
Challenges in Composing and Decomposing
Assurances for Self-Adaptive Systems

Bradley Schmerl1(B), Jesper Andersson2, Thomas Vogel3, Myra B. Cohen4,
Cecilia M. F. Rubira5, Yuriy Brun6, Alessandra Gorla7, Franco Zambonelli8,

and Luciano Baresi9

1 Carnegie Mellon University, Pittsburgh, PA, USA
schmerl@cs.cmu.edu

2 Linnaeus University, Växjö, Sweden
jesper.andersson@lnu.se

3 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
thomas.vogel@hpi.de

4 University of Nebraska, Lincoln, NE, USA
myra@cse.unl.edu

5 University of Campinas, Campinas, SP, Brazil
cmrubira@ic.unicamp.br

6 University of Massachusetts, Amherst, MA, USA
brun@cs.umass.edu

7 IMDEA Software Institute, Madrid, Spain
alessandra.gorla@imdea.org

8 University of Modena and Reggio Emilia, Modena, Italy
franco.zambonelli@unimore.it

9 Politecnico di Milano, Milan, Italy
luciano.baresi@polimi.it

Abstract. Self-adaptive software systems adapt to changes in the envi-
ronment, in the system itself, in their requirements, or in their business
objectives. Typically, these systems attempt to maintain system goals
at run time and often provide assurance that they will meet their goals
under dynamic and uncertain circumstances. While significant research
has focused on ways to engineer self-adaptive capabilities into both new
and legacy software systems, less work has been conducted on how to
assure that self-adaptation maintains system goals. For traditional, espe-
cially safety-critical software systems, assurance techniques decompose
assurances into sub-goals and evidence that can be provided by parts
of the system. Existing approaches also exist for composing assurances,
in terms of composing multiple goals and composing assurances in sys-
tems of systems. While some of these techniques may be applied to self-
adaptive systems, we argue that several significant challenges remain in
applying them to self-adaptive systems in this chapter. We discuss how
existing assurance techniques can be applied to composing and decom-
posing assurances for self-adaptive systems, highlight the challenges in
applying them, summarize existing research to address some of these
challenges, and identify gaps and opportunities to be addressed by future
research.

c⃝ Springer International Publishing AG 2017
R. de Lemos et al. (Eds.): Self-Adaptive Systems III, LNCS 9640, pp. 64–89, 2017.
https://doi.org/10.1007/978-3-319-74183-3_3

Challenges in Composing and Decomposing Assurances 65

1 Introduction

Modern software systems typically have to operate in complex and diverse envi-
ronments and conditions. For example, business and cloud-based systems must
cater for a wide range of load and customer profiles, and systems that man-
age physical elements must deal with uncertainties in the physical world. Self-
adaptive systems form a category of software that changes, reconfigures, or fixes
itself as it is running. Much research has been conducted into different methods
for constructing self-adaptive systems, for example by integrating control loops
to manage systems or by using self-organizing or bio-inspired principles [42].
Self-adaptive systems often attempt to maintain or achieve system goals in the
face of uncertainty, and are usually constructed to provide some confidence that
a system at run time will continue to operate appropriately, even in changing
and uncertain circumstances.

While various methods for constructing self-adaptive systems have proven
successful in a number of domains, assuring the self-adaptive aspects of these sys-
tems remains a challenge. Assuring self-adaptive systems requires run-time vali-
dation and verification (V&V) activities [45]. This is mainly because the combi-
nation of self-adaptive configurations and the environments that they encounter
leads to a state explosion that makes static V&V challenging. One way to address
this challenge is to apply techniques for decomposing and composing assurances.
For safety-critical systems there is a large body of work on constructing safety
cases, or more generally assurance cases, that construct assurance arguments
about these kinds of systems. Reasoning about assurances in safety-critical sys-
tems may shed some light on how to provide these assurances for self-adaptive
systems. Typically, assurances involve decomposing top level goals into argumen-
tation structures that involve sub-goals, strategies for achieving the goals, and
defining evidence that can be collected to show that the goals are achieved. Top
level goals can also be composed together to provide assurances about a system
with multiple goals, to reuse some assurances for goals in similar systems, or to
provide assurances in systems of systems.

In this chapter we discuss the challenges related to decomposing and com-
posing assurances in self-adaptive systems. In Sect. 2 we give some background
on assurances, focusing on assurance cases as a framework for guiding decom-
position and composition of assurances. We also introduce an example that will
be used to illustrate the challenges. In Sect. 3, we survey existing self-adaptation
assurance research that has either discussed how to compose assurances, or could
be used to help build an assurance argument. Section 4 identifies a set of chal-
lenges associated with composing and decomposing assurances. In Sect. 5 we
discuss some emerging research in assurance cases that should be followed to
help with composition and decomposition and outline the challenges that arise
when applying assurance cases to the context of self-adaptation. In Sect. 6 we
provide some concluding remarks.

66 B. Schmerl et al.

2 Preliminaries

In this section, we briefly introduce self-adaptive systems as we conceive them
in the scope of this chapter. Then, we discuss techniques for software assur-
ance in safety-critical systems, and describe an illustrative example that we use
throughout the chapter.

2.1 Self-Adaptive Systems

Current and emerging software systems are increasingly complex and distributed,
and are called to operate in open-ended and unpredictable operational environ-
ments. On one hand, such uncertainty challenges the capabilities of a system to
maintain its business goals if the configuration is to remain static. On the other
hand, changing environments or the system itself may also modify the goals and
requirements for which the system was originally structured and configured.

To tackle the above situation, human intervention has historically been
required. However, human intervention is generally impossible due to the inher-
ent decentralized nature of modern systems, or simply infeasible due to economic
or temporal reasons. Accordingly software systems have to become self-adaptive
in their behaviour, that is, capable of dynamically adapting their configuration
and/or structure in an autonomous way without human supervision, in order to
respond to changing situations without malfunctioning or degrading quality of
service unacceptably [16,42].

In modern software systems, self-adaptation can take place both via mech-
anisms integrated in individual components as well as in groups/collectives of
components (e.g., [8–12]), and that have the goal of modifying something in the
behaviour of a component or a collective (e.g., [6,7]).

The study of both individual and collective adaptation mechanisms has a
long history. Individual adaptation is a very important thread of research since
the early years of intelligent agents [35] and reflective computing [48], and sev-
eral architectures and mechanisms to enable adaptation have been proposed so
far, including the recent IBM autonomic computing approach [38]. All proposals
for self-adaptation at the level of individual components rely on the integration,
within each component, of a closed control loop. In the control loop, a specific
control component (e.g., the “autonomic manager” in the autonomic comput-
ing approach, or the “meta-component” in reflective approaches) monitors and
analyses the current operational and environmental condition of the component,
and plans and executes appropriate adaptation actions as needed. The predom-
inant pattern for self-adaptation that has emerged for structuring an autonomic
manager is MAPE-K [38], where each of the activities that need to occur as
part of adaptation are Monitoring – or sensing – the system and the environ-
ment, Analysing the system to determine whether the current state of the system
requires adaptation, Planning, which determines what adaptations to perform,
and Executing to effect changes in the system. All of this is coordinated through
Knowledge.

Challenges in Composing and Decomposing Assurances 67

For collective adaptation, the simplest approach is to integrate a single con-
troller in charge of managing a whole collective with a single control loop, but
this approach has challenges when scaling to realistic systems. For this reason,
a variety of patterns for coordinating multiple controllers and control loops has
been investigated [41,50].

For both individual and collective adaptation uniform models and tools sup-
porting the design and development of self-adaptive systems are still missing.
Furthermore, there are few methods for assuring that self-adaptive systems adapt
correctly, with respect to performing as designed to achieve their intended goals,
doing so in a safe and consistent manner, and ensuring that adaptations result
in legal systems respecting their design and business constraints.

2.2 Assurance Cases

Self-adaptation can be decomposed into a number of activities the use of which
can span from design to run time. It is therefore not possible to provide a single
assurance mechanism to provide guarantees about self-adaptation. In fact, as we
shall see, there exists a collection of assurance techniques that can be used during
these various activities. These techniques need to be applied and structured in
a principled way in order to provide assurances. We need, therefore, to carefully
consider how assurances should be decomposed into these assurance activities to
ensure that the activities do in fact help assure overall goals, and to ensure that
we are only doing assurance activities that help meet our goals. Furthermore,
because self-adaptive systems are increasingly being composed, we need methods
and approaches for composing the systems’ associated assurances to assure global
properties about the collective adaptive system.

To do both of these things, we can look at how assurances are handled in
safety-critical systems. In this section, we discuss some solutions for software
assurance and propose that assurance cases could be a good starting point for
decomposing and composing assurances for self-adaptive systems. In the area of
safety critical systems, there has been considerable research in software assur-
ances. An assurance can be defined as a justified measure of confidence that a
system will function as intended in its environment of use.

Assuring that a system satisfies some quality and functional goals requires
the construction and evaluation of a reasoning approach based on claims, argu-
ments, evidence, and expertise. For example, a safety case presents a structured
demonstration that a system is acceptably safe in a given context. In other words,
it is a comprehensive presentation of evidence linked by argument to a claim.
For example, if we are trying to assure a claim Claim1, then an assurance case
might decompose this claim into two subclaims, Claim2 and Claim3 that are
easier to show, with some argument that says that if Claim2 and Claim3 are
true, then Claim1 is true. We could then provide some evidence that shows that
each of Claim2 and Claim3 are true. Structuring evidence in such a way means
that an expert can make a judgement that the argument makes sense and thus,
if that evidence is provided, have confidence that the system is acceptably safe.

68 B. Schmerl et al.

Assurance cases are a generalization of safety cases to construct arguments that
are about more than just safety.

While this rationale can be presented textually in documentation, it has
proven useful to use graphical notations that help define and present the argu-
mentation structure for assurance cases. The structure of an assurance case can
be graphically represented using, for instance, the Goal Structuring Notation
(GSN) [37] or Claims-Argument-Evidence (CAE) [5]. GSN is a well-accepted
graphical notation to show how claims (or goals) can be broken down into sub-
claims, and eventually supported by evidence, making clear the argumentation
strategies adopted, the rationale for the approach (assumptions, justifications),
and the context in which claims are stated. In general, arguments are struc-
tured hierarchically: claim, argument, sub-claims, sub-arguments, evidence. It is
essential that assurance cases are presented in a clear structure, and GSN can
capture the elements most critical for arguing a case (claims, evidence, argument
strategy, assumptions, relation of claims to sub-claims and evidence) to build a
convincing case.

2.3 Illustrative Example

Throughout this paper we will use a simple example to illustrate how assurances
could be decomposed and composed for self-adaptive systems, and some of the
challenges in doing so. The example that we will use is Znn, a typical web
system serving news articles and related images, that is implemented as a three-
tiered web service using a standard LAMP stack (Linux, Apache, MySQL, PHP).
Figure 1 shows the Znn architecture with one dispatcher, which shares the load
evenly between two web servers, and one database, which stores images for served
articles. While Znn itself is not self-adaptive, it provides APIs that allow a control
loop to be added onto it to manage quality of service goals. Examples of a quality
goal include keeping the response time below two seconds, which is related to
how many servers can be used by the dispatcher and the detail of the content
that each server produces (e.g., as reported in [18]). Another related goal might
be to keep the operational costs below a certain threshold.

To support control loops on top of it, Znn provides a number of APIs for
probing the state of the system and effecting changes. For example, it is possible
to affect the configuration of Znn by changing the number of web servers or
modifying the detail of the content served. Both of these simple changes can
affect response time, which is information that can be retrieved from Znn using
probes.

Thus, self-adaptation can be added to Znn by integrating a control loop
that takes inputs from Znn probes and effects changes on Znn, via the API.
For example, Rainbow [28] takes the probe inputs, abstracts them to values in
the architectural model of the system, and then conducts an analysis of this
architecture to determine if something is wrong (e.g., the response time is too
high). If corrective action should be taken, Rainbow balances various business
quality concerns in order to decide the best effects to make in the system [17]. For
example, it will trade-off increasing the number of servers (thereby increasing

Challenges in Composing and Decomposing Assurances 69

Client

Client

Client

Dispatcher

Web Server

Web Server

Database

Fig. 1. Architecture of the Znn web system.

costs), decreasing content detail, with the effect these will have on response time,
and choose an option that has the highest overall utility.

Znn is an interesting example for decomposing assurances because we would
like to assure that the response time is below the threshold. For example, we want
to be able to answer questions such as how does one construct this argument,
and what forms of evidence can be provided by a self-adaptive system? We can
consider two aspects of composition of assurances in Znn. First, if there is a
self-adaptive system that is trying to assure response time goals, and we want
to combine this with an assurance that costs do not go above a certain amount,
we want to be able to reason about how the assurances can be defined, whether
there are any conflicts and how they are resolved, and the kinds of evidence
and strategies that can be used to reason about the assurance. Second, we are
interested in similar questions if two self-adaptive systems are being composed
(e.g., Znn, for which performance and cost are important, and another system
that uses the same infrastructure but has an additional goal of security).

Assurance Cases for Znn Self-Adaptation. As discussed in Sect. 2.2, assur-
ance cases could be used to organize assurances for self-adaptive systems and
to identify evidence that can be provided for those assurances. Among others,
such evidence can be based on observations, testing, simulation, and the process
used to construct the system. The argument around an assurance case repre-
sents a high-level explanation of how evidence combines to show that the goals
(or claims) will be met. The evidence and arguments are usually structured
as a tree, with high-level goals being decomposed into increasingly fine-grained
sub-goals that are eventually supported by evidence.

As mentioned in Sect. 2.2, one common way to document assurance cases is
to use the Goal Structuring Notation (GSN) [30] to structure the assurance case
as a tree. GSN has nodes for claims (or goals) that need to be shown and form
part of the argument. These can be decomposed into sub-claims or strategies.
Strategies describe how the claim is to be shown for the assurance case, and
then evidence or solutions are activities or evidence that is used to support
the claim. Associated with each claim or strategy is a context, which states the
assumptions under which the claim is made or in which the strategy is valid. If
it is necessary to state the assumptions that a strategy relies on to be valid, or

70 B. Schmerl et al.

to justify a strategy, these can be documented via Assumptions or Justifications
in the assurance case. Finally, goals or strategies that have not been decomposed
can be denoted by placing a diamond underneath them in the graphical notation.
The graphical legend for these items in GSN are denoted in Fig. 2.

Claims, broken into sub-claims

Context in which claims are stated

Strategies for argumentation

Evidence supporting claims

A/J
Assumptions/Justifications in the

rationale for the argument

Undeveloped entity, indicating that
a line of argumented is not developed

Fig. 2. Goal Structuring Notation legend.

Consider a high-level goal for Znn that it will be able to reply to all requests
within 2 s. An example of an assurance case for this goal is shown in Fig. 3. An
engineer may choose a strategy of designing two versions of Znn, one for normal
operation (G2) and one for high-load operation (G3), and a method for adapting
the system by switching between these versions when the assumptions change
(i.e., the user load changes). The sub-goals G2 and G3 would then show that the
response time goals are met in each of these versions under the different load con-
texts. To obtain evidence for each of these sub-goals, architectural performance
analysis (e.g., based on queuing theory) for that version and validation processes
throughout development such as component-level testing might be used. In this
context, assumptions concerning individual components that are made in the
architectural analysis can be supported by evidence from component-level tests.
Evidence would then be the results of the analysis and tests, which give one the
confidence that each sub-goal is met in its context. In this way, an assurance is
decomposed into sub-goals and evidence while the strategies form the arguments
for the assurance case.

The assurances cases for G2 and G3 would proceed as normal for the static
design and assurance of the various Znn modes/versions. We will not discuss
these further here. Instead, we are concerned with composing and decomposing
assurances that relate to the self-adaptive part of the system. Such an example
happens in Znn when the user load forces a change in modes (e.g., the load
changes from 3000 requests per second to 7000 requests per second). In this

Challenges in Composing and Decomposing Assurances 71

Fig. 3. An example Goal Structuring Notation diagram for Znn.

case, we want to provide the assurance that the mode switch happens within
1 s (G4). We will elaborate the assurance case of G4 to illustrate both, how
we might use assurance cases to guide decomposition and composition, and to
highlight some of the challenges associated with each of these.

3 Assurance Decomposition and Composition
in Self-Adaptive Systems

The focus of much of the research in self-adaptive systems to date has been
to engineer systems that can maintain stated goals, even in the presence of
uncertain and changing environments. There is existing research in assurances
for self-adaptive systems that either addresses how to compose assurances, or can
be used as part of an argument in assurance cases. The purpose of this section
is to summarize some of this research, and to illustrate how it might apply to
the problem of decomposition and composition specifically.

As argued above, it is not possible to provide a single, monolithic assurance
for the goals of a self-adaptive system. Assurance cases can provide a way to
organize existing work on assurances into self-adaptive system. We can organize
this existing work in the following areas:

Evidence types and sub-goals for use in assurance case decomposition.
Each of the classic activities of self-adaptation - monitoring, analysis, plan-
ning, and execution - have existing techniques that help to provide evidence
for goals that can be used in assurance cases. These approaches could be used
in assurance case decomposition.

Assurance composition based on the MAPE-K loop. Once assurances
have been decomposed, we need ways to recompose the assurances. Many

72 B. Schmerl et al.

of these will need to be managed at run time. There is work on integrating
various verification tasks into self-adaptation as a way to provide assurances
as an intimate part of self adaptation.

3.1 Evidence Types for Use in Assurance Case Decomposition

When considering decomposition, it is necessary to identify what kinds of evi-
dence and sub-goals could be used in assurance cases. In this section, we sum-
marize some of the on-going research into this, organizing it into a discussion of
work that could be used for evidence from each of the MAPE-K activities.

Monitoring. Casanova [13,14] provides some foundational work that can be
used to provide evidence that there is sufficient knowledge to diagnose a
problem in a system. In [13], the information theoretic concept of entropy
is used to determine how much information is needed by a statistical and
model driven diagnostic approach. The amount of information needed can be
updated autonomously. In [14], formal criteria are given for establishing the
maximum theoretical accuracy bounds for diagnostics given a set of obser-
vations, and the minimum bounds for accuracy (in the case of single fault
systems). This theory can be used to provide evidence that enough monitor-
ing is in place for specific diagnosis, even when some of the components in
the system cannot be observed but might be the cause of problems.
Requirements may also be used to provide evidence of sufficient monitoring.
In [1] they use contextual goal models to identify monitoring requirements.
Different contexts provide different facts that can be monitored, and can
lead to problems in the monitoring requirements (such as redundancy and
inconsistency). SAT-solvers are used to produce equivalent and less costly
monitoring requirements that can be shown to be optimal for monitoring the
requirements.
The above approaches show that it is possible to provide evidence that a
self-adaptive system is monitoring enough information about the target sys-
tem. However, assurances related to the granularity, timing, and effect of the
monitoring on the target system have yet to be investigated.

Analysis. The analysis activity is related to interpreting information gained
from monitoring in the context of whether an adaptation should be done.
Analysis can range from checking the correctness of the model to applying
mathematical analysis of the model. For example, [39] uses performance and
workflow models to analyse traffic coming into a distributed transactional
system. These models are used at design time to determine initial resource
provisioning given assumptions about the environment, and at run time to
determine correct provisioning to new workflows and configurations. A similar
approach is used [2] to deal with Denial of Service attacks, where performance
models are used to determine whether to divert traffic to a checkpoint, which
then issues a challenge to determine if the traffic originates from a bot. In
this case the soundness of the mathematical models and their updating and

Challenges in Composing and Decomposing Assurances 73

use at run time provide evidence that performance goals will be met. Per-
formance models were also used in [19] to provide evidence that appropriate
constraints, monitors, and mitigations are designed into a self-adaptive sys-
tem to manage performance.
In general, assurances providing sound analytical models or simulations
(e.g., [26]) can be used to provide evidence that analysis is sufficient to decide
if some adaptation needs to be performed. One thing to note here is that parts
of the analysis can be done at design time, and parts at run time. Furthermore,
if the part of the analysis that is done at run time needs to be done in a timely
manner, and in this case evidence needs to be given that the analysis will, for
example, detect problems in enough time to do something about them.

Planning. As mentioned above, self-adaptive systems must produce adapta-
tions that return systems from an undesired state to a normal state. Ideally,
we would like to be able to provide evidence that adaptations always achieve
this transition, but because of various sources of uncertainty, this is not pos-
sible. However, there has been some work that is making strides in providing
some evidence. In the case where adaptations are being chosen from a set that
is predefined, probabilistic model checking can be used to determine the adap-
tation that has the higher likelihood of success. In [43], the authors show how
this approach may be used to provide evidence about the effect of adaptations
on system quality objectives, and how this may be used to provide evidence
that all states in some region of the state space of the system will be improved
by selected adaptations. This evidence helps to show that strategies have suf-
ficient coverage of some part of the state space. Adaptive CTL (AdaCTL) is
defined in [22] to also provide some analytical evidence that there is sufficient
coverage of adaptations to achieve desired goals in changing, but enumerated,
environments. The summary of formal methods used in self-adaptive systems
also concentrates on assurances for planning [49]. They note that many of the
formal methods used for assuring planning happen during the design of the
self-adaptive system, and not at run time. Filieri [24,25], on the other hand,
describe a number of strategies for using probabilistic model checking at run
time for self-adaptive systems where goals are expressed as temporal logical
formulas, including state elimination and algebraic approaches for making it
more tractable at run time.

Execution. When an adaptation is triggered, we want to be able to assure sev-
eral things. For example, we want to assure that the system correctly executes
the effects and that the system and model are (eventually) consistent, we want
to be able to assure that, if two adaptations can execute simultaneously, that
they do not interfere with each other in unpredictable ways, and we require
assurances that the execution will not in fact have a deleterious affect on the
qualities that we are concerned about. Some work has been done in trying
to answer these questions. In Veritas [27] some of these assurances can be
evidenced by run-time testing. As the system is adapting, so too should the
test cases. Veritas uses a genetic algorithm approach to evolve test cases, and
utility functions to choose and prioritize test cases that need to be run to
assure that the system is still executing safely and correctly.

74 B. Schmerl et al.

3.2 Assurance Composition Based on the MAPE-K Loop

One of the challenges for providing assurances for self-adaptive systems is how
to integrate assurances into the process of self-adaptation at run time. In the
context of composition, this can be seen as developing techniques to allow evi-
dence to be collected and collated at run time. For example, Tamura et al. [45]
discuss the need for validation and verification (V&V) in self-adaptive systems,
and argue that run time V&V tasks should be integrated into the activities of
self-adaptation. They integrate the V&V tasks into the MAPE-K loop.

While this approach does not provide any specific techniques for provid-
ing assurances, it does define a framework for integrating and positioning self-
adaptive elements that could provide some evidence for assurance cases, and
could be used to structure this evidence in assurance cases. In particular, service
level agreements can be thought of as high level goals in an assurance case, and
so the Runtime Validator and Verifier, in checking that after execution of an
adaptation the goals will be met. It is conceivable that other pieces of evidence
(such as evidence that a model accurately reflects the system being managed)
could be incorporated into this structure.

Another aspect of V&V discussed in [45] is viability zones, which are the
set of possible systems states in which goals can be achieved that evolve with
environment and context changes. This is elaborated upon in [49], which iden-
tifies adaptation zones as a way to understand the state space of self-adaptive
systems, and as a framework for understanding the use of model checking in pro-
viding evidence of self-adaptive behaviour. They identify four zones: (1) Normal
behaviour, which is the state where the system is running in its designed func-
tionality; (2) Undesired behaviour, which is where a system is not meeting its
goals or properties and requires adaptation; (3) Adaptation behaviour, which is
when the system is adapting itself to fix the undesired behaviour, and (4) Invalid
behaviour which are behaviours that the system should never exhibit (e.g., sys-
tem deadlock). They then identify model checking work that assures properties
in each and between these zones. This work can be use to identify the evidence
types that have been used for assuring different parts of self-adaptation, and
organizing such evidence around these parts that can aid in composition.

Model-checking evidence for the most part concentrates on assuring the
design of the self-adaptive system. In [40], the authors outline an approach to
testing implemented self-adaptive systems. They use a Failure Mode and Effects
Analysis on the activities in the MAPE-K loop that allows them to categorize
different possible problems that need to be assured (in this case, tested). The
seven categories that they identify range from providing assurances that sensor
information is correctly interpreted to assuring that adaptation effects are cor-
rectly effected in the system. All of these categories need to be assured for model
based testing to be considered comprehensive. This work provides another way
to organize the assurance activities that could be used to compose an assurance
case for a particular goal.

Challenges in Composing and Decomposing Assurances 75

4 Decomposing and Composing Assurances
to Self-Adaptation

As we have argued in this chapter, we need an approach that organizes assurance
techniques and the results they produce into a rational argument where justi-
fications of the goals for the self-adaptive system can be checked and assessed
throughout the system’s life cycle. In this section we discuss some of the chal-
lenges with decomposition and composition of assurances. The challenges for
decomposition and composition discussed below constitute the set of require-
ments any approach must manage.

4.1 Decomposition of Assurances

Assurance cases decompose assurance problems by breaking high level goals into
sub-goals for which it easier to provide evidence. This evidence can be combined
through argumentation and judgement to provide confidence that the goals will
be met. Not surprisingly, we can use assurance cases as a guide for thinking about
decomposition of assurances for self-adaptive systems. In the previous section,
we saw how existing work in assurances for different activities of MAPE-K can
be used as evidence. In this section, we describe some of the challenges associated
with decomposing the assurances.

Decomposition ofGoals. A fundamental tenet of assurances cases is being able
to decompose goals. In goal-oriented requirements engineering [46], goals describe
the objectives that the software system should achieve. Such goals are used
in the requirements engineering process for “eliciting, elaborating, structuring,
specifying, analysing, negotiating, documenting, and modifying requirements”
[46, p. 249]. An abstract goal (i.e., the root of a goal tree) is systematically and
iteratively refined to subgoals until each subgoal (i.e., the leaves of the goal tree)
can be satisfied by a set of tasks a single agent can perform. Such an agent can be
a human or a software component. Approaches extending the principles of goal-
oriented requirements engineering have been proposed to address self-adaptive
software systems [15,44].

For functional decomposition of goals, the system is decomposed into mul-
tiple components. For each component we have to establish evidence that it
correctly realizes its tasks to achieve the subgoal assigned to it. For instance
in Znn (c.f. Sect. 2.3), we may provide evidence for the correct behaviour and
processing time of the dispatcher regardless of the size and configuration of the
server pool, that is, whether the dispatching of requests works and how much
time it takes. This evidence focuses on an individual component of the system
and the related subgoal but contributes to the assurance of the overall response
time goal of the system. Hence, functional decomposition can be exploited to
decompose assurances and establish evidence for components or subsystems.

To decide whether and how to decompose extra-functional goals, on the other
hand, is more challenging. Unlike functional goals, which can more easily be

76 B. Schmerl et al.

decomposed into somewhat independent pieces, extra-functional goals are cross
cutting with many interdependencies, for example resource usage, which is split
over many functions. Extra-functional goals may be decomposed if they are
orthogonal/independent from each other, or if the interdependencies can be man-
aged. The latter requires knowledge about how the goals affect each other and
how the goals can be balanced. Utility functions are one means to do that [17,34].
An example from the Znn case is the response time goal that may be assured
without considering the associated costs and using simulation or predictive anal-
ysis. However, this may result in over-provisioning, which is not desired. Hence,
we have to consider both concerns, response time and costs, together. The ques-
tion then arises whether each of them can be completely assured independently
and whether the resulting assurances can be composed afterwards (cf. Sect. 4.2).
The composition might require further assurances to obtain the required confi-
dence that a composition works. If two or more goals are tightly coupled with
each other, it might not be reasonable to decompose and assure each of them
individually. In such cases, we may need to keep them together in the decompo-
sition structure. In such situations assurances are not provided for leaf goals in
the goal tree but rather for a subtree. The same holds for the self-management
of Znn. Considering the requirements of performing an adaptation safely and
within a certain time (c.f. Goal 4 in Fig. 3), we may establish evidence for both
aspects individually. However, it is conceivable that executing a guaranteed safe
adaptation takes more effort and time than an ad hoc adaptation. Hence, both
requirements must be jointly handled when constructing and assuring them.

Decomposition Strategies Specific to Self-Adaptation. In the previous
section, we discussed how we might use goal decomposition to decompose assur-
ances, and in Sect. 3.2 we discussed how existing self-adaptive techniques might
be considered as evidence in a decomposition. Another way to consider self-
adaptation in the role of assurances is as a technique itself for achieving some
goal in the system, and in such cases we need to provide assurances for the
self-adaptation mechanism itself.

The performance goal of Znn is achieved by a controller automatically adapt-
ing the Znn architecture shown in Fig. 1 by scaling up and down the number of
web servers in response to the varying load. As depicted in Fig. 3, we simplify the
problem and consider only two versions of Znn, one with a smaller pool of web
servers for normal load and one with a larger pool for high load. If we install a
self-adaptation mechanism on top of Znn, that is, a controller that automatically
reconfigures the architecture of Znn by switching between the version, we must
provide assurances for the controller and the controller’s interface to Znn and the
environment. The addition of a self-adaptation strategy requires that we provide
evidence for the strategy-specific goals (c.f. Goal 4 in Fig. 3) in the argumenta-
tion structure. This calls for a further decomposition of assurances concerning
the self-adaptation mechanism. To guide this decomposition, we have identified
strategies that are specific to self-adaptive software systems.

Challenges in Composing and Decomposing Assurances 77

We propose that the decomposition of goals, either functional or extra-
functional ones, and the identification of evidence types and techniques are
guided by the reference model for self-adaptive systems depicted in Fig. 4. It
provides an architectural perspective on self-adaptive systems and is helpful to
identify architectural concerns for self-adaptation that require assurances and
that should be included in the argumentation structure.

Managing Systemmonitor

Self-adaptive software system

Managed System

Environment
Non-controllable software hardware,

network, physical context

monitor

monitor adapt

effect

1
5

3

2

4

On-line Off-line

Development
Processes

Fig. 4. Architectural reference model for self-adaptive software systems.

A managing system monitors the managed system and the environment to
make a decision about adapting the managed system if the goals are not satis-
fied or if their satisfaction steadily decreases. For instance, in the Znn example,
a controller monitors Znn to observe the current architecture and the response
time, and it monitors the network to observe the number of connected clients as
an indicator for the current load imposed on Znn. If the monitored response time
violates the performance goal, the controller decides about scaling up the web
servers and the number of web servers to be added, which is eventually trans-
lated to Znn by executing this adaptation. Based on Fig. 3, the controller would
switch to the Znn version designed for the high load. Finally, this architectural
reconfiguration of Znn that switches to the high-load version should bring back
the system into a state that fulfils the performance goal.

Consequently, besides providing assurances for the managed system such as
Znn, we have to establish assurances for the managing system. We exemplify
this with its functional goals, where we must provide convincing evidence that
the managing system

– makes a correct decision of when and how to adapt the managed system (cf.
1 in Fig. 4),

– correctly monitors the managed system 2 and the environment 4 and
that the assurances and assumptions provided for managed system and envi-
ronment are correct such that the managing system can rely on them,

78 B. Schmerl et al.

– correctly adapts the managed system 3 that in turn must change according
to this adaptation,

– correctly interacts with the development process 5 , for example, an admin-
istrator directly adapts the running Znn instance in a situation that the man-
aged system cannot handle, or an engineer tunes the adaptation strategies of
the managing system to improve the performance of the self-adaptation.

A similar exercise for the managing system’s extra-functional goals can be
guided by the same reference architecture. Using this approach, the managing
and managed systems do not have to be considered as black boxes and their
decompositions can be taken into account. We may repeat the decomposition and
refine the managing system to monitor, analyse, plan, execute, and knowledge
components as proposed by MAPE-K [38] and consequently, assurances can be
provided for the individual components rather than for whole controller.

These aspects (1 to 5) must be covered by assurance cases. For the
performance goal of Znn, evidence is required that Znn properly implements the
monitor 2 and adapt 3 interface such that the controller can rely on certain
timeliness and accuracy of monitored data and on the eventual execution of a
reconfiguration. Moreover, evidence is required that the assumption concerning
the environment 4 hold, for instance, that the controller can reliably derive
the user load on Znn from the network. Finally, evidence is needed that the
controller itself works properly 1 . For instance, a controller typically should
fulfil the properties of stability, accuracy, settling time, and overshoot [32] in
addition to maintaining the managed system in a state that fulfils the goals such
as the performance goal in the case of Znn.

Challenges. So far, we have outlined how we might use assurance cases and
the MAPE-K pattern as a framework for decomposing assurances. We now sum-
marize the challenges.

Time- and Lifecycle-related decomposition: The connection between on-line and
off-line assurances (cf. Fig. 4) raises a number of challenges. On-line techniques
are embedded in the self-adaptive system while off-line techniques work in the
development or maintenance environment of the system. Though both kinds of
techniques are used while the system is running, the distinction becomes relevant
if costly assurance techniques such as model checking cannot be used on-line and
thus have to be performed off-line. One challenge here is to understand which
evidence and goals are more suitable for run time collection and verification,
and which are more suitable earlier. For example, providing evidence through
model checking tools is difficult to do at run time because of state explosion and
computational complexity, but doing this earlier may not account for uncertainty.
In this case, we need to explore ways to parameterise the model checking so
that parts of it can be done at run time and parts at design time. But a general
challenge is how to use evidence collected before deployment to inform and make
efficient any run-time analysis. We also need to develop guidelines of how to
decompose the evidence along the time dimension.

Challenges in Composing and Decomposing Assurances 79

Matching evidence with goals: Decisions have to be made about which evidence
types and techniques should be used for the assurance of which goals, and how we
know that we have enough evidence to assure a goal. This requires knowledge
about the different evidence types, such as the level of confidence that they
provide (e.g., simulation results refer to individual traces of the system while
model checking results refer to the whole state space of the system) or the costs
of using them (e.g., model checking can be infeasible due to the problem of
state-space explosion).

Assurance additivity and independence: During decomposition of assurances,
assurance cases are mostly assumed to be global to the system, and so at the top
level are assumed to be independent and complete — conflicts are resolved with
the goal tree and rationale. For self-adaptive systems, this global assumption
will not hold if we are composing goals and systems at run time. In this case, we
need to be able to reason about assurance additivity, independence, and conflict
resolution. The identification of assurances that remain independent and can be
added together is important for composition — in this case, composition is rela-
tively straightforward. An important aspect of this challenge is to develop a set
of sufficient criteria for assurance independence. Part of this challenge may be
alleviated with strong provenance and annotations of global assumptions made
during decomposition. At the systems of systems level, the subsumption of goals
and conflicts in goals must also be identified. For example, if we have an assur-
ance case in Znn for a goal of the response time being less than 2 s, and we are
composing with an assurance for a goal of less than 5 s, is the former assurance
case sufficient?

4.2 Composition of Assurances

An orthogonal approach to decomposition is composition. While the aim of
decomposition is to make the task of gathering individual assurances simpler
via modularization, composing assurances aims to construct an argument by
assembling arguments together. To achieve composition, global system informa-
tion is required. Decomposition may remove the larger context of the system,
however it is necessary for each assurance to maintain its provenance and run-
ning context, as well as have a clear position within the argumentation structure.
As mentioned in Sect. 4.1, individual decomposed assurance cases have a close
analogy with unit tests, while composing assurances is more closely aligned with
integration and system testing. Unit tests are run without the global view of
the system, and may either over- or under-approximate system behaviour, while
integration and system tests consider the environment under which they are
run. Bate and Kelly [3] argue that to compose assurances for modular systems
the modules should align with the hardware and software components. They
also point out the need to consider trade-offs in goals which we discuss below.
However, if decomposition should be performed via goals and evidence, then we
argue that composition should follow these dimensions as well. Our discussion
below assumes that we take this view of composition.

80 B. Schmerl et al.

Types of Composition. In composition of assurances (either goal-based or
evidence-based), individual facts are aggregated to confirm that a goal holds.
Composition can be of three types (1) composing assurances from a single system
with a single set of goals, (2) composing two or more individual systems each
with their own goals (and assurance cases), or (3) composing systems of systems,
with multiple systems, multiple goals and multiple assurance units for each. In
the first type, if our argumentation structure from the original decomposition
exists, then composition can simply gather the individual assurances using the
provided argumentation structure and compose these with confidence. We focus
instead on challenges that arise due to the second and third type of composition.

When composing assurances from two different systems that work together
(type 2), each may have its own unique goals. Consider the case where we intro-
duce a second system, Zbay, to work in concert with Znn that requires a higher
security profile than the original to permit financial transactions. Zbay runs over
an https connection and has a less stringent QoS goal from the original insecure
Znn — the response time must be less than five seconds. It also has additional
goals not found in Znn, related to its security requirements. If we want to assure
that these two systems can work in coordination, we will need to compose their
assurance cases. The assurance cases for G2 and G3 from Znn and similar ones
for Zbay now have different sub-goals, and their composition depends on which
system they are assured under. If, for instance, we assure G2 under Znn and
G3 under Zbay, there is no guarantee that these will still satisfy G1 for Znn
when combined. However, this composition should suffice for Zbay and in fact,
the composition of G1 and G2 from Znn could be argued to be sufficient for the
whole system composition, if the argumentation structure can show that the http
connection is always at least as slow or slower than https. If we now consider the
context further, the dispatcher, which was previously assumed to be indepen-
dent under the Znn argumentation structure, may no longer be independent in
this larger system. It is possible that dispatching across http protocols changes
some global assumptions and a new argumentation structure may be needed.
Additionally, for the security goals, they are found only in the Zbay system, but
since Zbay now can send information through Znn, the Znn goals may need to
be revised to assure that sensitive information cannot flow from Znn to Zbay.
We may also find dependencies between systems and goals that must be added
to the argumentation structure. If, for instance, we are under https, it is possible
that another aspect of the system is disallowed (such as ftp). Arguments from
Znn that include this protocol must now be revisited in this larger context.

Composing two individual systems has its challenges, but as we allow for an
arbitrarily large number of systems, the challenges increase. In general we see
this as a systems of systems view of composition (type 3). Under this scenario, we
may have multiple variants of Znn and Zbay, such as Zmazon, Zxpedia, etc. Each
of these systems has a set of common goals, and may even share components
such as the dispatcher. Yet they each also have their own unique requirements,
working environments and constraints. To ensure that these systems can work
together, we must combine assurances across the entire system. This leads to a

Challenges in Composing and Decomposing Assurances 81

potential combinatorial explosion in the number of compositions that can occur
between systems. Not only do we now have to face the problem of combining two
assurances, we may find complex interactions between three or more assurances,
and it will become infeasible to validate all compositions. There may be depen-
dencies as well, either within the systems themselves, or ones that are global.
Unlike the type 2 constraints these may now span the entire system. To assure
systems of this type, we may need to resort to a sampling scheme (such as that
used in combinatorial testing [20]), and accept that our argumentation only pro-
vides a certain level of assurance across the system, rather than a comprehensive
one. For instance, we may argue that we know all combinations of pairs of assur-
ances can be composed, but we may not be able to guarantee that combinations
of a higher arity of assurance is still valid. Another issue that arises in systems
of systems is that of competing assurances. For instance, in Zbay and Zmazon
the need for security may be more important than the goal of a low response
time, however in Zxpedia and Znn, response time may be paramount. Some sort
of weighted utility is possible, or we may to allow for multiple solutions for a
goal and view this as a Pareto front to understand the trade-offs in time and
security goals.

One possible way to model and simplify the view of a self-adaptive soft-
ware system is as a set of features that are added and removed as the system
adapts [23,29]. Elkhodary et al. first presented the notion of using features for
directing adaptation for QoS aspects of a system [23]. Garvin et al. also sug-
gested using this view of adaptation, but from a more traditional functional
view of features [29]. Software product line engineering [23] provides many tools
that may help our reasoning and analysis, both from a goal based and from an
evidence-based view. We can then use these models to describe composition and
sampling and to guide our argumentation structure.

Challenges. In the above, we outlined some challenges particular to different
types of composition. We now summarize the challenges for composing assur-
ances in general.

Time-based Composition: The time (or the state at which an assurance is
obtained) can change the outcome of the evidence, or may change the type
of evidence to be gathered. If Znn and Zbay are implemented as services, then
the types of evidence available for composition can vary at run time, depending
on which services are currently active. For instance, the dispatch service may
have different variants and within those variants use different mechanisms. If
we assure the system under one variant of the dispatcher but later compose our
system using a different variant of the dispatcher, the original assurances may
not hold. This problem can occur in all three types of composition (1–3). This
dynamic view of composition leads to a new level of complexity and may require
a new argumentation structure; one that was not considered during decomposi-
tion.

Assurance dependencies: In related work on software testing for component-
based or configurable systems, determining which features are dependent on

82 B. Schmerl et al.

others has proven to be challenging [21]. Documentation is often lacking and
therefore this must be performed by domain experts, and/or via program analy-
sis. For assurance case composition this is even more challenging. Which strate-
gies depend on particular evidence types and how does that relate to the overall
assurance case? If a composition results in reusing evidence in multiple assur-
ances cases, how do we keep track when those goals change? How do we find the
dependencies and goals that need to be added to argumentation structures?

Evidence reuse: In non-adaptive systems, evidence may be reused to support
multiple assurance cases. The same kind of reuse is less obvious when self-
adaptation is involved. For example, if evidence for load balancing under a cer-
tain set of activated self-adaptations is collected, it may apply under a different
set of adaptations, or it may not. The larger space of potential system states
makes reusing assurances more challenging.

5 Applying Assurance Cases to Self-Adaptation

In the previous sections, we outlined how we might structure decomposition and
composition of assurances for self-adaptive systems, and highlighted some of the
challenges with each of these. In this section we describe some emerging work
in assurance cases composition and decomposition that could be applied to help
make assurance cases more useful for self-adaptive systems.

5.1 Assurance Case Decomposition and Composition Research

Safety Case Patterns. While reasoning about satisfaction of individual goals
using assurance cases is useful, a means of reusing and combining assurance
cases is required. Some studies in developing goal-based approaches aim to sup-
port the reuse and modularization of safety cases so that safety arguments for
sub-systems/components can be re-used in other contexts. The notion of safety
case patterns [33] can be applied in order to explicitly model common elements
found between various safety cases created for particular applications. Patterns
in arguments can emerge, for example, typical combinations of arguments and
accepted interpretations of specific types of evidence. These can be documented
by means of a safety pattern language. This solution promotes a structured reuse
of the safety case rationale instead of its informal material reuse.

More recently, the work by Hawkins et al. [31] has defined a safety argument
pattern catalogue in order to guide developers in structuring maintainable safety
arguments. The idea is to provide evidence for low-level claims, considering dif-
ferent levels of abstraction suitable for different stakeholders of the system. The
assumption is that as the software system moves through the development life-
cycle, there are numerous assurance considerations against which evidence must
be provided.

Such patterns could help guide the kind of evidence that needs to be collected,
or how to structure assurance arguments for particular gaols of the system.

Challenges in Composing and Decomposing Assurances 83

Modularization and Contracts. The work by Ye and Kelly [51] proposes the
use of contracts to modularize safety cases in order to capture application-specific
safety requirements, and corresponding assurance requirements derived for a
potential COTS (common-off-the-shelf) component. This contract can be used
to form the basis of a safety case module for the component. The notion of com-
positional safety case construction proposed by Kelly [36] is used for modelling
the safety case of the application separated from the assurance requirements of
the component. More generally, system safety cases are often decomposed into
sub-system safety cases to cope with their complexity. As a consequence, GSN
was extended with the notion of UML packages and “Away Goals” in order to
support the notion of modular safety case construction. Moreover, as pointed out
in [36], the need for a modular safety approach is becoming more apparent when
considering new types of modern systems that are emerging, such as systems of
systems [3]. For self-adaptive systems, the notion of contracts could be useful in
reasoning about the composition of assurance cases.

Decomposition and Composition. The support for claim decomposition and
structuring is very informal and argumentation is seldom explicit [4]. In prac-
tice, the emphasis is on communication and knowledge management of the safety
cases, with little guidance on what claim or claim decomposition should be per-
formed. Some studies are developing more rigorous approaches to claim decom-
position in order to demonstrate that the decomposition is complete, that is,
that the sub-claims demonstrate the higher claim [4]. Furthermore, the authors
highlight the importance of (i) more efficient means for modelling safety cases
since they are costly to develop, and (ii) improving safety case structuring to
provide safety case modularization, to use diverse arguments and evidence, and
to exploit the relationship between the argument structure and the architecture
of a system.

The work by Voss et al. [47] also explores the idea of modular certification
when reusing components from one system to the next, that is, when reusing
a system element, engineers can (in)formally reuse the associated safety argu-
ments of the element. This solution supports a component-based development
process and a model-based tool to specify the system’s architecture at different
layers of abstraction and it integrates the construction of the system and the
argumentation about its functional safety. Of course, increased rigour in claim
decomposition could be exploited for assuring self-adaptive systems.

5.2 Challenges Applying Assurance Cases to Self-Adaptation

This chapter has taken the position that work in assurance cases can be used to
guide the decomposition and composition of assurances for self-adaptive systems.
While we believe that this is a good approach, there are distinct challenges with
applying assurance cases to self-adaptive systems.

Uncertainty: Self-adaptive systems are often self-adaptive because they are
deployed in environments with uncertainty. This uncertainty affects the types

84 B. Schmerl et al.

of evidence that can be collected to support assurances, the ways in which the
evidence can be collected, and even the specification of the assurance case itself.
For example, goals in assurances cases need to specify the environmental assump-
tions under which they are valid but for self-adaptive systems we need some way
to make uncertainty about these assumptions first-class.

Adaptation assurances: When conditions change and the system adapts, an
assurance may describe how quickly or how well it adapts. For example, with
Znn, an increased demand may trigger the addition of a web server. An assur-
ance may state that when the per-server load exceeds a threshold, the system
adapts within two minutes by adding web servers and the per-server load falls
below the threshold within five minutes. This assurance may hold at all times,
or may be expected to hold only when the demand increases but then remains
constant.

Automatable assurance cases: As mentioned in Sect. 2.2, assurance cases rely on
human judgement to discern whether the argument and rationale actually makes
the case given the evidence. One of the aims of self-adaptation is to eliminate
or at least reduce the involvement of humans in the management of a software
system. To accomplish this, self-adaptation requires ways to computationally
reason about assurance cases, and a logic to judge whether an assurance case is
still valid, what changes must be made to it in terms of additional evidence, etc.

Adaptive assurances: As just alluded to, self-adaptation may require the assur-
ance cases themselves to adapt. For example, replacing a new component into the
system may require replacing evidence associated with that component in the
assurance case. Changing goals of the system based on evolving business contexts
will likely involve changes to the assurance cases for those goals. Automatable
assurance cases are an initial step to addressing this challenge, but approaches,
rules, and techniques for adapting the assurance cases themselves are also needed.

Assurance processes for self-adaptive software systems: One overarching chal-
lenge is the design of adequate assurances processes for self-adaptive systems.
Such a process connects the system’s goals, the architecture, and implementation
realizing the goals to the assurance cases’ argumentation structures, its strate-
gies, evidence types, and assurance techniques. This challenge requires that parts
of the design and assurance process that was previously performed off-line during
development time must move to run time and carried out on-line in the system
itself. The assurance goals of a system are dependent on a correct, efficient and
robust assurance process, which employs on-line and off-line activities to main-
tain continuous assurance support throughout the system life cycle. Currently,
such processes are not sufficiently investigated and understood.

Reassurance: If we are able to move the evaluation of assurance cases to run time,
then challenge arises in how to reassure the system when things change. Reas-
surance may need to happen when environment states, or the state of the system
itself, change. Which part of the assurances case needs to be re-evaluated? For
composition, where the composition itself is dynamic, we need ways to identify

Challenges in Composing and Decomposing Assurances 85

the smallest set of claims (goals) that have to be reassured when two systems are
composed? Which evidence needs to be re-established, and which can be reused?

6 Conclusions

We have considered the challenges associated with decomposing and composing
assurances for self-adaptive systems. While there is a large body of work in
software assurance that is beginning to address this for general software systems,
self-adaptive systems raise further inherent challenges.

We have discussed assurance cases as an approach to reasoning about com-
posing and decomposing assurances for self-adaptive systems. Assurance cases
provide a discipline for decomposing assurances in a principled way. Further-
more, there is some work related to assurance cases also addresses assurance
composition, meaning that assurance cases may also be suitable for reasoning
about composition of assurances for self-adaptive systems, and also for com-
posing assurances in self-adaptive systems of systems. We believe that applying
assurance case approaches to the problem of assuring self-adaptive systems shows
great promise.

At the same time, there are many aspects of self-adaptive systems that
present challenges to assurance case research. We provided some of these chal-
lenges in Sect. 5.2. Most of these challenges arise from the need for self-adaptive
systems to respond to changes in the environment or the requirements of the sys-
tem, and so we need ways to assess elements of assurance cases automatically,
and evolve them, at run time.

References

1. Ali, R., Griggio, A., Franzén, A., Dalpiaz, F., Giorgini, P.: Optimizing monitor-
ing requirements in self-adaptive systems. In: Bider, I., Halpin, T., Krogstie, J.,
Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) BPMDS/EMM-
SAD -2012. LNBIP, vol. 113, pp. 362–377. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31072-0 25

2. Barna, C., Shtern, M., Smit, M., Tzerpos, V., Litoiu, M.: Mitigating dos attacks
using performance model-driven adaptive algorithms. ACM Trans. Auton. Adapt.
Syst. 9(1), 3:1–3:26 (2014)

3. Bate, I., Kelly, T.: Architectural considerations in the certification of modular
systems. In: Anderson, S., Felici, M., Bologna, S. (eds.) SAFECOMP 2002. LNCS,
vol. 2434, pp. 321–333. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45732-1 31

4. Bloomfield, R., Bishop, P.: Safety and assurance cases: past, present and possible
future - an Adelard perspective. In: Dale, C., Anderson, T. (eds.) Making Systems
Safer, pp. 51–67. Springer, London (2010). https://doi.org/10.1007/978-1-84996-
086-1 4

5. Bloomfield, R., Peter, B., Jones, C., Froome, P.: ASCAD – Adelard Safety Case
Development Manual. Adelard, 3 Coborn Road, London E3 2DA, UK (1998)

6. Brun, Y., Bang, J.Y., Edwards, G., Medvidovic, N.: Self-adapting reliability in
distributed software systems. IEEE Trans. Softw. Eng. (TSE) (2015) (in press)

https://doi.org/10.1007/978-3-642-31072-0_25
https://doi.org/10.1007/978-3-642-31072-0_25
https://doi.org/10.1007/3-540-45732-1_31
https://doi.org/10.1007/3-540-45732-1_31
https://doi.org/10.1007/978-1-84996-086-1_4
https://doi.org/10.1007/978-1-84996-086-1_4

86 B. Schmerl et al.

7. Brun, Y., Edwards, G., Bang, J.Y., Medvidovic, N.: Smart redundancy for dis-
tributed computation. In: Proceedings of the 31st International Conference on
Distributed Computing Systems (ICDCS), Minneapolis, MN, USA, pp. 665–676,
June 2011, https://doi.org/10.1109/ICDCS.2011.25

8. Brun, Y., Medvidovic, N.: Fault and adversary tolerance as an emergent property
of distributed systems’ software architectures. In: Proceedings of the 2nd Inter-
national Workshop on Engineering Fault Tolerant Systems (EFTS), Dubrovnik,
Croatia, pp. 38–43, September 2007, https://doi.org/10.1145/1316550.1316557

9. Brun, Y., Medvidovic, N.: An architectural style for solving computationally inten-
sive problems on large networks. In: Proceedings of Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS), Minneapolis, MN, USA, May 2007,
https://doi.org/10.1109/SEAMS.2007.4

10. Brun, Y., Medvidovic, N.: Keeping data private while computing in the cloud. In:
Proceedings of the 5th International Conference on Cloud Computing (CLOUD),
Honolulu, HI, USA, pp. 285–294, June 2012, https://doi.org/10.1109/CLOUD.
2012.126

11. Brun, Y., Medvidovic, N.: Entrusting private computation and data to untrusted
networks. IEEE Trans. Dependable Secure Comput. (TDSC), 10(4), 225–238
(2013), https://doi.org/10.1109/TDSC.2013.13

12. Brun, Y., Reishus, D.: Path finding in the tile assembly model. Theoret. Comput.
Sci. 410(15), 1461–1472 (2009), https://doi.org/10.1016/j.tcs.2008.12.008

13. Casanova, P., Garlan, D., Schmerl, B., Abreu, R.: Diagnosing architectural run-
time failures. In: Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, 20–21 May 2013 (2013)

14. Casanova, P., Garlan, D., Schmerl, B., Abreu, R.: Diagnosing unobserved com-
ponents in self-adaptive systems. In: 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, Hyderabad, India, 2–3 June
2014 (2014)

15. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling app-
roach to develop requirements of an adaptive system with environmental uncer-
tainty. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04425-0 36

16. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research
roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9 1

17. Cheng, S.-W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the
presence of multiple objectives. In: Workshop on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), Shanghai, China, 21–22 May 2006 (2006)

18. Cheng, S.-W., Garlan, D., Schmerl, B.: Evaluating the effectiveness of the rainbow
self-adaptive system. In: Workshop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2009), Vancouver, BC, Canada, May 2009

19. Cheng, S.-W., Garlan, D., Schmerl, B., Sousa, J.A.P., Spitznagel, B., Steenkiste,
P.: Using architectural style as a basis for self-repair. In: Bosch, J., Gentleman, M.,
Hofmeister, C., Kuusela, J. (eds.) Proceedings of the 3rd Working IEEE/IFIP Con-
ference on Software Architecture, 25–31 August 2002, pp. 45–59. Kluwer Academic
Publishers (2002)

20. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Trans. Software Eng.
23(7), 437–444 (1997)

https://doi.org/10.1109/ICDCS.2011.25
https://doi.org/10.1145/1316550.1316557
https://doi.org/10.1109/SEAMS.2007.4
https://doi.org/10.1109/CLOUD.2012.126
https://doi.org/10.1109/CLOUD.2012.126
https://doi.org/10.1109/TDSC.2013.13
https://doi.org/10.1016/j.tcs.2008.12.008
https://doi.org/10.1007/978-3-642-04425-0_36
https://doi.org/10.1007/978-3-642-02161-9_1

Challenges in Composing and Decomposing Assurances 87

21. Cohen, M.B., Dwyer, M.B., Shi, J.: Constructing interaction test suites for highly-
configurable systems in the presence of constraints: a greedy approach. IEEE Trans.
Software Eng. 34(5), 633–650 (2008)

22. Cordy, M., Classen, A., Heymans, P., Legay, A., Schobbens, P.-Y.: Model checking
adaptive software with featured transition systems. In: Cámara, J., de Lemos, R.,
Ghezzi, C., Lopes, A. (eds.) Assurances for Self-Adaptive Systems. LNCS, vol.
7740, pp. 1–29. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36249-1 1

23. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: a framework for engineering
self-tuning self-adaptive software systems. In: Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2010, pp. 7–16 (2010)

24. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model
checking. In: 33rd International Conference on Software Engineering (ICSE), pp.
341–350, May 2011

25. Filieri, A., Tamburrelli, G.: Probabilistic verification at runtime for self-adaptive
systems. In: Cámara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds.) Assurances for
Self-Adaptive Systems. LNCS, vol. 7740, pp. 30–59. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36249-1 2

26. Franco, J., Correia, F., Barbosa, R., Zenha-Rela, M., Schmerl, B., Garlan, D.:
Improving self-adaptation through software architecture-based stochastic model-
ing. J. Syst. Softw. 42(1), 75–99 (2016)

27. Fredericks, E.M., DeVries, B., Cheng, B.H.C.: Towards run-time adaptation of test
cases for self-adaptive systems in the face of uncertainty. In: Proceedings of the 9th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2014, pp. 17–26. ACM, New York (2014)

28. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow:
architecture-based self adaptation with reusable infrastructure. IEEE Comput.
37(10), October 2004

29. Garvin, B.J., Cohen, M.B., Dwyer, M.B.: Failure avoidance in configurable systems
through feature locality. In: Cámara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds.)
Assurances for Self-Adaptive Systems. LNCS, vol. 7740, pp. 266–296. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36249-1 10

30. Goal Structuring Notation (GSN) community standard version 1, November 2011,
http://goalstructingnotation.info

31. Hawkins, R., Clegg, K., Alexander, R., Kelly, T.: Using a software safety argu-
ment pattern catalogue: two case studies. In: Flammini, F., Bologna, S., Vittorini,
V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 185–198. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24270-0 14

32. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. Wiley, Chichester (2004)

33. High, K.M., Kelly, T.P., Mcdermid, J.A.: Safety case construction and reuse using
patterns. In: 16th International Conference on Computer Safety and Reliability,
SAFECOMP 1997, pp. 55–69. Springer, London (1997). https://doi.org/10.1007/
978-1-4471-0997-6 5

34. Huber, N., Hoorn, A., Koziolek, A., Brosig, F., Kounev, S.: Modeling run-time
adaptation at the system architecture level in dynamic service-oriented environ-
ments. SOCA 8(1), 73–89 (2014)

35. Jennings, N.R.: An agent-based approach for building complex software systems.
Commun. ACM 44(4), 35–41 (2001)

https://doi.org/10.1007/978-3-642-36249-1_1
https://doi.org/10.1007/978-3-642-36249-1_1
https://doi.org/10.1007/978-3-642-36249-1_2
https://doi.org/10.1007/978-3-642-36249-1_10
http://goalstructingnotation.info
https://doi.org/10.1007/978-3-642-24270-0_14
https://doi.org/10.1007/978-1-4471-0997-6_5
https://doi.org/10.1007/978-1-4471-0997-6_5

88 B. Schmerl et al.

36. Kelly, P.: Managing complex safety cases. In: Redmill, F., Anderson, T. (eds.)
Current Issues in Safety-Critical Systems, pp. 99–115. Springer, London (2003),
https://doi.org/10.1007/978-1-4471-0653-1 6

37. Kelly, T., Weaver, R.: The goal structuring notation - a safety argument notation.
In: Proceedings of Dependable Systems and Networks 2004 Workshop on Assurance
Cases (2004)

38. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

39. Litoiu, M.: A performance analysis method for autonomic computing systems.
ACM Trans. Auton. Adapt. Syst. 2(1), March 2007

40. Püschel, G., Götz, S., Wilke, C., Aßmann, U.: Towards systematic model-based
testing of self-adaptive software. In: ADAPTIVE 2013, The Fifth International
Conference on Adaptive and Self-Adaptive Systems and Applications, pp. 65–70
(2013)

41. Puviani, M., Cabri, G., Zambonelli, F.: A taxonomy of architectural patterns for
self-adaptive systems. In: International C* Conference on Computer Science and
Software Engineering, C3S2E13, Porto, Portugal, pp. 77–85, July 2013

42. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2) (2009)

43. Schmerl, B., Cámara, J., Gennari, J., Garlan, D., Casanova, P., Moreno, G.A.,
Glazier, T.J., Barnes, J.M.: Architecture-based self-protection: composing and rea-
soning about denial-of-service mitigations. In: HotSoS 2014: 2014 Symposium and
Bootcamp on the Science of Security, Raleigh, NC, USA, 8–9 April 2014 (2014)

44. Silva Souza, V.E., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness
requirements for adaptive systems. In: Proceeding of the 6th International Sympo-
sium on Software Engineering for Adaptive and Self-managing Systems (SEAMS
2011), pp. 60–69. ACM, New York (2011)

45. Tamura, G., et al.: Towards practical runtime verification and validation of self-
adaptive software systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M.
(eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp.
108–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-
5 5

46. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of the Fifth IEEE International Symposium on Requirements Engi-
neering, RE 2001, pp. 249–262. IEEE Computer Society, Washington, DC (2001)

47. Voss, S., Schätz, B., Khalil, M., Carlan, C.: Towards modular certification using
integrated model-based safety cases. In: Proceedings of VeriSure: Verification and
Assurance (2013)

48. Watanabe, T., Yonezawa, A.: Reflection in an object-oriented concurrent language.
In: ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications, pp. 306–315 (1988)

49. Weyns, D., Iftikhar, M.U., de la Iglesia, D.G., Ahmad, T.: A survey of formal
methods in self-adaptive systems. In: Proceedings of the Fifth International C*
Conference on Computer Science and Software Engineering, C3S2E 2012, pp. 67–
79. ACM, New York (2012)

https://doi.org/10.1007/978-1-4471-0653-1_6
https://doi.org/10.1007/978-3-642-35813-5_5
https://doi.org/10.1007/978-3-642-35813-5_5

Challenges in Composing and Decomposing Assurances 89

50. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5 4

51. Ye, F., Kelly, T.: Contract-based justification for cots component within safety
critical applications. In: Cant, T. (ed.) Ninth Australian Workshop on Safety-
Related Programmable Systems (SCS 2004). CRPIT, vol. 47, pp. 13–22. ACS,
Brisbane (2004)

https://doi.org/10.1007/978-3-642-35813-5_4

	Preface
	Contents
	Research Challenges
	Software Engineering for Self-Adaptive Systems: Research Challenges in the Provision of Assurances
	1 Introduction
	2 Perpetual Assurances
	2.1 Uncertainty as a Key Challenge for Perpetual Assurances
	2.2 Requirements for Solutions that Realize Perpetual Assurances
	2.3 Approaches to Perpetual Assurances
	2.4 Mechanisms for Turning Perpetual Assurances into Reality
	2.5 Benchmark Criteria for Perpetual Assurances
	2.6 Research Challenges

	3 Composing and Decomposing Assurances
	3.1 Assurances in Self-adaptive Systems
	3.2 Research Challenges

	4 Control Theory and Assurances
	4.1 Feedback Control
	4.2 Adaptive and Hierarchical Control
	4.3 Control Theory Properties
	4.4 Research Challenges

	5 Summary and Conclusions
	References

	Perpetual Assurances for Self-Adaptive Systems
	Abstract
	1 Introduction
	2 Key Challenges for Perpetual Assurances
	3 Requirements for Solutions to Realize Perpetual Assurances
	4 Approaches to Realize Perpetual Assurances
	4.1 Human-Driven Approaches
	4.2 System-Driven Approaches
	4.3 Hybrid Approaches

	5 Mechanisms to Make Perpetual Assurances Working
	5.1 Quality Properties for Perpetual Assurances Approaches
	5.2 Decomposition Mechanisms for Perpetual Assurances Approaches
	5.2.1 Time Decomposition
	5.2.2 Space Decomposition
	5.2.3 Discussion

	5.3 Model-Based Mechanisms for Perpetual Assurances Approaches

	6 Benchmark Criteria for Perpetual Assurances
	6.1 Capabilities of Approaches to Provide Perpetual Assurances
	6.2 Basis of Assurance Benchmarking
	6.3 Stringency of Perpetual Assurances
	6.4 Performance of Approaches to Provide Perpetual Assurances

	7 Example Case
	7.1 Domain and General Adaptation Scenarios
	7.2 Tele Assistance System
	7.3 Adaptation Scenarios and Benchmark Criteria
	7.4 Concrete Example Scenario

	8 Conclusions
	References

	Challenges in Composing and Decomposing Assurances for Self-Adaptive Systems
	1 Introduction
	2 Preliminaries
	2.1 Self-Adaptive Systems
	2.2 Assurance Cases
	2.3 Illustrative Example

	3 Assurance Decomposition and Composition in Self-Adaptive Systems
	3.1 Evidence Types for Use in Assurance Case Decomposition
	3.2 Assurance Composition Based on the MAPE-K Loop

	4 Decomposing and Composing Assurances to Self-Adaptation
	4.1 Decomposition of Assurances
	4.2 Composition of Assurances

	5 Applying Assurance Cases to Self-Adaptation
	5.1 Assurance Case Decomposition and Composition Research
	5.2 Challenges Applying Assurance Cases to Self-Adaptation

	6 Conclusions
	References

	What Can Control Theory Teach Us About Assurances in Self-Adaptive Software Systems?
	1 Introduction
	2 Self-Adaptive Software (SAS) Systems
	3 Feedback Control
	3.1 Correspondences Between Feedback Control and MAPE-K

	4 Adaptive and Hierarchical Control
	5 Control Theory Applied to Self Adaptive Software - An Overview
	5.1 The Open Loop Model
	5.2 The Closed Loop Model
	5.3 Feedback Control Behavior

	6 Assurances
	6.1 Classic Control Strategies
	6.2 Control Theory to the Rescue of the MAPE-K Loop
	6.3 Properties of the Open Loop Model
	6.4 Complex Open SAS and Model Composition
	6.5 Properties of the Closed Loop Model
	6.6 Open Questions

	7 Assurance Challenges for Self-Adaptive Software
	7.1 Modeling Challenges
	7.2 Composition and Incrementality: V&V Tasks
	7.3 Timing Issues and Lags
	7.4 Challenges in Control Strategies Design

	8 Conclusions
	References

	Evaluation
	MCaaS: Model Checking in the Cloud for Assurances of Adaptive Systems
	1 Introduction
	2 Motivating Example
	3 MCaaS: Model Checking as a Service
	3.1 MCaaS Overview
	3.2 MCaaS Client-Side Components
	3.3 MCaaS Provider-Side Components
	3.4 Resource Prediction

	4 MCaaS in Practice
	4.1 MCaaS Implementation
	4.2 Accuracy of Resource Prediction
	4.3 Discussion

	5 Related Work
	6 Conclusion and Outlook
	References

	Analyzing Self-Adaptation Via Model Checking of Stochastic Games
	1 Introduction
	2 Background and Related Work
	2.1 Fuzzy Sets and Possibility Theory
	2.2 Probability Theory
	2.3 Probability and Game Theory
	2.4 Probabilistic Model Checking of Stochastic Multiplayer Games

	3 Analysis of Self-Adaptation Via Model Checking of Stochastic Multiplayer Games
	3.1 Model Specification
	3.2 Strategy Synthesis

	4 Applications
	4.1 Self-protecting Systems
	4.2 Latency-Aware Proactive Adaptation
	4.3 Human-in-the-Loop Adaptation

	5 Conclusions and Future Work
	References

	An Approach for Isolated Testing of Self-Organization Algorithms
	1 Introduction
	2 Case Study: Self-Organized Creation of Virtual Power Plants in Smart Grids
	3 The Corridor Enforcing Infrastructure (CEI) for Testing Self-Organizing, Adaptive Systems
	4 A Framework for Isolated Testing of Self-Organization Algorithms (IsoTeSO)
	4.1 Test Model of the Framework IsoTeSO
	4.2 Test Suite Generator Component of IsoTeSO
	4.3 Execution Component of IsoTeSO
	4.4 Monitoring and Evaluation Component of IsoTeSO

	5 Tested Self-Organization Algorithms
	5.1 A Decentralized Algorithm for Partitioning Multi-agent Systems
	5.2 A Particle Swarm Optimizer for Partitioning Multi-agent Systems

	6 Evaluation
	6.1 Fault Injection
	6.2 Test Execution
	6.3 Evaluation Results

	7 Related Work
	8 Conclusion and Future Work
	References

	Using Runtime Quantitative Verification to Provide Assurance Evidence for Self-Adaptive Software
	1 Introduction
	2 Overview
	2.1 Quantitative Verification
	2.2 Runtime Quantitative Verification

	3 Recent Advances
	3.1 Efficient Runtime Quantitative Verification
	3.2 Learning Probabilistic Models

	4 Applications
	4.1 Self-Verifying Service-Based Systems
	4.2 Dynamic Management of Cloud Computing Infrastructure

	5 Summary and Research Challenges
	References

	Integration and Coordination
	Contracts-Based Control Integration into Software Systems
	1 Introduction
	2 Adaptation Scenario
	3 Feedback Control Definition Language in a Nutshell
	3.1 Modeling Feedback Control Loops
	3.2 Illustration
	3.3 Modeling Support

	4 Adaptive Element Contracts
	4.1 Interaction Contracts
	4.2 Behavioral Contracts
	4.3 Interaction Invariants
	4.4 Structural Invariants

	5 Failure Handling
	5.1 Failures and Exceptions
	5.2 Exception Handling
	5.3 Supervision Strategies

	6 Assessment
	6.1 Modeling with Contracts
	6.2 Limitations
	6.3 Discussion

	7 Related Work
	7.1 Interaction Specification
	7.2 Component Contracts
	7.3 Self-Adaptive Software Systems Engineering

	8 Conclusion
	References

	Synthesis of Distributed and Adaptable Coordinators to Enable Choreography Evolution
	1 Introduction
	2 Running Example
	3 Method Description
	4 Dealing with Choreography Evolution
	5 Method at Work
	6 Related Work
	7 Conclusions and Future Work
	References

	Models for the Consistent Interaction of Adaptations in Self-Adaptive Systems
	1 Introduction
	2 Background
	2.1 Case Study: Smart-Home Systems
	2.2 Consistency Assurance Requirements

	3 Approaches for Consistency Management
	3.1 Formal Approaches
	3.2 Architectural Modeling Approaches
	3.3 Rule-Based Approaches
	3.4 Transition System Approaches

	4 Analysis and Challenges of Consistency Management
	4.1 Analysis of Consistency Assurance Models
	4.2 Challenges in Self-adaptation Consistency

	5 Conclusion
	References

	Feedback Control as MAPE-K Loop in Autonomic Computing
	1 Feedback Loops in Computing Systems
	1.1 Adaptive and Reconfigurable Computing Systems
	1.2 Autonomic Computing
	1.3 Need for Control
	1.4 Outline

	2 Continuous Control for Autonomic Computing
	2.1 Brief Basics of Continuous Control
	2.2 The MAPE-K Loop as a Continuous Control Loop
	2.3 Continuous Feedback Computing
	2.4 Basic Control
	2.5 Advanced Modeling and Control

	3 Discrete Control for Autonomic Computing
	3.1 Brief Basics of Supervisory Control of Discrete Event Systems
	3.2 The MAPE-K Loop as a Discrete Supervisory Control Loop
	3.3 Discrete Feedback Computing

	4 Case Studies
	4.1 Video Decoding and DVFS
	4.2 Server Provisioning
	4.3 Coordination of Multiple Autonomic Administration Loops

	5 Conclusions and Perspectives
	References

	Reference Architectures and Platforms
	An Extended Description of MORPH: A Reference Architecture for Configuration and Behaviour Self-Adaptation
	1 Introduction
	2 MORPH: A Reference Architecture for Configuration and Behaviour Self-Adaptation
	2.1 Target System
	2.2 Common Knowledge Repository
	2.3 Goal Management Layer
	2.4 Strategy Management Layer
	2.5 Strategy Enactor
	2.6 An Integrating Scenario

	3 Relation to Existing Systems and Architectures
	3.1 RAINBOW DBLP:journalsspscomputerspsGarlanCHSS04
	3.2 PLASMA Tajalli:2010:PPL:1858996.1859092
	3.3 Three Layer Conceptual Model DBLP:confspsicsespsKramerM07

	4 Prior Experience
	5 Related Work
	6 Conclusions
	References

	MOSES: A Platform for Experimenting with QoS-Driven Self-Adaptation Policies for Service Oriented Systems
	1 Introduction
	2 MOSES Framework
	2.1 Problem Space Characterization
	2.2 System Model
	2.3 Benchmarking Criteria

	3 MOSES High-Level Architecture
	4 MOSES Prototype
	4.1 MOSES Modules
	4.2 MOSES Extensions
	4.3 MOSES Overheads
	4.4 MOSES Evaluation Tool

	5 Related Work
	6 Conclusions
	References

	Author Index

