
Recovering Architectural Design Decisions

Arman Shahbazian , Youn Kyu Lee , Duc Le , Yuriy Brun , and Nenad Medvidovic

University of Southern California University of Massachusetts Amherst

Los Angeles, CA, USA 90089-0781 Amherst, MA, USA, 01003-9264

{armansha, younkyul, ducmle, neno}@usc.edu brun@cs.umass.edu

Abstract—Designing and maintaining a software system’s ar-
chitecture typically involve making numerous design decisions,
each potentially affecting the system’s functional and nonfunc-
tional properties. Understanding these design decisions can help
inform future decisions and implementation choices and can
avoid introducing regressions and architectural inefficiencies later.
Unfortunately, design decisions are rarely well documented and
are typically a lost artifact of the architecture creation and
maintenance process. The loss of this information can thus hurt
development. To address this shortcoming, we develop RecovAr,
a technique for automatically recovering design decisions from
the project’s readily available history artifacts, such as an issue
tracker and version control repository. RecovAr uses state-of-
the-art architectural recovery techniques on a series of version
control commits and maps those commits to issues to identify
decisions that affect system architecture. While some decisions
can still be lost through this process, our evaluation on Hadoop
and Struts, two large open-source systems with over 8 years of
development each and, on average, more than 1 million lines of
code, shows that RecovAr has the recall of 75% and a precision
of 77%. Our work formally defines architectural design decisions
and develops an approach for tracing such decisions in project
histories. Additionally, the work introduces methods to classify
whether decisions are architectural and to map decisions to code
elements. Finally, our work contributes a methodology engineers
can follow to preserve design-decision knowledge in their projects.

I. INTRODUCTION

Software architecture has become the centerpiece of modern

software development [37]. Developers are increasingly relying

on software architecture to lead them through the process

of creating and implementing large and complex systems.

Understanding of a software system’s architecture and the

set of decisions that led to its creation is crucial for making

new decisions about the system both at the design and

implementation levels. Further, engineers who are aware of the

architectural impacts of their changes deliver higher-quality

code [27]. Unfortunately, the design decisions made during

the software lifecycle are typically not well documented and

so the rationale for these choices is often lost [14]. It is

thus desirable for architects and developers to be able to

automatically recover past design decisions. Unfortunately,

modern architectural recovery techniques, e.g., [40], [11], focus

on recovering “what” the architecture of a system looks like,

and not “why” the architecture looks the way it does, a symptom

of a phenomenon known as knowledge vaporization in software

systems [13]. Recovering the design decisions that lead to an

architecture is one way to capture this “why.”

In this paper, we make the observation that modern software

development offers access not only to the system itself but

also to the history of its development (e.g., a version control

repository) and a database of issues, change requests, and

tasks, often partially augmented with reasons and justifications

mapped to specific code changes that address them (e.g., an

issue tracking system). Guided by these observations and

the fact that access to architects who designed the system

is limited and expensive, we develop RecovAr, a technique

for automatically recovering design decisions made during the

development process.

While RecovAr is independent of a system’s architectural

paradigm (e.g., component-based, microservices, SOA, system-

of-systems), it does assume the existence of suitable means

of obtaining static architectural structure from implementation

artifacts. Specifically, our work discussed in this paper relies on

two existing techniques that recover such architectural structure

from code, ACDC [40] and ARC [11].1 By recovering this

architectural information at multiple points during the system’s

development and mapping the changes in the structure to

the rich information available in the system’s issue tracking

systems, RecovAr can recover many (though not all) of the

system’s design decisions and traceability links between those

decisions and code changes, issues, and other documentation.

We applied RecovAr to over 100 versions of Hadoop and

Struts, two large, widely adopted open-source systems, with

over 8 years of development each and, on average, more than

1 million lines of code. We found that RecovAr can accurately

uncover the architectural design decisions embodied in the sys-

tems, recovering 75% of the decisions with a precision of 77%.

This paper makes the following contributions:

• We formally define the notion of an architectural design

decision and develop an approach for tracing such deci-

sions in existing software project histories.

• We introduce methods to classify whether decisions are

architectural and to map decisions to code elements.

• We empirically examine how design decisions manifest in

software systems, evaluating our approach on two large,

widely-used systems.

1Existing literature refers to these and similar techniques as “architecture
recovery techniques,” and the produced artifacts as “architectures.” For legacy
and simplicity reasons, we will also use this terminology in the remainder
of the paper, with the understanding that what is recovered is only a partial,
structural view of a system’s static architecture.

95

2018 IEEE International Conference on Software Architecture

978-1-5090-5729-0/18/$31.00 ©2018 IEEE
DOI 10.1109/ICSA.2018.00019

• We develop a methodology for preserving design-decision

knowledge in software projects.

The remainder of this paper is organized as follows. Sec-

tion II summarizes the background necessary for our approach.

Section III describes RecovAr and Section IV evaluates it.

Section V places our work in the context of related research

and Section VI summarizes our contributions.

II. BACKGROUND

Research has demonstrated that software architecture plays

a critical role in the evolution and maintenance of software

systems [10], and that awareness of the architectural implica-

tions of code changes results in higher-quality code [27]. This

has led to the development of several architectural recovery

techniques that help counteract the challenges brought about

by architectural drift and erosion [41], [11], [10], [40].

These recovery techniques are typically based on some slant

of the originally proposed view of software architecture as four

Cs building blocks: components, connectors, configurations,

and constraints. Despite being simple and appealing, this view

has proven to be incomplete and has required further elabo-

ration. To that end, recent work has approached architecture

from the perspective of design decisions. Our work builds on

these two bodies of research, describing a software architecture

as a set of design decisions (Section II-A) and automatic

architectural recovery (Section II-B).

A. Architectural Design Decisions

For many years, research community and industry alike had

been focused on the result, the consequences of the design

decisions made, trying to capture them in the architecture of

the system under consideration, often using a graphical repre-

sentation. Such representations were, and to a great extent still

are, centered on views [17], as captured by the ISO/IEC/IEEE

42010 standard [12], or the use of an architecture description

language (ADL) [23]. However, this approach to documenting

software architectures can cause problems such as expensive

system evolution, lack of stakeholders communication, and

limited reusability of architectures [33].

Architecture as a set of design decisions was proposed

to address these shortcomings. This new paradigm focuses

on capturing and documenting rationale, constraints, and

alternatives of design decisions [41]. More specifically Jansen et

al. defined architectural design decisions as a description of the

set of architectural additions, subtractions and modifications

to the software architecture, the rationale, the design rules,

and additional requirements that (partially) realize one or more

requirements on a given architecture [13], [5]. The key element

in their definition is rationale, i.e., the reasons behind an archi-

tectural design decision. Kruchten et al. proposed an ontology

that classified architectural decisions into three categories:

(1) existence decisions (ontocrises), (2) property decisions

(diacrises), and (3) executive decisions (pericrises) [16]. Among

the three categories, existence decisions — decisions that state

some element or artifact will positively show up or disappear

in a system — are the most prevalent and capture the most

volatile aspects of a system [16], [13]. Property and executive

decisions are enduring guidelines that are mostly driven by the

business environment and affect the methodologies, and to a

large extent the choices of technologies and tools.

Inspired by the described existing work, the notion of

design decisions used in this paper values the rationales and

consequences as two equally important constituent parts of

design decisions. However, not all design decisions are created

equal. Some design decisions are straightforward, with clear

singular rationale and consequence, while some are cross-

cutting and intertwined [5], i.e., affect multiple components

and/or connectors and often become intimately intertwined with

other design decisions. To distinguish between different kinds of

design decisions we classify them into three categories: (1) sim-

ple, (2) compound, and (3) cross-cutting. Simple decisions have

a singular rationale and consequence. Compound decisions

include several closely related rationales, but their consequences

are generally contained to one component. Finally, cross-cutting

decisions affect a wider range of components and their rationale

follows a higher level concern such as architectural quality of

the system.

B. Architecture Recovery, Change, and Decay Evaluator

To capture the consequence aspect of design decisions, we

build on top of the existing work in architecture modeling and

recovering. To obtain the static architectures of a system from

its source code, we use the state-of-the-art workbench, called

ARCADE [4], [20]. ARCADE employs a suite of architecture-

recovery techniques and a set of metrics for measuring different

aspects of architectural change. It constructs an expansive view

showcasing the actual (as opposed to idealized) evolution of a

software system’s architecture.

ARCADE allows an architect (1) to extract multiple archi-

tectural views from a system’s codebase and (2) to study

the architectural changes during the system’s evolution as

reflected in those views. ARCADE provides access to multiple

recovery techniques. We use two of the techniques in this paper:

Algorithm for Comprehension-Driven Clustering (ACDC) [40]

and Architecture Recovery using Concerns (ARC) [11]. ACDC
and ARC approach a system’s architecture from different

perspectives, and have been shown to exhibit the best accuracy

and scalability among the recovery techniques provided in

ARCADE. ACDC’s view is oriented toward components that

are based on structural patterns (e.g., components consisting of

entities that together form a particular subgraph). On the other

hand, ARC’s view produces components that are semantically

related due to sharing similar system-level concerns (e.g., a

component whose main concern is handling distributed jobs).

To measure architectural changes across the development

history of a software system, ARCADE provides several

architecture similarity metrics: cvg [20] and a2a [4], MoJo [39],

and MoJoFM [43]. These are system-level similarity metrics

calculated based on the cost of transforming one architecture

into another. Using similar principles, RecovAr conducts the

change analysis and extracts a system’s architectural changes

(see Section III-A).

96

III. THE RECOVAR APPROACH

Knowledge vaporization in software systems plays a major

role in increasing maintenance costs, and exacerbates architec-

tural drift and erosion [13]. The goal of RecovAr is to uncover

architectural design decisions in software systems, and thereby

help reverse the course of knowledge vaporization by providing

a crisper understanding of such decisions and their effects.

In this section, we further elaborate on the definition and

classification of design decisions. We describe how architectural

changes can be recovered from the source code of real software

systems. We also describe a process whereby architectural

design decisions are identified in real systems. Finally, our

approach enables engineers to continuously capture the archi-

tectural decisions in software systems during their evolution.

Section II-A identified two constituent parts of an architec-

tural design decision, rationale and consequence. The static

architecture of a system explicitly captures the system’s com-

ponents and possibly other architectural entities, but rationale

is usually missing or, at best, implicit in the structural elements.

For this reason, our approach focuses on the consequences of

design decisions. We have developed a technique that leverages

the combination of source code and issue repositories to obtain

the design decision consequences. Issue repositories are used to

keep of track of bugs, development tasks, and feature requests

in a software development project. Code repositories contain

historical data about the inception, evolution, and incremental

code changes in a software system. Together, these repositories

provide the most reliable and accurate pieces of information

about a system.

RecovAr automatically extracts the required information

from a system’s repositories and outputs the set of design

decisions made during the system’s lifecycle. In order to

achieve this RecovAr first recovers the static architecture

of the target system. RecovAr then cross-links the issues to

their corresponding code-level changes. These links are in

turn analyzed to identify candidate architectural changes and,

subsequently, their rationales.

A high level overview of RecovAr’s workflow is displayed in

Figure 1. RecovAr begins by recovering the static architecture

of a system. This step is only required if an up-to-date, reliable,

documented architecture is not available.

After recovering or obtaining the architectures of different

versions of its target system, RecovAr follows through three

distinct phases. In the first phase (Change Analysis) RecovAr

identifies how the architecture of the system has changed

along its evolution path. The second phase (Mapping) mines

the system’s issue repository and creates a mapping (called

architectural impact list) from issues to the architectural

entities they have affected. Finally, the third phase (Decision
Extraction) creates an overarching decision graph by putting

together the architectural changes and the architectural impact

list. This graph is in turn traversed to uncover the individual

design decisions. In the remainder of this section we detail

each of the three phases.

 !"#$%&"%’!()*

+,-("%*.$/%

+//’&/

0(--$12

+//’&*3!("4&! 5&!/$61*761%!6)

76,,$%*

.62/

86’!"&*

769&

 !"#$%&"%’!&*

:&"6;&!<

 !"#$%&"%’!&/

7#(12&*

 1()</$/

 !"#$%&"%’!()*

7#(12&/

=&"$/$61*

>?%!("%$61

>?%!("%&9*

=&"$/$61/

.&2&19

 !%$@("% A&B*

76,-61&1%

C@@D%#&D/#&)@*

76,-61&1%
=(%(*

E)6B

Fig. 1. Overview of RecovAr. Using the existing source code, commit logs,
and extracted issues obtained from code and issue repositories, our approach
automatically extracts the underlying design decisions. Implementation of the
new components spans over 4,000 Source Lines of Code (SLoC).

A. Change Analysis

Architectural change has been recognized as a critical

phenomenon from the very beginnings of the study of software

architecture [28]. However, only recently have researchers tried

to empirically measure and analyze architectural change in

software systems [20], [4]. These efforts rely on architectural

change metrics that quantify the extent to which the architecture

of a software system changes as the system evolves. This work

has served as a motivation and useful foundation in obtaining

a concrete view of architectural changes.

Specifically, we have designed Change Analyzer (CA), which

is inspired by the manner in which existing metrics (e.g.,

a2a [4], MoJo [39], and MoJoFM [43]) measure architectural

change. These metrics consider five operations used to trans-

form architecture A into architecture B: addition, removal, and

relocation of system entities (e.g., methods, classes, libraries)

from one component to another, as well as addition and removal

of components themselves [1], [22], [26]. We use a similar

notion and define architectural change as a set of architectural
deltas. An architectural delta is: (1) any modification to a

component’s internal entities including additions and removals

(relocation is treated as a combined addition to the destination

component and removal from the source component), or

(2) additions and removals of entire components. We then

aggregate these deltas into architectural change instances.

Algorithm 1 describes the details of the approach used to

extract the architectural deltas and changes.

CA works in two passes. In the first pass, CA matches the

most similar components in the given pair of architectures.

97

Algorithm 1: Change Analysis

Input: ArchitectureA,ArchitectureB
Output: Changes⇐ a set of architectural changes

1 Let ComponentsA = ArchitectureA’s components
2 Let ComponentsB = ArchitectureB’s components
3 Let Eall , Echosen = /0
4 if |ComponentsA| �= |ComponentsB| then
5 Balance(ComponentsA,ComponentsB)

6 foreach ca ∈ ComponentsA do
7 foreach cb ∈ ComponentsB do
8 cost =CalculateChangeCost(ca,cb)
9 e = {ca,cb,cost}

10 add e to Eall

11 Echosen = MinCostMatcher(ComponentsA,ComponentsB,Eall)
12 foreach e ∈ Echosen do
13 Changes = GetChangeInstances(e.ca,e.cb)∪Changes

14 return Changes

Algorithm 2: GetChangeInstances method

Input: ComponentA,ComponentB
Output: Changes

1 Let EntitiesA = ComponentA’s entities
2 Let EntitiesB = ComponentB’s entities
3 if EntitiesA∩EntitiesB = /0 then
4 Change ch1,ch2

5 ch1.deltas = EntitiesA
6 ch2.deltas = EntitiesB
7 return {ch1,ch2}
8 else
9 Change ch

10 ch.deltas = (EntitiesA∪EntitiesB)− (EntitiesA∩EntitiesB)
11 return {ch}

In the second pass, CA compares the matched components,

extracts the architectural delta(s), and clusters them into

architectural change instances.

The objective of the matching pass is to find the most similar

components in a way that minimizes the overall difference

between the matched components. Since two architectures

can have different numbers of components, CA first balances

(Algorithm 1, line 5) the two architectures. To do so, CA
adds “dummy” (i.e., empty) components to the architecture

with fewer components until both architectures have the same

number of components. After balancing the architectures, CA
creates a weighted bipartite graph from architecture A to

architecture B and calculates the cost of each edge. Existence

of an edge denotes that component CA has been transformed

into component CB. The cost of an edge is the total number

of architectural deltas required to effect the transformation.

Figure 2 displays a simple example of two architectures and

the corresponding bipartite graph with all possible edges. Min-
CostMatcher (Algorithm 1, line 11) takes the two architectures

and the set of edges between them, and selects the edges in a

way that ensures a bijective matching between the components

of the two architectures with the minimum overall cost (sum

of the costs of the selected edges). MinCostMatcher is based

on linear programming; its details are omitted for brevity.

 ! " !

 ! " "! #

$ %
!

%

&’()*+,(+-’,.&

&’()*+,(+-’,./

0$ 0% 01

2$

1
$

2% 21

Fig. 2. Calculating the costs of the edges and finding the perfect matching.
The bold connectors are the selected edges that lead to minimum overall cost.

4 74 6

Changes

c1 c2 c3

Fig. 3. Extracted changes between the architectures depicted in Fig. 2. Double-
lined diamonds indicate removals while regular diamonds denote additions.

In the second pass, CA extracts the architectural deltas

between the matched components. If there are no common

architectural entities between two matched components, we

create two change instances, one for the component that has

been removed and one for the newly added component. The

reason is to distinguish between transformations of components

and their additions and removals. Figure 3 depicts the extracted

changes of our example architectures.

B. Mapping

The output of CA is a set of architectural changes that is a

superset of the consequences of design decisions. The goal of

Mapping is to find all the issues that point to the rationale of the

design decisions that yielded those consequences. To that end,

Mapping first identifies the issues that satisfy two conditions:

(1) they belong to the version of the system being analyzed and

(2) they have been marked as resolved and their consequent

code changes have been merged with the main code base of the

system. Mapping then extracts the code-level entities affected

by each issue. These code-level entities are identified by mining

the issues’ commit logs and pull requests. Using one or more

architecture recovery methods available in ARCADE, the code-

level entities are translated into corresponding architectural

entities. The list of all issues, as well as the mapping between

the issues and the architectural entities affected by them is

called the Architectural Impact List.
Figure 4 displays a graph-based view of this list. It is possible

for issues to have overlapping entities (e.g., i2 and i3 are

both connected to entity 5). It is also important to note that

98

 !

"# "$ "

%$ & ’

"&

Fig. 4. Architectural impact list. Squares represents issues and diamonds
represent entities. An edge from an issue to an entity means that resolving
that issue resulted in modifying that entity.

 !

"#

 #

"$

 %

"%

Fig. 5. The overarching decisions graph contains two decisions D1 and D2.
Squares denote issues, and circles denote changes.

the presence of an edge from an issue to an entity does not

necessarily indicate architectural change (e.g., entities 1 and 5

are not part of any of the architectural changes in Figure 3).

This is intuitively expected, since a great many of issues do

not incur substantial enough change in the source code and

thereby the architecture of the system.

C. Decision Extraction

In its final phase, RecovAr creates the overarching decision

graph by putting together the architectural changes and their

pertaining issues. This graph is traversed and individual design

decisions are identified. Algorithm 3 details this phase.

Algorithm 3 traverses the architectural impact list generated

in the Mapping phase and the list of changes. If there is

an intersection between the entities matched to issues and the

entities involved in changes, then it adds an edge connecting the

issue with the change. The intuition behind this is that an issue

contains the rationale for a decision if it affects the change(s),

which are the consequences, of that decision. We note that,

hypothetically, there can be situations in which an issue is the

cause of a change without directly affecting any architectural

deltas in that change. For example, if an issue leads to removing

all the dependencies to an entity, that entity might get relocated

out of its containing component by the architecture recovery

technique. However, detecting these situations in a system’s

architecture is not possible with existing recovery techniques,

because they abstract away the dependencies among internal

entities of a component. Although such information could

easily be incorporated, RecovAr would be unable to deal with

such scenarios as currently implemented.

The decisions graph for our running example is depicted in

Figure 5. The FindDecisions method in Algorithm 3 removes

all orphaned changes and issues, and in the remaining graph

locates the largest disconnected subgraphs. Each disconnected

subgraph represents a decision. The reason is that these

disconnected subgraphs are the largest sets of interrelated

Decision
Type

Issue(s) Change(s)

Simple 1 Job tracking module
only kept track of the jobs
executed in the past 24
hours. If an admin checked
the history after a day of
inactivity, e.g., on Monday,
the list would be empty.

1 hadoop.mapred co-
mponent was modified.

Compound 1 UTF8 compressor does
not handle end of line cor-
rectly.
2 Sequenced files should
support custom compres-
sors.

1 CompressionInput-
Stream was added and
CompressionCodec
was modified.

Cross-
cutting

1 Random seeks corrupt
the InputStream data.
2 Streaming must send
status signals every 10 sec-
onds.
3 Task status should in-
clude timestamp for job
transitions.

1 hadoop.streaming
was modified.
2 hadoop.metrics co-

mponent was modified.
3 hadoop.fs was mod-

ified.

Fig. 6. Examples of recovered Hadoop decisions.

Algorithm 3: Decision Extraction
Input: ArchitecturalImpactList,Changes
Output: Decisions

1 Let DecisionsGraph = bipartite graph of decisions
2 foreach (issue,entities) ∈ ArchitecturalImpactList do
3 foreach c ∈Changes do
4 if c.deltas∩ entities �= /0 then
5 connect(issue,c) in DecisionsGraph

6 Decisions = FindDecisions(DecisionsGraph)
7 return Decisions

rationales and consequences that do not depend on other issues

or changes. Intuitively, we expect that, in a real-world system,

only a subset of issues will impose changes whose impact

on the system can be considered architectural. Furthermore,

each of those issues will reflect a specific, targeted objective.

Therefore, in a typical system, the graph of changes and issues

should contain disconnected subgraphs of reasonable sizes.

This is discussed further in our evaluation in Section IV.

In Section II, we identified three different types of decisions:

(1) Simple decisions are the decisions that consist of a single

change and a single issue. These decisions have a clear rationale

and consequence. (2) Compound decisions are the decisions that

include multiple issues and a single change. These decisions

are similar to simple decisions and the issues involved are

closely related to an overarching rationale. Finally, (3) cross-

cutting decisions are the decisions that include multiple changes

and one or more issues. These decisions have a higher-level,

compound rationale — e.g., improving system reliability or

performance — that requires multiple changes to be achieved.

For illustration, Figure 6 lists three real examples of deci-

sions, one of each type, uncovered from Hadoop. Information

in the Issue(s) column contains the summaries of the issues

99

System Domain Versions Issues MSLoC

Hadoop Distributed Processing 68 2969 30.0
Struts Web Apps Framework 36 1351 6.7

Fig. 7. Subject systems analyzed in our study.

pertaining to that decision. Each boxed number indicates a

separate issue or change. The data in the Change(s) column

are short descriptions of the changes involved in a given

decision. The simple decision in the top row is an update to

satisfy a requirement by changing the job tracking module. The

compound decision in the middle row describes the two sides of

a problem that is resolved by changing the compression module
of Hadoop. Finally the uncovered cross-cutting decision in the

bottom row is about a series of changes applied to increase

the reliability of Hadoop’s task execution.

Applying RecovAr continuously throughout a project’s

lifecycle (e.g., as can be done with testing [31], [25], [24]),

helps preserve architectural knowledge and could encourage

engineers to write architecturally-conscious issue descriptions,

increasing system quality [32].

IV. EVALUATION

We have empirically evaluated RecovAr’s applicability and

accuracy. IV-A discusses the real-world systems on which Reco-

vAr was applied, demonstrating its applicability. Sections IV-B

and IV-C discuss RecovAr’s precision and recall.

A. Applicability

Figure 7 describes the two subject systems we have used in

our evaluation. These systems were selected from the catalogue

of Apache open-source software systems [2]. We selected

Hadoop [3] and Struts [35] because they are widely adopted and

fit the target profile of candidate systems for our approach: they

are open-source, have accessible issue and code repositories,

and log the fixing commits (i.e., the changes applied to the

system to resolve the corresponding issues). Furthermore, these

systems are at the higher end of the Apache software systems’

spectrum in terms of size and lifespan. Both of these projects

use GitHub as their version control and source repository, and

Jira [15] as their issue repository. We analyzed more than 100

versions of Hadoop and Struts in total. Our analyses spanned

over 8 years of development, and over 35 million SLoC, and

over 4,000 resolved issues.

An overview of the results of applying RecovAr to the

two subject systems is depicted in Figure 8. These results are

grouped by (1) system (Hadoop vs. Struts) and (2) employed

recovery technique (ARC vs. ACDC). In this table, No. of Iss.
in Decisions represents the total number of issues that were

identified to be part of an architectural design decision. On

average, only about 18% of the issues for Hadoop and 6%

of the issues for Struts have had architecturally significant

effects, and hence have been considered parts of a design

decision. This is in line with the intuition that only a subset of

issues will impose changes whose impact on the system can be

considered architectural. Moreover, this observation bolsters the

importance of RecovAr for understanding the current state of

Systems Hadoop Struts

ACDC ARC ACDC ARC

No. of Iss. in Decisions 427 674 70 94
No. of Changes 950 3935 220 1359
No. of Decisions 112 149 27 23
Avg. Issues/Decision 3.81 4.52 2.59 4.94
Avg. Changes/Decision 1.77 2.36 1.77 2.21

Fig. 8. Number of changes, recovered decisions, and frequencies of issues
and changes per decision.

a system and the decisions that have led to it. Without having

access to RecovAr, architects would have to analyze 5-to-15

times more issues and commits to uncover the rationales and

root causes behind the architectural changes of their system.

The remainder of Figure 8 displays the total number of detected

architectural changes (No. of Changes), the total number of

uncovered architectural design decisions (No. of Decisions),

and the average numbers of issues and changes per decision

(Avg. Issues/Decision and Avg. Changes/Decision, respectively).

It is worth mentioning that not all the detected changes were

matched to design decisions, which we will elaborate on further

when evaluating RecovAr’s recall (Section IV-C).

As displayed in Figure 8, depending on the technique

used to recover the architecture, the number of uncovered

design decisions varies. The reason is that ACDC and ARC
approach architecture recovery from different perspectives:

ACDC leverages a system’s module dependencies; ARC derives

a more semantic of a system’s architecture, detecting concerns

via information retrieval techniques. Therefore, the nature of

the recovered architectures and changes, and consequently the

uncovered design decisions, are different. Recent work has

shown that these recovery techniques provide complementary

views of a system’s architecture [20]. The propagation of

these complementary views to our approach has yielded some

tangible effects. For instance, RecovAr running ARC was able

to uncover a decision about refactoring the names of a set of

classes and methods in Hadoop, while RecovAr running ACDC
could not uncover that decision. The reason is that ARC is

sensitive to lexical changes by design.

RecovAr aims to uncover three kinds of architectural design

decisions (recall Section II). Our results confirmed the presence

of all three kinds in our subject systems. Figure 9 depicts the

distribution of different kinds of decisions detected for each

pair of systems and recovery techniques. While the relative

proportion of simple and cross-cutting decisions varies across

systems and employed recovery techniques, the number of

51%

13%

36%

(a) Hadoop-ACDC

37%

15%

48%

(b) Hadoop-ARC

33%

11%

56%

(c) Struts-ACDC

26%

13%
61%

(d) Struts-ARC

Fig. 9. Distribution of types of decision in the subject systems: solid black
denotes simple decisions; grey denotes compound decisions; white denotes
cross-cutting decisions.

100

compound decisions is consistently the smallest.

B. Precision

To assess RecovAr’s precision, we need to determine whether

the uncovered architectural design decisions are valid. As

captured in the premise of RecovAr, architectural design

decisions are not generally documented, hence a ground-truth

for our analyses was not readily available.

To overcome this hurdle, we devised a systematic plan to

objectively assess the uncovered design decisions. We defined

a set of criteria targeting the two aspects of an architectural

design decision — rationale and consequence — and used them

as the basis of our assessment. Two PhD students carried out

the analysis and the results of their independent examinations

were later aggregated. In the remainder of this section, we will

elaborate on the details of the conducted analyses.

We use four criteria targeting different parts of an architec-

tural design decision (two targeting rationales and two targeting

consequences). Each criterion is rated using a three-level-scale,

with the numeric values of 0, 0.5, and 1. In this scale, 0 means

that the criterion is not satisfied; 0.5 means that the satisfaction

of the criterion is confirmed after further investigation by

examining the source-code, details of the issues, or commit

logs; finally, 1 means that the criterion is evidently satisfied.

The reason we use a three-level scale in our analysis is to

measure the precision of RecovAr’s results from the viewpoint

of non-experts, and to distinguish the decisions according

to the effort required for understanding them. To that end,

any criterion whose evaluation requires (1) in-depth system

expertise, (2) inspection of information other than that captured

in design decisions, and/or (3) having access to the original

architects of the system, is given a rating of 0.

The criteria for assessing rationales are two-fold:
1) Rationale Clarity indicates whether the rationale and its

constituent parts are easily understandable. This is accom-

plished by looking at issue summaries and pinpointing

the problems or requirements driving the decision.

2) Rationale Cohesion indicates the degree to which there is

a coherent relationship among the issues that make up a

given rationale. Rationale Cohesion is only analyzed if

the decision is shown to possess Rationale Clarity.

The criteria for assessing consequences are also two-fold:
1) Consequence-Rationale Association assesses whether the

changes and their constituent architectural deltas are

related to the listed rationale.

2) Consequence Tractability assesses whether the size of the

changes is tractable. In other words, is the number of

changes and their constituent deltas small enough to be

understandable in a short amount of time?2

The two PhD students independently scored every decision

based on the above criteria. The three-level scale allowed us to

develop a finer-grained understanding of the decisions’ quality.

As illustrative examples, we explain the scoring procedures

for two decisions in Hadoop. Listing 1 displays a simple

2Our evaluation considered decisions that included more than five changes
not to satisfy this criterion, but this heuristic can be relaxed.

Decision Types Hadoop Struts

ACDC ARC ACDC ARC

Simple 0.89 0.95 0.90 0.99
Compound 0.50 0.52 0.76 0.56
Cross-Cutting 0.61 0.76 0.78 0.77
Overall 0.72 0.72 0.81 0.71

Fig. 10. Average scores of recovered decisions per recovery-technique for
Hadoop and Struts.

design decision as uncovered by RecovAr in Hadoop version

0.9.0. The rationale consists of a single issue that explains the

intent is to separate the user logs from system logs. However,

the rationale summary does not explain why this needs to

happen. Looking at the issue in Jira, the reason is that system

logs are cluttering the user logs, and system logs need to

be cleared out more frequently than user logs. Since we

had to look at the issue to understand “why” this decision

was made, the Rationale Clarity in this case was scored 0.5.

Since we only have one issue, the Rationale Cohesion is not

applicable. The consequence involves one change with a single

architectural delta, i.e., adding the TaskLog. The relationship

of this change to the issue is clear and the change size is

tractable. Therefore, Consequence-Rationale Association and

Consequence Tractability each received 1.

R a t i o n a l e s :
I s s u e 1 :

Desc : S e p e r a t i n g u s e r l o g s from sys tem
l o g s i n map r e d u c e

ID : HADOOP−489
Consequences :

Change 1 :
Added : o rg . apache . hadoop . mapred . TaskLog

Listing 1. A simple decision from Hadoop v. 0.9.0

Listing 2 is a cross-cutting example from Hadoop 0.10.1.

Although the rationales seem unrelated, after inspecting the

code and issue logs, we realized that LzoCodec will be available

only if the Native Library is loaded. Therefore, this decision

received 0.5 for Rationale Cohesion.

R a t i o n a l e s :
I s s u e 1 :

Desc : Implement t h e LzoCodec t o s u p p o r t
t h e l z o c o m p r e s s i o n a l g o r i t h m s

ID : HADOOP−851
I s s u e 2 :

Desc : N a t i v e l i b r a r i e s a r e n o t l o a d e d
ID : HADOOP−873

Consequences :
. . .

Listing 2. Part of a cross-cutting decision from Hadoop v. 0.10.1

Figure 10 displays the average scores of the analyzed

decisions, grouped by the decision type and the recovery

technique used for uncovering the decisions. Figures 11 and 12

display the cumulative distributions of the decision scores

for Hadoop and Struts, respectively. The right-leaning feature

of these distributions indicates that higher-quality decisions

are more prevalent than lower-quality ones. The threshold

of acceptability for measuring precision is adjustable, but in

our evaluation we required that a decision scores at least 0.5

101

 !" !# !$!% &

’()*+*,-+./+),0(+

// 1

/" 1

/# 1

/$ 1

/% 1

& 1
’
(
)
*+
*,
-
+
/2
*3
4
/5
/6
,
2
(
0

,
0/
(
7
8
5
6/
+
)
,
0(

9:’:

9;:

Fig. 11. Smoothed cumulative distribution of the decision scores for Hadoop.

 !" !# !$!% &

’()*+*,-+./+),0(+

// 1

/" 1

/# 1

/$ 1

/% 1

& 1

’
(
)
*+
*,
-
+
/2
*3
4
/5
/6
,
2
(
0

,
0/
(
7
8
5
6/
+
)
,
0(

9:’:

9;:

Fig. 12. Smoothed cumulative distribution of the decision scores for Struts.

in the majority (i.e., at least three) of the criteria. In our

analyses, on average (considering both ARC and ACDC) 76%

of the decisions for Hadoop and 78% of the decision for Struts

met this condition. Figure 13 depicts a descriptive view of

the results of our evaluation, classifying the decisions by the

required criteria. The values denote the proportion of decisions

that have at least partially satisfied the criteria corresponding

to a given intersection.

Most of the unacceptable decisions were made in the newly

introduced major versions of the two systems. This is consistent

with prior findings: The number of architectural changes

between a minor version (e.g., 0.20.2) and the immediately

following major version (e.g., 1.0.0) tends to be significantly

higher than the architectural change between two consecutive

minor versions [4]. In these cases, the decision sizes (number

of rationales and consequences) tend to be higher than our

conservative thresholds, and these decisions tend to be rated as

unacceptable. However, these decisions still provide valuable

insight into why the architecture has changed.

The reason that the ARC-based decisions generally score

lower (i.e., they are less right-leaning) than the ACDC-based

 !"#

$#

 !%#

&!"#

’!(#

$!%# $#

(#

&!&#

))#

$#

$#*+,-./0

*1234.15 64417.,/.15

8-,7/,9.+./0

$#

:#

$#

Fig. 13. Classification of the recovered decisions based on the satisfied criteria.

ones is due to the nature of changes extracted by ARC. As

discussed previously, ACDC adopts primarily a structural

approach to architecture, while ARC follows a semantic

approach, which requires a higher level of system understanding.

Therefore, attaining a conclusive rating for these decisions was

not possible by only looking at the decision elements defined

earlier. Our findings suggest that the uncovered decisions based

on ARC are more suitable for experienced users.

C. Recall

Another target of our evaluation was the extent to which

RecovAr manages to successfully capture the design decisions

in our subject systems. Based on the definition of the architec-

tural design decisions (recall Section II), every architectural

change is a consequence of a design decision. We thus use

the coverage of architectural changes by the identified design

decisions as a proxy indicator for measuring RecovAr’s recall.

Our initial analysis reported low recall values, indicating

that a relatively small fraction of the extracted changes formed

design decisions. The first row of Figure 14 displays the results

of this analysis. The recall of the extracted architectural changes

was consistently around 20% in our subject systems regardless

of the used recovery technique. To understand the cause of this,

we manually examined the detected architectural changes for

which RecovAr could not locate the rationale. We were able

to identify two major reasons why an architectural change was

not marked as part of a design decision by RecovAr. The first

was when architectural change was happening in off-the-shelf

components that are integrated with the system and evolve

separately. These can be third-party libraries, integrations with

the other Apache software projects, or even changes in the

core Java libraries that are detected by the recovery techniques.

Examples of this phenomenon for Struts include changes to

the Spring Framework’s architecture [34], and for Hadoop

changes to Jetty [8] and several non-core Apache Common

projects. The second reason is what we call the “orphaned

commit” phenomenon. Orphaned commits are those commits

that conceptually belong to an issue, but (1) were not added

to an issue, (2) have been merged with the code-base before

their containing issues have been marked as resolved, or (3) a

human error in the issue data rendered them useless for our

approach (e.g., incorrectly specified affected version).

We consider orphaned commits a shortcoming of our

approach that can affect its recall. Orphaned commits might

also limit RecovAr’s ability to recover the initial architectural

102

Hadoop Struts

ACDC ARC ACDC ARC

Before Cleanup 20% 19% 21% 24%
After Cleanup 85% 67% 80% 63%

Fig. 14. RecovAr’s recall before (top row) and after (bottom row) the clean-up
of the raw-data.

design decisions that are not documented as issues. This is

less concerning when issue trackers are used in tandem with

project management tools for task assignments in the early

stages of development. However, the imposed changes on a

system’s architecture do not capture the original intentions

of the developers and architects. Therefore, we carefully

inspected the architectural changes to eliminate the ones

caused by external factors. In our inspection, we created a

list of namespaces whose elements should not be considered

architectural changes caused by the developer decisions. Partial

lists of these namespaces for Hadoop and Struts are displayed

for illustration in Listings 3 and 4, respectively. We verified each

entry by searching the system’s code repository and confirming

that the instances where imported and not developed internally

by the developer teams.

com . f a c e b o o k . ∗
j a v a . l a n g . ∗
org . apache . commons . c l i . ∗
j a v a x . ws . r s . ∗
. . .

Listing 3. Imported namespaces for Hadoop

com . opensymphony . xwork2 . u t i l .∗
j a v a . i o . ∗
org . apache . commons .∗
org . s p r i n g f r a m e w o r k . ∗
. . .

Listing 4. Imported namespaces for Struts

We subsequently reevaluated RecovAr’s recall. The results

are displayed in the second row of Figure 14. The recall was

73% on average after eliminating externally caused changes.

This also reveals an interesting byproduct of RecovAr: by using

RecovAr or a specially modified version of it, we can detect the

parts of a system that are not developed or maintained by the

system’s core team. This information can be used for automatic

detection of external libraries and dependencies in software

systems, and can help the recovery techniques in extracting a

more accurate view of a system’s core architecture.

D. Threats to validity

We identify several potential threats to the validity of our

study with their corresponding mitigating factors. The key

threats to external validity involve our subject systems. We

chose the two systems in our evaluations from the higher end

of the Apache spectrum in terms of size and lifespan; each

have a vibrant community, and are widely adopted. Another

threat stems from the fact that both of our systems use GitHub

and Jira. However, RecovAr only relies on the basic issue and

commit information that can be found in any generic issue

tracker or version control system. The different numbers of

versions analyzed per system pose another potential threat to

validity. This is unavoidable, however, since some systems

simply undergo more evolution than others.

The construct validity of our study is mainly threatened

by the accuracy of the recovered architectural views and of

our detection of architectural decisions. To mitigate the first

threat, we selected the two architecture recovery techniques,

ACDC and ARC, that have demonstrated the greatest accuracy

in a comparative analysis of available techniques [10]. These

techniques are developed independently of one another and use

very different strategies for recovering an architecture. This,

coupled with the fact that their results exhibit similar trends,

helps to strengthen the confidence in our conclusions. The

manual inspection of the accuracy of the design decisions

uncovered by our approach is another threat. Human error

in this process could affect the reported results. To alleviate

this problem, two PhD students independently analyzed the

results to limit the potential biases and mistakes. Moreover,

the inspection procedure was designed to be very conservative.

V. RELATED WORK

Tyree et al. [38] described the importance of design decisions

in demystifying the software architecture and filling in the short-

comings of traditional approaches, such as RM-ODP (Reference

Model for Open Distributed Processing) [29], or 4+1 [17]. They

devised a methodology for architects to document architectural

design decisions, requirements, and pertinent assumptions.

Other decision centric approaches (e.g., [7], [44]) have been

proposed to direct the derivation of target architectures from

requirements. These techniques aim to make design rationale

reusable. RecovAr can augment these techniques and reduce

the architects’ burden by pointing to the existing decisions

where such documents do not exist.

Jansen and Bosch et al. [13], [5] defined architectural

design decisions and argued for the benefits of the invaluable

information getting lost when architecture is modeled using

purely structural elements. Several researchers focused on

studying the concrete benefits of using design decisions in

improving software system’s quality [36], [21], and decision

making under uncertainty [6]. Falessi et al. extensively studied

design rationale and argued for the value of capturing and

explicitly documenting this information [9]. A recent survey

by Weinreich et al. [42] showed that knowledge vaporization

is a problem in practice, even at the individual level. However,

unlike RecovAr, none of these research studies have focused

on automatic recovery of undocumented design decisions.

Roeller et al. [30] proposed RAAM to support reconstruction

of the assumptions picture of a system, i.e., early architectural

design decisions. A serious shortcoming of this approach is

that the researchers need to acquire a deep understanding of the

software system to reconstruct the assumptions. ADDRA [14]

was designed to recover architectural design decisions in an

after the fact documentation effort. It was built on the premise

that in practice, software architectures are often documented

after the fact, i.e. when a system is realized and architectural

design decisions have been taken. Similar to RAAM, and unlike

103

our approach, ADDRA also relies on architects to articulate

their “tacit” knowledge.

VI. CONTRIBUTIONS AND FUTURE WORK

In this paper, we took a step toward addressing the prob-

lems arising from knowledge vaporization and architectural

erosion [19]. We formally defined the notion of an architectural

design decision. We introduced RecovAr, a technique that uses a

project’s readily available history artifacts (e.g., an issue tracker

or code repository), to automatically recover the architectural

design decisions embodied in that system. We empirically

examined how design decisions manifest in software systems,

using two large, widely-adopted open-source software systems.

While our approach may not recover all the design decisions in

a software system, in our evaluation RecovAr exhibited high

accuracy and recall. Finally, our developed methodology helps

preserve design-decision knowledge in software projects.

There are a number of remaining research challenges that

will guide our future work. There is a slew of information in

software repositories that can help increase the accuracy of

our approach [18]. These include comments, commit messages,

documentations, pull requests, tests, etc. RecovAr can be

extended with a summarization technique to provide succinct

summaries of the recovered rationales and consequences.

Furthermore, we will investigate models that employ RecovAr

to predict the architectural consequences of issues based on

their description thus helping engineers make better-informed

decisions during design and code review time [32].

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation

under grants no. CCF-1453474, CCF-1564162, CCF-1618231,

and CCF-1717963, by the U.S. Office of Naval Research under

grant no. N00014-17-1-2896, and by Huawei Technologies.

REFERENCES

[1] B. Agnew, C. Hofmeister, and J. Purtilo. Planning for change: A
reconfiguration language for distributed systems. Distributed Systems
Engineering, 1(5):313, 1994.

[2] Apache software foundation. http://apache.org/, 2018.
[3] Apache Hadoop. http://hadoop.apache.org/, 2018.
[4] P. Behnamghader, D. M. Le, J. Garcia, D. Link, A. Shahbazian, and

N. Medvidovic. A large-scale study of architectural evolution in open-
source software systems. Empirical Software Engineering, 2016.

[5] J. Bosch. Software architecture: The next step. In European Workshop
on Software Architecture, pages 194–199, 2004.

[6] J. E. Burge. Design rationale: Researching under uncertainty. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, 2008.

[7] X. Cui, Y. Sun, and H. Mei. Towards automated solution synthesis
and rationale capture in decision-centric architecture design. In WICSA,
pages 221–230, 2008.

[8] Eclipse Jetty. https://eclipse.org/jetty/, 2018.
[9] D. Falessi, L. C. Briand, G. Cantone, R. Capilla, and P. Kruchten. The

value of design rationale information. TOSEM, 22(3):21, 2013.
[10] J. Garcia, I. Ivkovic, and N. Medvidovic. A comparative analysis of

software architecture recovery techniques. In ASE, 2013.
[11] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai. Enhanc-

ing architectural recovery using concerns. In ASE, pages 552–555, 2011.
[12] ISO/IEC 42010: 2011 systems and software engineering—recommended

practice for architectural description of software-intensive systems.
Technical report, ISO, 2011.

[13] A. Jansen and J. Bosch. Software architecture as a set of architectural
design decisions. In WICSA, pages 109–120, 2005.

[14] A. Jansen, J. Bosch, and P. Avgeriou. Documenting after the fact:
Recovering architectural design decisions. JSS, 81(4):536–557, 2008.

[15] Jira. https://www.atlassian.com/software/jira, 2018.
[16] P. Kruchten. An ontology of architectural design decisions in software

intensive systems. In 2nd Groningen Workshop on Software Variability,
pages 54–61, 2004.

[17] P. B. Kruchten. The 4+1 view model of architecture. IEEE Software,
12(6):42–50, 1995.

[18] M. Langhammer, A. Shahbazian, N. Medvidovic, and R. H. Reussner.
Automated extraction of rich software models from limited system
information. In WICSA, pages 99–108, 2016.

[19] D. Le, D. Link, A. Shahbazian, and N. Medvidovic. An empirical study
of architectural decay in open-source software. In ICSA, 2018.

[20] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian,
and N. Medvidovic. An empirical study of architectural change in
open-source software systems. In MSR, pages 235–245, 2015.

[21] I. Malavolta, H. Muccini, and V. Smrithi Rekha. Supporting architectural
design decisions evolution through model driven engineering. Software
Engineering for Resilient Systems, pages 63–77, 2011.

[22] N. Medvidovic. ADLs and dynamic architecture changes. In Second
International Software Architecture Workshop, 1996.

[23] N. Medvidovic and R. N. Taylor. A classification and comparison
framework for software architecture description languages. TSE,
26(1):70–93, 2000.

[24] K. Muşlu, Y. Brun, and A. Meliou. Data debugging with continuous
testing. In ESEC/FSE NIER, pages 631–634, 2013.

[25] K. Muşlu, Y. Brun, and A. Meliou. Preventing data errors with
continuous testing. In ISSTA, pages 373–384, 2015.

[26] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based runtime
software evolution. In ICSE, pages 177–186, 1998.

[27] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman.
Are developers aware of the architectural impact of their changes? In
ASE, pages 95–105, 2017.

[28] D. E. Perry and A. L. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4), 1992.

[29] RM-ODP. http://www.rm-odp.net/, 2018.
[30] R. Roeller, P. Lago, and H. van Vliet. Recovering architectural

assumptions. JSS, 79(4):552–573, 2006.
[31] D. Saff and M. D. Ernst. Reducing wasted development time via

continuous testing. In ISSRE, pages 281–292, 2003.
[32] A. Shahbazian, D. Nam, and N. Medvidovic. Toward predicting

architectural significance of implementation issues. In MSR, 2018.
[33] M. Shahin, P. Liang, and M. R. Khayyambashi. Architectural design deci-

sion: Existing models and tools. In WICSA/ECSA, pages 293–296, 2009.
[34] Spring application framework. https://spring.io/, 2018.
[35] Struts. http://struts.apache.org/, 2018.
[36] A. Tang, M. H. Tran, J. Han, and H. Van Vliet. Design reasoning

improves software design quality. In QoSA, pages 28–42, 2008.
[37] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software architecture:

foundations, theory, and practice. Wiley Publishing, 2009.
[38] J. Tyree and A. Akerman. Architecture decisions: Demystifying

architecture. IEEE Software, 22(2):19–27, 2005.
[39] V. Tzerpos and R. C. Holt. MoJo: A distance metric for software

clusterings. In RE, pages 187–193, 1999.
[40] V. Tzerpos and R. C. Holt. ACDC: An algorithm for comprehension-

driven clustering. In Working Conference on Reverse Engineering, pages
258–267, 2000.

[41] R. Weinreich and I. Groher. Software architecture knowledge
management approaches and their support for knowledge management
activities: A systematic literature review. Information and Software
Technology, 80:265–286, 2016.

[42] R. Weinreich, I. Groher, and C. Miesbauer. An expert survey on kinds,
influence factors and documentation of design decisions in practice.
Future Generation Computer Systems, 47:145–160, 2015.

[43] Z. Wen and V. Tzerpos. An effectiveness measure for software clustering
algorithms. In International Workshop on Program Comprehension,
pages 194–203, 2004.

[44] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster.
Reusable architectural decision models for enterprise application
development. In QoSA, pages 15–32, 2007.

104

