wild. 2008. Service-Oriented Modeling of CoCoME with
Focus and AutoFocus. In The Common Component Modeling Example, Andreas
Rausch, Ralf Reussner, Raffacla Mirandola, and Raffaela Plasil (Eds.). Springer-
Verlag, 177-206. https://doi.org/10.1007/978-3-540-85289-6_8

Yuriy Brun, George Edwards, Jae young Bang, and Nenad Medvidovic. 2011.
Smart redundancy for distributed computation. In International Conference on
Distributed Computing Systems (ICDCS) (20~-24). Minneapolis, MN, USA, 665-676.
https://doi.org/10.1109/ICDCS.2011.25

Yuriy Brun, Jae young Bang, George Edwards, and Nenad Medvidovic. 2015.
Self-Adapting Reliability in Distributed Software Systems. IEEE Transactions on
Software Engineering (TSE) 41, 8 (August 2015), 764-780. https://doi.org/10.1109/
TSE.2015.2412134

Saheed A. Busari and Emmanuel Letier. 2017. RADAR: A Lightweight Tool for
Requirements and Architecture Decision Analysis. In Proceedings of the 39th
International Conference on Software Engineering (ICSE). Buenos Aires, Argentina,
552-562. https://doi.org/10.1109/ICSE.2017.57

Yair Censor. 1977. Pareto optimality in multiobjective problems. Applied Mathe-
matics & Optimization 4, 1 (1977), 41-59.

Jane Cleland-Huang, Raffaella Settimi, Oussama BenKhadra, Eugenia Berezhan-
skaya, and Selvia Christina. 2005. Goal-centric traceability for managing non-
functional requirements. In International Conference on Software Engineering
(ICSE). 362-371.

Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Peter Solc. 2007. Auto-
mated classification of non-functional requirements. Requirements Engineering
12, 2 (2007), 103-120.

Paul Clements, Rick Kazman, and Mark Klein. 2001. Evaluating Software Archi-
tectures: Methods and Case Studies. Addison-Wesley Professional.

Thelma Elita Colanzi, Silvia Regina Vergilio, Itana Gimenes, and Willian Nalepa
Oizumi. 2014. A search-based approach for software product line design. In
International Software Product Line Conference, Vol. 1. 237-241.

Vittorio Cortellessa, Pierluigi Pierini, Romina Spalazzese, and Alessio Vianale.
2008. MOSES: MOdeling Software and platform architEcture in UML 2 for
Simulation-based performance analysis. In Quality of Software Architectures.
Models and Architectures. Springer, 86-102.

Marco D’Ambros, Alberto Bacchelli, and Michele Lanza. 2010. On the impact of
design flaws on software defects. In International Conference on Quality Software
(QSIC). 23-31.

Eric Dashofy, Hazel Asuncion, Scott Hendrickson, Girish Suryanarayana, John
Georgas, and Richard Taylor. 2007. Archstudio 4: An architecture-based meta-
modeling environment. In International Conference on Software Engineering (ICSE)
Demo track. 67-68.

Pablo de Oliveira Castro, Stéphane Louise, and Denis Barthou. 2010. Reduc-
ing memory requirements of stream programs by graph transformations. In

1050

[23

[24

[27

[28

[29

@
=

@
&,

&
=

&
2

[37

(38]

[39

[40

[41

[42

"~
&

[44

[45

[46

[47

Arman Shahbazian, Suhrid Karthik, Yuriy Brun, and Nenad Medvidovic

International Conference on High Performance Computing and Simulation (HPCS).
171-180.

Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn
Keogh. 2008. Querying and mining of time series data: experimental comparison
of representations and distance measures. Proceedings of the VLDB Endowment 1,
2 (2008), 1542-1552.

Christoph Dorn, George Edwards, and Nenad Medvidovic. 2012. Analyzing
design tradeoffs in large-scale socio-technical systems through simulation of
dynamic collaboration patterns. In OTM Confederated International Conferences
“On the Move to Meaningful Internet Systems”. 362-379.

Gerald S Doyle. 2011. A methodology for making early comparative architecture
performance evaluations. Ph.D. Dissertation. George Mason University.
Brandon K Eames, Sandeep K Neema, and Rohit Saraswat. 2010. Desertfd: A finite-
domain constraint based tool for design space exploration. Design Automation
for Embedded Systems 14, 1 (2010), 43-74.

George Edwards, Yuriy Brun, and Nenad Medvidovic. 2012. Automated analysis
and code generation for domain-specific models. In Joint Working IEEE/IFIP
Conference on Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA). 161-170.

Naeem Esfahani. 2014. Management of uncertainty in self-adaptive software. Ph.D.
Dissertation. George Mason University.

Naeem Esfahani, Sam Malek, and Kaveh Razavi. 2013. GuideArch: Guiding the
exploration of architectural solution space under uncertainty. In International
Conference on Software Engineering (ICSE). 43-52.

Mahdi Fahmideh and Ghassan Beydoun. 2019. Big data analytics architecture
design — An application in manufacturing systems. Computers & Industrial
Engineering 128 (2019), 948 — 963. https://doi.org/10.1016/j.cie.2018.08.004
Martin Fleck, Javier Troya, and Manuel Wimmer. 2015. Marrying search-based
optimization and model transformation technology. In North American Search-
Based Software Engineering Symposium (NasBASE). Elsevier, 1-16.

Soren Frey, Florian Fittkau, and Wilhelm Hasselbring. 2013. Search-based genetic
optimization for deployment and reconfiguration of software in the cloud. In
International Conference on Software Engineering (ICSE). 512-521.

Walter R Gilks. 2005. Markov chain monte carlo. Wiley Online Library.

Swapna S Gokhale. 2004. Software application design based on architecture, reli-
ability and cost. In International Symposium on Computers and Communications
(ISCC), Vol. 2.

Justin Gray, Kenneth Moore, and Bret Naylor. 2010. OpenMDAO: An Open Source
Framework for Multidisciplinary Analysis and Optimization. In AIAA/ISSMO
Multidisciplinary Analysis Optimization Conference. https://doi.org/10.2514/6.
2010-9101

Lars Grunske, Peter Lindsay, Egor Bondarev, Yiannis Papadopoulos, and David
Parker. 2007. An outline of an architecture-based method for optimizing de-
pendability attributes of software-intensive systems. In Architecting Dependable
Systems IV. Springer, 188-209.

GuideArch V1.0 2012. GuideArch V1.0.
Projects/GuideArch/.

Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. 2011. A
genetic algorithm for optimized feature selection with resource constraints in
software product lines. Journal of Systems and Software 84, 12 (2011), 2208-2221.
Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. 2008. Dy-
namic software product lines. Computer 41, 4 (2008).

Abel Hegediis, Akos Horvath, and Déniel Varré. 2015. A model-driven framework
for guided design space exploration. Automated Software Engineering 22, 3 (2015),
399-436.

Florian Hélzl and Martin Feilkas. 2010. 13 AutoFocus 3 — A Scientific Tool Proto-
type for Model-Based Development of Component-Based, Reactive, Distributed
Systems. In Model-Based Engineering of Embedded Real-Time Systems. Springer
Berlin Heidelberg, Dagstuhl, Germany, 317-322. https://doi.org/10.1007/978-3-
642-16277-0_13

John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. 2011.
Empirical assessment of MDE in industry. In International Conference on Software
Engineering (ICSE). 471-480.

IBM. [n.d.]. IBM Rationale Rhapsody. http://www-03.ibm.com/software/
products/en/ratirhapfami.

Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. 2011. An Approach for Ef-
fective Design Space Exploration. In Foundations of Computer Software. Modeling,
Development, and Verification of Adaptive Systems, Radu Calinescu and Ethan
Jackson (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 33-54.

Rick Kazman, Jai Asundi, and Mark Klein. 2001. Quantifying the costs and benefits
of architectural decisions. In International Conference on Software Engineering
(ICSE). 297-306.

W David Kelton and Averill M Law. 2000. Simulation modeling and analysis.
McGraw Hill Boston.

Anneke G Kleppe, Jos Warmer, Wim Bast, and MDA Explained. 2003. The model
driven architecture: practice and promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA.

http://mason.gmu.edu/~nesfaha2/

https://doi.org/10.3384/ecp11063105
https://doi.org/10.1007/978-3-540-85289-6_8
https://doi.org/10.1109/ICDCS.2011.25
https://doi.org/10.1109/TSE.2015.2412134
https://doi.org/10.1109/TSE.2015.2412134
https://doi.org/10.1109/ICSE.2017.57
https://doi.org/10.1016/j.cie.2018.08.004
https://doi.org/10.2514/6.2010-9101
https://doi.org/10.2514/6.2010-9101
http://mason.gmu.edu/~nesfaha2/Projects/GuideArch/
http://mason.gmu.edu/~nesfaha2/Projects/GuideArch/
https://doi.org/10.1007/978-3-642-16277-0_13
https://doi.org/10.1007/978-3-642-16277-0_13
http://www-03.ibm.com/software/products/en/ratirhapfami
http://www-03.ibm.com/software/products/en/ratirhapfami

eQual: Informing Early Design Decisions

[48] Robert Kowalski and Marek Sergot. 1989. A logic-based calculus of events. In
Foundations of knowledge base management. Springer Berlin Heidelberg, 23-55.

[49] Anne Koziolek. 2014. Automated improvement of software architecture models for
performance and other quality attributes. Vol. 7. KIT Scientific Publishing.

[50] Emmanuel Letier, David Stefan, and Earl T. Barr. 2014. Uncertainty, Risk, and
Information Value in Software Requirements and Architecture. In International
Conference on Software Engineering (ICSE). Hyderabad, India, 883-894. https:
//doi.org/10.1145/2568225.2568239

[51] Daniel R. Levinson. 2014. An Overview Of 60 Contracts That Contributed To
The Development And Operation Of The Federal Marketplace, OEI-03-14-00231.
http://oig.hhs.gov/oei/reports/oei-03-14-00231.pdf.

[52] Rui Li, Ramin Etemaadi, Michael TM Emmerich, and Michel RV Chaudron.
2011. An evolutionary multiobjective optimization approach to component-
based software architecture design. In Congress on Evolutionary Computation
(CEC). 432-439.

[53] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of
psychology (1932).

[54] FMS Luke Chung. 2013. Healthcare.gov is a Technological Disaster. http://goo.
gl/8B1fcN.

[55] Jiefei Ma, Franck Le, Alessandra Russo, and Jorge Lobo. 2016. Declarative Frame-
work for Specification, Simulation and Analysis of Distributed Applications. IEEE
Transactions on Knowledge and Data Engineering 28, 6 (2016), 1489-1502.

[56] Sam Malek, Nenad Medvidovic, and Marija Mikic-Rakic. 2012. An extensible
framework for improving a distributed software system’s deployment architec-
ture. IEEE Transactions on Software Engineering (TSE) 38, 1 (2012), 73-100.

[57] Marzio Marseguerra, Enrico Zio, and Luca Podofillini. 2007. Genetic algorithms
and Monte Carlo simulation for the optimization of system design and operation.
In Computational Intelligence in Reliability Engineering. Springer, 101-150.

[58] Anne Martens, Heiko Koziolek, Steffen Becker, and Ralf Reussner. 2010. Auto-
matically improve software architecture models for performance, reliability, and
cost using evolutionary algorithms. In International Conference on Performance
Engineering (WOSP/SIPEW). 105-116.

[59] Joaquim RR.A. Martins and Andrew B. Lambe. 2013. Multidisciplinary design
optimization: A survey of architectures. AIAA Journal 51, 9 (2013).

[60] John D McGregor, Felix Bachmann, Len Bass, Philip Bianco, and Mark Klein. 2007.
Using arche in the classroom: One experience. Technical Report. DTIC Document.

[61] Gianantonio Me, Coral Calero, and Patricia Lago. 2016. Architectural patterns
and quality attributes interaction. In IEEE Workshop on Qualitative Reasoning
about Software Architectures (QRASA).

[62] Nenad Medvidovic and Richard N Taylor. 2000. A classification and comparison
framework for software architecture description languages. IEEE Transactions on
Software Engineering (TSE) 26, 1 (2000), 70-93.

[63] Daniel A Menascé, John M Ewing, Hassan Gomaa, Sam Malex, and Jodo P Sousa.
2010. A framework for utility-based service oriented design in SASSY. In joint
WOSP/SIPEW International Conference on Performance Engineering. 27-36.

[64] Joaquin Miller and Jishnu Mukerji (Eds.). 2003. MDA guide. Object Management
Group (2003).

[65] Tim Mullaney. 2013. Demand overwhelmed HealthCare.gov. http://goo.gl/
k304Rg.

[66] Joost Noppen, Pim van den Broek, and Mehmet Aksit. 2008. Software develop-
ment with imperfect information. Soft computing 12, 1 (2008), 3.

[67] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. 2017. Finding

Near-optimal Configurations in Product Lines by Random Sampling. In Joint

Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM, Paderborn,

Germany, 61-71. https://doi.org/10.1145/3106237.3106273

Carlo Poloni and Valentino Pediroda. 1997. GA coupled with computationally

expensive simulations: tools to improve efficiency. Genetic Algorithms and

Evolution Strategies in Engineering and Computer Science (1997), 267-288.

[69] Pasqualina Potena. 2007. Composition and tradeoff of non-functional attributes in
software systems: research directions. In Joint Meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE). 583-586.

[70] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,
Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2013. Ad-
dressing big data time series: Mining trillions of time series subsequences under
dynamic time warping. ACM Transactions on Knowledge Discovery from Data
(TKDD) 7, 3 (2013), 10.

[71] M.P.Robillard and N. Medvidovic. 2016. Disseminating Architectural Knowledge
on Open-Source Projects: A Case Study of the Book "Architecture of Open-Source

[68

1051

[72

(73

(74

[75

<
2

[77

[78

[79

%
=

(81

(82

[83

o
=)

[85

[86

[87

(88

[90

[91

[92]

(93]

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Applications". In International Conference on Software Engineering (ICSE). 476-487.
https://doi.org/10.1145/2884781.2884792

Tripti Saxena and Gabor Karsai. 2010. MDE-based approach for generalizing
design space exploration. In Model Driven Engineering Languages and Systems.
Springer, 46—-60.

Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany Ammar. 2013.
Scalable product line configuration: A straw to break the camel’s back. In
International Conference on Automated Software Engineering (ASE). 465-474.

https://doi.org/10.1109/ASE.2013.6693104
Abdel Salam Sayyad, Tim Menzies, and Hany Ammar. 2013. On the value of

user preferences in search-based software engineering: a case study in software
product lines. In International Conference on Software Engineering (ICSE). 492-501.
Ina Schaefer. 2010. Variability Modelling for Model-Driven Development of
Software Product Lines. In International Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS), Vol. 10. Linz, Austria, 85-92.

Ali Sedaghatbaf and Mohammad Abdollahi Azgomi. 2019. SQME: A framework
for modeling and evaluation of software architecture quality attributes. Software
& Systems Modeling 18, 4 (Aug. 2019), 2609-2632. https://doi.org/10.1007/s10270-
018-0684-3

Arman Shahbazian, George Edwards, and Nenad Medvidovic. 2016. An end-to-
end domain specific modeling and analysis platform. In Proceedings of the 8th
International Workshop on Modeling in Software Engineering. 8-12.

Arman Shahbazian, Suhrid Karthik, Yuriy Brun, and Nenad Medvidovic. 2020.
Replication package for “eQual: Informing early design decisions”. https://doi.
0rg/10.5281/zenodo.3905131.

Arman Shahbazian, Youn Kyu Lee, Yuriy Brun, and Nenad Medvidovic. 2018.
Poster: Making Well-Informed Software Design Decisions. In Poster Track at the
International Conference on Software Engineering (ICSE). Gothenburg, Sweden,
262-263. https://doi.org/10.1145/3183440.3194961

Arman Shahbazian, Youn Kyu Lee, Duc Le, Yuriy Brun, and Nenad Medvidovic.
2018. Recovering Architectural Design Decisions. In IEEE International Conference
on Software Architecture (ICSA).

Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Késtner. 2015.
Performance-influence Models for Highly Configurable Systems. In Joint Meeting
on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). ACM,
New York, NY, USA, 284-294. https://doi.org/10.1145/2786805.2786845
Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kistner, Sven Apel, Don
Batory, Marko Rosenmiiller, and Gunter Saake. 2012. Predicting performance via
automated feature-interaction detection. In International Conference on Software
Engineering (ICSE). 167-177. https://doi.org/10.1109/ICSE.2012.6227196
Norbert Siegmund, Marko Rosenmiiller, Martin Kuhlemann, Christian Késtner,
Sven Apel, and Gunter Saake. 2012. SPL Conqueror: Toward optimization of
non-functional properties in software product lines. Software Quality Journal 20,
3-4(2012), 487-517.

Ghanem Soltana, Nicolas Sannier, Mehrdad Sabetzadeh, and Lionel C Briand.
2015. A model-based framework for probabilistic simulation of legal policies.
In International Conference on Model Driven Engineering Languages and Systems
(MODELS). 70-79.

Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. 2009. Software
architecture: Foundations, Theory, and Practice. Wiley Publishing.

Atul Thakur, Ashis Gopal Banerjee, and Satyandra K Gupta. 2009. A survey of
CAD model simplification techniques for physics-based simulation applications.
Computer-Aided Design 41, 2 (2009), 65-80.

Nikola Tréka, Martijn Hendriks, Twan Basten, Marc Geilen, and Lou Somers.
2011. Integrated model-driven design-space exploration for embedded systems.
In International Conference on Embedded Computer Systems (SAMOS). 339-346.
United States Government Accountability Office. 2015. Report to Congressional
Requester, GAO-15-238. http://www.gao.gov/assets/670/668834.pdf.

US Centers for Medicare and Medicaid Services. 2013. McKinsey and Co. Presen-
tation on Health Care Law. http://goo.gl/Nns9mr.

US Department of Health and Human Services. 2013. HealthCare.gov Progress
and Performance Report. http://goo.gl/XJRC7Q.

Andreea Vescan. 2009. A metrics-based evolutionary approach for the compo-
nent selection problem. In International Conference on Computer Modelling and
Simulation (UKSIM). 83-88.

Murray Woodside, Dorina C Petriu, Dorin B Petriu, Hui Shen, Toqeer Israr,
and Jose Merseguer. 2005. Performance by unified model analysis (PUMA). In
Proceedings of the 5th International Workshop on Software and Performance. 1-12.
Hans-Jirgen Zimmermann. 2011. Fuzzy set theory and its applications. Springer
Science & Business Media.

https://doi.org/10.1145/2568225.2568239
https://doi.org/10.1145/2568225.2568239
http://oig.hhs.gov/oei/reports/oei-03-14-00231.pdf
http://goo.gl/8B1fcN
http://goo.gl/8B1fcN
http://goo.gl/k3o4Rg
http://goo.gl/k3o4Rg
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1145/2884781.2884792
https://doi.org/10.1109/ASE.2013.6693104
https://doi.org/10.1007/s10270-018-0684-3
https://doi.org/10.1007/s10270-018-0684-3
https://doi.org/10.5281/zenodo.3905131
https://doi.org/10.5281/zenodo.3905131
https://doi.org/10.1145/3183440.3194961
https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1109/ICSE.2012.6227196
http://www.gao.gov/assets/670/668834.pdf
http://goo.gl/Nns9mr
http://goo.gl/XJRC7Q

