
RESE ARCH FE ATURE

COMPUTER 62 Published by the IEEE Computer Society 0018-9162/11/$26.00 © 2011 IEEE

the rest of the system and reuse it. They are thus forced to
develop a new system from scratch.

The use of common robotics software libraries, such
as Player and CLARAty, only partially alleviates this prob-
lem. Although these libraries consist of robotics-specific
middleware that provides a low-level robot framework and
helps with specific advanced features such as distributed
communication and code mobility, the existing solutions
provide no guidance or support for faithfully preserving the
design-time structure of robotics systems.

Furthermore, relying on a given library results in appli-
cations that aren’t easily ported to robot platforms that do
not already support the library. Likewise, engineers must
devise solutions for dealing with requirements (such as the
dynamic loading of components) that the chosen technol-
ogy does not natively support.

Recent approaches have adopted an explicit software
engineering perspective for building robotics systems,

R obotics systems exhibit characteristics that argue
for a software engineering focus, including

•	 a	high	degree	of	heterogeneity	among	constitu-
 ent subsystems,
	 •	 strict	operational	requirements	dictated	by	real-
 time interactions with the physical world, and
	 •	 system	complexity	that	extends	beyond	a	single	
 engineer’s ability to grasp.

In fact, developers have increasingly applied software en-
gineering to robotics systems, as reflected in a recent special
issue of IEEE Robotics and Automation1 and in the formation
of the Journal of Software Engineering and Robotics.2

Despite these developments, it is still common for an
engineering team to develop the decision-making and con-
trol apparatus of a robotics system from scratch, only to
discover that it is too difficult to separate this software from

RoboPrism, a framework that supports software-architecture-based de-
velopment of robotic systems, is accessible to nonexperts in robotics,
deals effectively with heterogeneity in distributed and mobile robotics
systems, and facilitates adaptation in complex, dynamic environments.

Nenad Medvidovic, Hossein Tajalli, Joshua Garcia, and Ivo Krka
University of Southern California

Yuriy Brun, University of Washington

George Edwards, Blue Cell Software

Engineering
Heterogeneous
Robotics Systems:
A Software-
Architecture-
Based Approach

63MAY 2011

resulting in reusable design and implementation frame-
works. However, these approaches tend to neglect critical
software engineering issues, including

•	 exploration of the design space and of the effective
software design solutions within that space, needed
both for the initial system design and subsequent dy-
namic runtime adaptations;

•	 modeling the distributed software-intensive system
that is deployed on a set of robot (and possibly tra-
ditional) platforms as opposed to modeling robotic
algorithms;

•	 analysis of the system models for key properties before
constructing and deploying the system and during
dynamic adaptations;

•	 traceability of the design-time artifacts, such as com-
ponents and connectors to implementation constructs;
and

•	 support for heterogeneous development and deploy-
ment platforms.

Our approach aims to remedy these shortcomings. The
basis of this work is software architecture,3 a set of prin-
cipal design decisions about a software-intensive system
embodied in the system’s components (operational enti-
ties that perform computation), connectors (entities that
facilitate interaction and coordination among components),
and configurations (assemblies of components and connec-
tors into system-specific topologies). Our approach uses
a robotics system’s architectural basis to address the five
problem areas.

ROBOTICS THROUGH THE PRISM
OF SOFTWARE ARCHITECTURE

We propose a novel architectural style that supports
guided exploration of design alternatives for a dynamically
adaptive robotic system and uses a rigorous system model-
ing and analysis framework. It also uses implementation
and deployment middleware with the explicit architecture
traceability support that’s necessary for heterogeneous
settings. In the process, our work can make the develop-
ment of robotics software more accessible to nonexperts in
robotics, reduce the time and effort required to create and
maintain robotics software, and improve the exchange of
design solutions among robotics engineers.

Our approach to engineering robotics software adapts
and applies three important software architecture concepts:3

•	 architectural design abstractions, enabling the creation
of reusable, adaptive, and hierarchical components
and systems;

•	 architectural modeling and analysis, allowing early,
integrated, and continuous (re)evaluation of system
behaviors and properties; and

•	 architectural middleware, permitting system imple-
mentation, deployment, monitoring, and runtime
(self-)adaptation in highly dynamic, mobile, and het-
erogeneous environments.

The “Scenario for a Heterogeneous Robotics System”
sidebar illustrates a typical multirobot application scenario
that calls for a software engineering approach.

Design abstractions
A significant focus of software engineering research has

been to codify design abstractions, which engineers use to
represent and reason about complex systems at a high level.
To this end, software architecture researchers have devel-
oped a canonical set of architectural design constructs:
components, connectors, communication ports, interfaces
(or services), events, and configurations. Furthermore, the
uses of these constructs, prescribed via design heuristics
or constraints, result in architectural styles (such as client-
server or peer to peer) that are key design principles in
software engineering. These constructs and principles have
been highly useful in practice.

In traditional software, layering implies that components
at a given layer invoke the services of components at the
layer below. In contrast, components at a given layer in the
adaptive-layered style monitor, manage, and adapt compo-
nents at the layer below.4

The bottom layer in an adaptive-layered system is the
application layer. Components in this layer implement
functionality that achieves the application goals. An adaptive-
layered architecture can have an arbitrary number of meta-
layers. Components in these layers—collectors, analyzers,
and admins—are designed to handle operations that deal
with monitoring, analysis, and adaptation. Collectors moni-
tor lower-layer components, analyzers evaluate adaptation
policies or plans based on monitored data, and admins
perform adaptations. This approach ensures the separation
of application-level from metalevel functionality, while al-
lowing the system a high degree of autonomy.

We used an adaptive-layered style to realize different
adaptive software systems.4 In recent work, we leveraged
this approach to design the Plan-Based Layered Architec-
ture for Software Model-Driven Adaptation (PLASMA).5 As
Figure 1 shows, PLASMA employs three adaptive layers.
Application-level components reside in the bottom layer.
The middle layer—called the adaptation layer—monitors,

Implementation and deployment
middleware provides the explicit
architecture traceability support that’s
necessary for heterogeneous settings.

RESE ARCH FE ATURE

COMPUTER 64

First, we use architecture models specified in the Soft-
ware Architecture Description and Evaluation Language
(SADEL)6 to automatically generate models needed for
planning. A SADEL model specifying the functional in-
terfaces of application components helps determine the
actions available to the system and the effects of those ac-
tions on the environment. A SADEL model specifying the
management interfaces of components (such as deploy,
suspend, connect, and so on) helps determine how the
adaptation layer can manipulate components to achieve
a goal.

Second, we implemented tools that let engineers experi-
ment with different

•	 system design decisions with respect to nonfunctional
properties,

•	 policies for triggering dynamic replanning, and
•	 options for redeploying software components.

These tools are extensions to the Extensible Tool-
Chain for Evaluation of Architectural Models (XTEAM)
modeling and analysis toolset.7 XTEAM provides an ed-
iting environment for specifying architecture models,

manages, and adapts components in the application layer.
The top layer (planning) manages the adaptation layer and
the generation of plans based on user-supplied goals and
component specifications. The planning layer defines both
the target architecture for the application layer (in the ad-
aptation plan) and the actions for the application layer to
carry out (in the application plan). The planning layer can
respond to changing system requirements or operational
environments by regenerating plans.

This three-layer architecture offers a high degree of
autonomy and enforces a clear separation of concerns,
whereby each layer provides a different form of adaptation
capability. To use the adaptation capabilities, an architect
must provide an architectural description of the system
components and application goals. Alternatively, an archi-
tect can use only the application layer when developing a
nonadaptive system.

Modeling and analysis
Our approach to engineering robotics software em-

ploys architectural models and analyses to inform and
direct design decisions related to dynamic planning and
adaptation.

SCENARIO FOR A HETEROGENEOUS ROBOTICS SYSTEM

C onsider the following scenario. A convoy of mobile robots must
assemble autonomously and follow a leader robot along a pre-

specified path given as a series of waypoints, as Figure A shows.
These robots collect and process data from onboard sensors and
stationary sensor nodes deployed at various locations within the
environment. As they traverse the path, the robots encounter sev-
eral base stations, which can assess the robots’ state, allow a robot
to dock and recharge its battery, transfer data to and from the
robot, and even release software updates to the robot.

Robots can collaborate by exchanging data as well as computa-
tional components (such as mobile code). They can also run
onboard analyses to track their own health. For example, a robot
with a depleted battery can minimize its remote communication or
its onboard computation. Robots also need to adapt to changing
environmental conditions, such as GPS signal loss or low visibility.
Finally, the mission’s goal might change at runtime from, for exam-
ple, following the leader to mapping an unknown terrain. Overall,
the robots, sensors, and base stations are a distributed, decentral-
ized, and heterogeneous computing environment that must be
capable of dynamic adaptation.

Such a scenario involves several technical challenges; some—
such as developing effective algorithms to achieve the robot-
following behavior—are clearly robotics specific. However, we
argue that a majority of the remaining technical challenges fall
within software engineering, and that software engineering pro-
vides the appropriate abstractions, methods, techniques, and tools
to address such problems. This position has, in fact, been increas-
ingly recognized by researchers who have tried to construct robotic
systems using model-driven development and reusable domain-
specific middleware platforms. In fact, several software engineering
researchers have recently targeted their techniques toward dynam-
ically adaptive robotics systems.1-3

References
1. J.C. Georgas and R.N. Taylor, “Policy-Based Self-Adaptive Archi-

tectures: A Feasibility Study in the Robotics Domain,” Proc.
2008 Int’l Workshop Software Eng. for Adaptive and Self-Manag-
ing Systems (SEAMS 08), ACM Press, 2008, pp. 105-112.

2. D. Sykes et al., “From Goals to Components: A Combined
Approach to Self-Management,” Proc. 2008 Int’l Workshop Soft-
ware Eng. for Adaptive and Self-Managing Systems (SEAMS 08),
ACM Press, 2008, pp. 1-8.

3. H. Tajalli et al., “PLASMA: A Plan-Based Layered Architecture for
Software Model-Driven Adaptation,” Proc. 25th IEEE/ACM Int’l
Conf. Automated Software Eng. (ASE 10), IEEE CS Press, 2010,
pp. 467-476.

Figure A. Convoy of four robots following a leader. The red
robot leaves the group to charge its battery at a base station.

65MAY 2011

Middleware
The existing robotics libraries and frameworks, al-

though useful in many settings, are not always effective
middleware platforms for developing robot-based soft-
ware systems. This is particularly the case for systems
distributed across multiple, heterogeneous platforms.
Instead, we have developed and modified a layered
middleware solution, RoboPrism, that alleviates these
shortcomings by

•	 providing the necessary low-level abstractions for
interfacing with the underlying operating system, net-
work, and hardware;

•	 incorporating different robotics libraries, as
appropriate;

•	 implementing software systems in terms of constructs
(component, connector, event, port, style, and so on)
that directly mirror architectural-design-level concepts;

a simulation generator for generating a discrete-event
simulation of a system, and a code generator. Developers
use the discrete-event simulation to observe the system’s
dynamic behavior under different operational conditions,
assumptions, and constraints. XTEAM natively includes
facilities for

•	 representing a software system architecture’s struc-
ture and behavior in a formal model;

•	 attaching properties to model elements to capture pa-
rameters needed for various analyses; and

•	 analyzing simulations generated from models with re-
spect to performance, reliability, and energy efficiency.

Engineers can use XTEAM to determine the impact of
different replanning and redeployment strategies and to
establish varying policies on system performance, reli-
ability, and power efficiency.

Figure 1. PLASMA adaptive-layered architecture.

ADL model
parser

ADL model
parser

Application
problem

Application layer
ADL models

Adaptation layer
ADL models

Ap
pl

ica
tio

n
la

ye
r

Ad
ap

ta
tio

n
la

ye
r

Pl
an

ni
ng

la
ye

r

Adaptation plannerApplication planner

Collector
(sense)

Analyzer
(compute)

Adaptation
analyzer

(compute)

Admin
(control)

Admin
(control)

Collector
(sense)

Sensor
(sense)

Executor
(compute)

Loader (control)

Locker (control)

Application
component

Collector Analyzer Admin
Key: Event

Reference
Adaptable

entity

Action
req

Arch
state

Arch state

Domain
state

Action req

Action req

Action req

Adaptation domain
description

Application domain
description

Adaptation layer
 architecture

Adaptation
problem

RESE ARCH FE ATURE

COMPUTER 66

Using the RoboPrism platform yields several important
benefits. First, systems designed according to RoboPrism
insulate application software developers from reliance on
the underlying robotics libraries, if any: the architectural
middleware layer exports a single interface to application
developers.

Second, RoboPrism allows the implementation of
applications in multiple programming languages: the
architecture construct bounds an address space, while
specialized first-class connectors carry out interaction
across address spaces.

Third, RoboPrism provides meta-architectures, which
contain specialized metacomponents (admin, collector,
and analyzer) that enable adaptive-layered applications. In
such applications, components on each host are separated
into distinct Prism-MW meta-architectures corresponding
to each layer. Separating layers into distinct architec-
tures enforces and guarantees the following architectural
constraints:

•	 components in different layers only interact through
prescribed mechanisms, and

•	 each meta-architecture only manages and adapts the
architecture in the layer immediately below it.

•	 providing an extensible collection of advanced, meta-
level services, such as resource discovery or dynamic
replanning and self-adaptation components;

•	 enabling the management and adaptation of the meta-
level components and services to provide an adaptive
layered system; and

•	 achieving the preceding without imposing unaccept-
able resource costs (in terms of memory, CPU, or
network) on the resulting systems.

The resulting middleware is an adaptation of the
Prism-MW middleware platform (http://sunset.usc.
edu/~softarch/Prism) developed for embedded systems.
Prism-MW focuses primarily on the architectural middle-
ware layer in Figure 2. It relies on substrates (the virtual
machine layer in Figure 2), such as the JVM for the Java
version. Extensive measurements indicate that Prism-MW
introduces less than 5 percent overhead for advanced
services (deployment, mobility, disconnected operation,
and monitoring),8 which is acceptable for the architec-
tural traceability that benefits analysis, maintenance,
and reuse. Furthermore, providing these additional ar-
chitectural abstractions does not impose a noticeable
performance penalty.8

Figure 2. RoboPrism, a layered architectural middleware platform. Researchers have successfully integrated different robotics librar-
ies within RoboPrism’s virtual machine layer.

Hardware

Semaphore Mutex

. . .

. . .

Component Connector Architecture Event Port

Scheduler Dispatcher Handler

. . .

Deployment Collector Analyzer Admin…

Operating
system

Virtual
machine

Advanced
services

Architectural
middleware

Resource
discovery

Style
constraints

Sca�old

File
factory

Socket
abstraction

Robotics
library

(for example,
Player,

CLARAty)

Thread
factory

Mutex
factory

Semaphore
factory

Event
factory

Device
abstraction

Semaphore
abstraction

Mutex
abstraction

Thread
abstraction

Native
threads

File
system

Process
management

Socket
library

DLL
support

System call
interface

I/O
management

Device
drivers

67MAY 2011

bar provides links to websites providing more information
about these tools.

Environment exploration scenario
Our initial scenario involved exploring and mapping an

unknown environment with randomly placed obstacles, as
Figure 3 shows. We designed, modeled, and implemented
this scenario using the Java version of RoboPrism. Five
teams of two or three graduate students worked on this
scenario during a 10-week, two-part project. Only one stu-
dent had prior robotics or embedded-systems experience;
four other students had previously been exposed to Prism-
MW, the precursor to RoboPrism. The project was initiated
before, but completed after, we obtained the iRobots. The

project’s objective was to investigate whether an ex-
plicit focus on software architecture and the use of
architectural middleware could

•	 reduce	the	initial	development	effort	and	sub-
 sequent modification of a robotics system for non-
 experts in robotics,
	•	 facilitate	traceability	(that	is,	preserve	the	designed	
 architecture in the implementation),
	•	 enhance	exchange	of	design	solutions,	and
	•	 alleviate	heterogeneity	challenges.

The project’s first part involved developing a simu-
lated environment exploration system, in which the
robots were “virtual”—simulated in a GUI. The virtual
robots had to run on a host other than the host from
which they were controlled. Like real robots, they had
to move in the requested direction and report any
obstacles found so that the students could construct
a map of the environment.

The project’s second part involved replacing the
virtual robots with the iRobots. Students had to do
so without altering the application’s architecture: all
changes to the components running on the (initially
virtual and then real) robots had to be contained en-
tirely inside the components.

Moreover, this separation insulates components in each
layer from failures and adaptations in other layers, thus
supporting a high degree of autonomy.

EXPERIENCE
We have investigated these concepts in the context of

two scenarios using the iRobot Create platform. Our inves-
tigations also used the eBox3854 embedded PC running
Linux, laptops running Windows XP and Vista, and Compaq
iPAQ PDAs running Linux and Windows CE.

To dock iRobots and charge their batteries during
scenario execution, we used the iRobot Home Bases.
Creative Webcam and Logitech QuickCam cameras (con-
trolled via the Java Media Framework, or JMF) provided
visual information that enabled robot following, and Sun-
Spot Java-based sensors provided the ability to manually
control robot movement through accelerometers.

We relied on three options for controlling the iRobots:
the Player and Create Open Interface libraries, both of
which are in C, as well as our custom iRobot driver in Java.
This, in turn, let us use two versions of RoboPrism: the
Java version running on JamVM and the GNU C++ version
running on a virtual machine developed by Bosch RTC.
The 2.0.5 version of Player is compatible with JavaClient2,
offering two options for interacting with iRobots for each
version of RoboPrism. This highly heterogeneous environ-
ment has proven appropriate for validating the benefits of
our approach. The “Hardware and Software Sources” side-

Figure 3. Two remote-controlled robots map out a 5 × 5 grid with
unknown obstacles. The initial configuration, indicated by the blank
map containing only the robots’ positions and orientations, appears
at the top. An intermediate configuration, with a majority of the grid
traversed and four obstacles found, appears at the bottom.

HARDWARE AND SOFTWARE SOURCES

•	 iRobot Create, www.irobot.com/home/index.jsp
•	 eBox3854 embedded PC, www.microcomputersystems.com/

 eBox.htm
•	 iRobot Home Base, http://store.irobot.com/product/index.jsp?

 productId=2814855
•	 Java Media Framework (JMF), http://java.sun.com/javase/

 technologies/desktop/media/jmf
•	 SunSpot sensors, www.sunspotworld.com
•	 Create Open Interface library, http://code.google.com/p/

 libcreateoi

RESE ARCH FE ATURE

COMPUTER 68

For example, Figure 4 shows two architectures that
emerged from this project. The peer-to-peer solution in
the top diagram will likely scale well and remain tolerant
to host failures. On the other hand, it could experience
data consistency problems if the events sent by peers
are dropped or arrive and are processed in the incorrect
order. The client-server solution in the bottom diagram
has a central grid component that ensures a consistent
global view of the system and avoids synchronization
problems. At the same time, the grid component repre-
sents a single point of failure and might also become a
performance bottleneck.

While this system’s heterogeneity otherwise might have
posed a serious problem in migrating from a Java GUI-based
back end to the iRobots running Player, the application’s
use of RoboPrism greatly reduced such problems. In par-
ticular, the middleware allowed seamless communication
among components regardless of the hardware platform
that housed them. Demonstrating code portability and
modularity, the students were able to easily wrap the robot

All five teams succeeded in preserving their architec-
tures during the migration to iRobots. This success implies
better maintainability of the resulting systems because
the implementations preserve the designed architectures,
avoiding architectural drift.

Two teams experienced difficulty controlling the
iRobots’ movement while trying to accurately map the un-
known environment. The primary difficulties arose from
their unfamiliarity with programming robots, the iRobot
Create platform, and the Player library. The five result-
ing applications had similar functionalities with minor
variations in numbers of PDAs used and the navigation
algorithm’s degree of automation. However, because our
approach does not mandate a particular architecture for a
system, engineers can explore and decide on the architec-
ture that best fits their design decisions and objectives. As
a result, the five architectures were substantially different
in terms of the system decomposition into components
and connectors, interfaces, interactions via events, and
deployment onto the hardware nodes.

Figure 4. Two architectures for the environment exploration scenario, each relying on a different style: peer-to-peer (top) and client-
server (bottom).

P2P connector

P2
P c

on
ne

cto
r

P2
P c

on
ne

cto
r

Model

P2P connector

Model

GUI GUI

GUI

GUI

iRobot architecture iRobot architecture

iRobot architecture

iRobot architecture

PDA architecture PDA architecture

PDA architecture

PDA architecture

CS
 co

nn
ec

to
r

CS
 co

nn
ec

to
r

CS
 co

nn
ec

to
r

CS
 co

nn
ec

to
r CS

 co
nn

ec
to

r
CS

 co
nn

ec
to

r

GRID

Laptop architecture Robot

Robot

69MAY 2011

To enable this functionality, we designed several compo-
nents, including LineFollower, ColorFollower, IRFollower,
SunSpotController, and SunspotReader. We also designed
metalevel RoboPrism components to directly support
runtime monitoring, analyses, and the system’s dynamic
adaptation. These components monitor and adapt the sys-
tem’s architecture in anticipated situations. For example, a
monitor component detects camera failures and initiates
an adaptation plan, which in turn replaces the ColorFol-
lower component with an IRFollower component. These
RoboPrism components organize the application and
metalevel components into a two-layer adaptive-layered
architecture.

We designed the adaptation policies captured within
the metalevel components and refined them using XTEAM
models. First, we used the rate of battery drain during differ-
ent operational modes such as camera following, infrared
following, and so on to determine appropriate thresholds at
which to trigger recharging. Second, XTEAM analyses deter-
mined that we could not deploy all the follower components
simultaneously due to the robots’ limited available memory,
necessitating component redeployment when hardware or
software faults trigger adaptation policies.

This scenario demonstrates several benefits of our ap-
proach, including

•	 modeling and nonfunctional property analysis for
adaptive systems,

•	 heterogeneity support;
•	 traceability, reuse, and modularity; and
•	 runtime architectural analysis and adaptability.

We first designed the entire system by exploring appro-
priate decompositions into components and connectors,
as well as different candidate architectural styles. Then,
we modeled the resulting design and analyzed it using
XTEAM for completeness, consistency, and nonfunctional
characteristics. We then transferred the model directly to
the system implementation via RoboPrism’s native sup-
port for architectural constructs. This allowed us to create
a modular architecture that exhibited desired properties.

control libraries and use them inside the components they
had developed in the first part of the project.

The software design and implementation support let users
with little domain expertise rapidly develop distributed, user-
friendly robotics applications. The explicit focus on software
architecture facilitated easy communication and exchange
of high-level design solutions. Furthermore; we reused sev-
eral modules from these systems in later research.

To evaluate the reduction of effort from using our ap-
proach, we measured the source lines of code (SLOC) and
development effort estimates for the students’ application
code; Table 1 shows these results. We estimated effort using
the Cocomo II software project cost estimation model,9 and
intend these numbers to indicate the complexity of the
students’ application code. Cocomo II suggests that two-
to three-person teams with no personnel turnover would
have required 3.8 to 8.8 months to produce the respective
amounts of code. In contrast, the students in this project
completed their work much more quickly; on average, they
expended about four weeks of concerted programming
effort. Although a more definitive conclusion would require
further investigation, these numbers are suggestive of Ro-
boPrism’s effectiveness.

Robot-following scenario
We designed and implemented several variations of

the robot-following scenario. In the first set of scenarios,
designed in tandem with an industrial collaborator, we
manually designed adaptation policies and coded them in
metalevel components, according to the adaptive-layered
style. In the second set of scenarios, we leveraged PLASMA5
to automatically design the adaptation plans as well as the
application architecture.

Adaptive-layered implementations. In this scenario,
the leader robot follows a line drawn on the floor using
infrared sensors. Other robots use a camera to observe
the color of and follow the robot in front of them. A robot
also can follow an infrared signal emitted from the robot
in front of it. A robot uses the infrared mechanism when it
doesn’t have a camera or its camera malfunctions. Along
the way, robots encounter base stations and SunSpot sen-
sors; they can choose to dock with the base stations to
recharge their batteries, exchange data with SunSpots,
or perform software updates. Robots dock and update
software through autonomous control components.

Researchers also can use SunSpots as remote controllers
to correct the orientation of an iRobot when it loses sight of
the robot in front of it. When a robot leaves the convoy, it
notifies the robot immediately behind it, and the remain-
ing robots adjust their leader-follower roles to maintain the
organization. A robot can rejoin the convoy when it sees
the trailing robot’s color. Researchers can issue commands
from laptops and iPAQ, and they can receive feedback
about the robots’ progress and energy consumption.

Table 1. Source lines of code and development
effort estimates for the student projects.

Code
base

No. of team
members SLOC

Development effort
estimate

(person-months)

1 3 1,600 3.8

2 2 2,700 6.7

3 2 2,900 7.5

4 2 1,700 4.2

5 2 3,400 8.8

architect would otherwise specify manually. In PLASMA,
the architect only provides the application’s goal.

In our scenario, each robot’s goal is to follow the robot in
front of it and avoid obstacles. The PLASMA planning layer,
deployed on a laptop, generates application and adaptation
plans. The planning layer also automatically generates and
compiles implementation code for the adaptation analyzer
and executor components that perform the adaptation.

PLASMA then deploys compiled binaries of all required
components (application components, adaptation analyzer,
collectors, and so on) and instantiates an identical adap-
tation layer on each robot. The adaptation layer on each
robot instantiates the application layer, and the Executor
begins executing the application plan, in which the first
step is role negotiation. Figure 5 shows an instance of this
architecture’s deployment.

Automatically generated application and adaptation
plans support different types of system adaptations under
different circumstances. As a result, the system architect
need not predict and plan for all adaptations. The appli-
cation plan automatically handles basic adaptations. For
example, if a robot is using a camera for following and the
area becomes dark, the Executor can use an application
plan to automatically switch to GPS or infrared following.
More powerful adaptations require dynamic replanning.

Consider the case in which robots must recharge their
batteries using docking stations along the route. To satisfy
this requirement, we specified new SADEL models for the
BatteryMonitor and StationDocker components. We also
specified a new application goal that defines the acceptable
battery power threshold, and then initiated replanning.
PLASMA computed new plans and regenerated and rede-

PLASMA implementation. The three-layer PLASMA
architecture follows the adaptive-layered style supported
by RoboPrism, enabling a high degree of separation, modu-
larity, and multilayer adaptation. To provide a high degree
of autonomy, PLASMA relies on architect-generated SADEL
models of the components in the application and adaptation
layers. We transform the SADEL models into state transition
models to use in adaptation planning.

PLASMA constructs separate plans for the application
and adaptation layers. The application plans control the
application behavior to achieve system goals. Similarly,
the adaptation plans control the behavior of the adapta-
tion layer—setting and adapting the application layer’s
architecture. To assess the benefits of PLASMA’s dynamic
adaptation support, we implemented a variant of the robot-
ics scenario.

While transferring the robotics scenario to PLASMA,
we successfully reused most of the application compo-
nents from the scenario implementation; this further
validated the reusability of our approach. In the PLASMA
version, the leader robot follows a path defined by a series
of spatial coordinates called waypoints. Initially, we pro-
vided PLASMA with the SADEL models of 15 application
components. One component developed for the PLASMA
scenario, RoleNegotiator, implements a distributed ne-
gotiation to assign a role (leader or follower) to all robots
in the convoy. The negotiation protocol ensures that it
assigns only one robot the leader role. Only the leader
uses waypoint following; followers use other types of
following.

PLASMA reduces the burden on the system architect
by automatically generating adaptation plans, which the

Figure 5. Deployment view of the system architecture for the robotics scenario.

Adaptation layer Adaptation layer

Robot 1 Robot 5

Executer

ColorFollower RoleNegotiator

RobotActuator

Application layer Application layer

……

…

Executer

ColorFollower RoleNegotiator

RobotActuator ……

…

Planning layer

Desktop computer

…

RESE ARCH FE ATURE

COMPUTER 70

MAY 2011

ployed the Adaptation Analyzer and Executor, along with
the other required application components.

Another adaptation occurs when a component fails and
the application removes it from the set of available com-
ponents. In this case, replanning adapts the application
with a new application plan that does not use the removed
component.

The automatically generated plans in these scenarios
ranged from 790 to 4,390 state actions. Each state action
specifies the behavior required in a specific state (for ex-
ample, the invocation of a particular operation). Manually
specifying policies of this size would be tedious, cum-
bersome, and error prone. By automating the process,
PLASMA removes this burden, letting architects focus on
their primary task—architectural description. For example,
modifying the application goal in the case of battery re-
charging only requires specifying two additional SADEL
models (55 lines of architectural description) and a new
problem description (a single line change), along with the
implementations of the two components.

Software architecture provides critical abstractions,
techniques, and tools for designing and organizing
software systems, and is particularly important in the

case of complex heterogeneous systems that might need
future extension or modification. To make it easier to use
software architectural concepts in robotics, we have cre-
ated three tools: XTEAM to automate system modeling and
analysis; RoboPrism to give architectural abstractions first-
class status in system implementations and allow dynamic
analysis and redeployment of the system; and PLASMA to
dynamically generate complex adaptation plans.

In our future research, we intend to expand the boundar-
ies of using software engineering and software architecture
concepts in the context of robotics systems. The recent
improvements in the area of domain-specific modeling
languages can facilitate flexible modeling of robotics
applications in different domains, while preserving com-
patibility with existing analysis tools.10 Further, we plan to
enhance our adaptive framework with runtime reasoning
about nonfunctional properties in an environment that
has notable resource constraints. We believe that these
enhancements will make robotics systems more accessible,
reproducible, reusable, and adaptable to changes in their
runtime environment.

References
 1. D. Brugali and E. Prassler, “Software Engineering for Ro-

botics,” IEEE Robotics and Automation Magazine, Mar.
2009, pp. 9, 15.

 2. D. Brugali, “From the Editor-in-Chief: A New Research Com-
munity, a New Journal,” J. Software Eng. for Robotics, Jan.
2010, pp. 1-2.

 3. R.N. Taylor, N. Medvidovic, and E.M. Dashofy, Software

Architecture: Foundations, Theory, and Practice, John Wiley
& Sons, 2009.

 4. G. Edwards et al., “Architecture-Driven Self-Adaptation and
Self-Management in Robotics Systems,” Proc. Int’l Work-
shop Software Eng. for Adaptive and Self-Managing Systems
(SEASS 09), IEEE CS Press, 2009, pp. 142-151.

 5. H. Tajalli et al., “PLASMA: A Plan-Based Layered Architec-
ture for Software Model-Driven Adaptation,” Proc. 25th
IEEE/ACM Int’l Conf. Automated Software Eng. (ASE 10), IEEE
CS Press, 2010, pp. 467-476.

 6. N. Medvidovic, D.S. Rosenblum, and R.N. Taylor, “A Lan-
guage and Environment for Architecture-Based Software
Development and Evolution,” Proc. 21st Int’l Conf. Software
Eng. (ICSE 99), IEEE CS Press, 1999, pp. 44-53.

 7. G. Edwards and N. Medvidovic, “A Methodology and
Framework for Creating Domain-Specific Development
Infrastructures,” Proc. 23rd IEEE/ACM Int’l Conf. Automated
Software Eng. (ASE 08), IEEE CS Press, 2008, pp. 168-177.

 8. S. Malek, M.M. Rakic, and N. Medvidovic, “A Style-Aware
Architectural Middleware for Resource Constrained, Dis-
tributed Systems,” IEEE Trans. Software Eng., Mar. 2005, pp.
256-272.

 9. B. Boehm et al., “Cost Models for Future Software Life Cycle
Processes: COCOMO 2.0,” Ann. Software Eng., Dec. 1995,
pp. 57-94.

 10. G. Edwards, “Automated Synthesis of Domain-Specific
Model Interpreters,” doctoral dissertation, Dept. Computer
Science, Univ. of Southern California, 2010.

Nenad Medvidovic is a professor in the Department of Com-
puter Science at the University of Southern California and
director of the USC Center for Systems and Software Engineer-
ing. Medvidovic received a PhD in information and computer
science from the University of California, Irvine. Contact him
at neno@usc.edu.

Hossein Tajalli is a PhD student in the Department of Computer
Science at the University of Southern California, where he is a
member of the Software Architecture Research Group in the
Center for Systems and Software Engineering. Tajalli received
an MS in electrical engineering from the University of Tehran,
Iran. Contact him at tajalli@usc.edu.

Joshua Garcia is a PhD student in the Department of Computer
Science at the University of Southern California. He received
an MS in computer science from the University of Southern
California. Contact him at joshuaga@usc.edu.

Ivo Krka is a PhD student in the Department of Computer Sci-
ence at the University of Southern California, where he is a USC
Provost’s Fellow. He received an MS in computer science from USC
and an MEng in computing from the University of Zagreb. Krka is
a member of IEEE and ACM Sigsoft. Contact him at krka@usc.edu.

Yuriy Brun is an NSF CRA postdoctoral Computing Innovation
Fellow at the University of Washington. He received a PhD in
computer science from the University of Southern California.
Brun is a member of the ACM and ACM Sigsoft. Contact him at
brun@cs.washington.edu.

George Edwards is the chief scientist at Blue Cell Software in
Los Angeles. He received a PhD in computer science from the
University of Southern California. Contact him at george@
bluecellsoftware.com.

71

