The Journal of Systems and Software 83 (2010) 972-989

i

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

An architecture-driven software mobility framework

Sam Malek ®*, George Edwards®, Yuriy Brun¢, Hossein Tajalli®, Joshua Garcia®, Ivo KrkaP®,
Nenad Medvidovic®, Marija Mikic-Rakic 9, Gaurav S. Sukhatme®

2 Department of Computer Science, George Mason University, Fairfax, VA, USA

b Computer Science Department, University of Southern California, Los Angeles, CA, USA
€ Computer Science & Engineering, University of Washington, Seattle, WA, USA

4 Google Inc., 1333 2nd Street, Santa Monica, CA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 1 December 2008

Received in revised form 25 August 2009
Accepted 1 November 2009

Available online 4 November 2009

Software architecture has been shown to provide an appropriate level of granularity for assessing a soft-
ware system’s quality attributes (e.g., performance and dependability). Similarly, previous research has
adopted an architecture-centric approach to reasoning about and managing the run-time adaptation of
software systems. For mobile and pervasive software systems, which are known to be innately dynamic
and unpredictable, the ability to assess a system’s quality attributes and manage its dynamic run-time
behavior is especially important. In the past, researchers have argued that a software architecture-based

Is(?f/t‘c/voarlfjes;rchitecture approach can be instrumental in facilitating mobile computing. In this paper, we present an integrated
Mobility architecture-driven framework for modeling, analysis, implementation, deployment, and run-time
Quality of service analysis migration of software systems executing on distributed, mobile, heterogeneous computing platforms.
Robotics In particular, we describe the framework’s support for dealing with the challenges posed by both logical

and physical mobility. We also provide an overview of our experience with applying the framework to a
family of distributed mobile robotics systems. This experience has verified our envisioned benefits of the
approach, and has helped us to identify several avenues of future work.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

As the global computing infrastructure transitions from an
emphasis on personal computers to mobile and embedded devices,
ensuring the quality of complex distributed software systems re-
mains an essential focus of research in software engineering and,
particularly, software architecture. Software quality is measured
in terms of quality attributes, such as performance and dependabil-
ity, that are identified and prioritized by system stakeholders. In a
mobile environment, system parameters such as network reliabil-
ity and throughput are far less predictable than in static environ-
ments. Moreover, new quality attributes such as energy
consumption would also need to be taken into account in the de-
sign and construction of these systems. Thus, for systems distrib-
uted on mobile hardware devices, such as smart phones and
wearable computers, evaluating software quality is even more
challenging than for traditional systems.

* Corresponding author.

E-mail addresses: smalek@gmu.edu (S. Malek), gedwards@usc.edu (G. Edwards),
ybrun@usc.edu (Y. Brun), tajalli@usc.edu (H. Tajalli), joshuaga@usc.edu (J. Garcia),
krka@usc.edu (I. Krka), neno@usc.edu (N. Medvidovic), marija@google.com (M.
Mikic-Rakic), gaurav@usc.edu (G.S. Sukhatme).

0164-1212/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.11.003

It has long been acknowledged that software architecture pro-
vides an effective foundation for the quality assurance of large,
complex systems (e.g., Abowd et al., 1995; Medvidovic and Taylor,
2000; Clements et al., 2002; Malek et al., 2007). The key underpin-
ning of our work is the observation that an explicit architectural fo-
cus can also be instrumental in facilitating mobile computing
(Chan and Chuang, 2003; Ciancarini and Mascolo, 1998; Medvido-
vic et al., 2003; Malek et al., 2005b; Malek et al., 2006). Architec-
ture-driven approaches to quality assurance use architectural
abstractions — software components, connectors, communication
ports, events, etc. - to manage complexity and leverage architec-
tural styles to enforce constraints and promote desired system
characteristics. Analogously, architecture-driven approaches to
mobility enable system migration and adaptation during run-time
in a controlled fashion by employing architectural constructs as
the units of mobility.

While existing research (Chan and Chuang, 2003; Ciancarini and
Mascolo, 1998; Sousa and Garlan, 2002), including our own (Medv-
idovic et al., 2003; Malek et al., 2005b; Malek et al., 2006), has ver-
ified the advantages of an architecture-centric approach in the
development of mobile software systems, in practice, the adoption
of such approaches has been limited. We argue that this is due to
the lack of a comprehensive support for architecture-based devel-
opment of mobile software systems. In other words, the majority

http://dx.doi.org/10.1016/j.jss.2009.11.003
mailto:smalek@gmu.edu
mailto:gedwards@usc.edu
mailto:ybrun@usc.edu
mailto:tajalli@usc.edu
mailto:joshuaga@usc.edu
mailto:krka@usc.edu
mailto:neno@usc.edu
mailto:marija@google.com
mailto:gaurav@usc.edu
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989 973

of existing architectural research approaches and industrial tools
have dealt with providing point solutions that address particular
mobility concerns. As a result, the developers in the mobility set-
ting have faced some difficulties with fully embracing architectural
abstractions as the foundation for modeling, analyzing, imple-
menting, monitoring, and adapting the system. Moreover, the dis-
crepancies between the existing tools and techniques diminish
some of the key advantages associated with taking an architec-
ture-centric approach.

To better illustrate the current shortcomings and motivate the
problem, let us consider a scenario in which a software developer
uses an architectural modeling tool (Childs et al., 2006; Dashofy
et al., 2005; Edwards et al., 2007) to design a system and analyze
its quality attributes. Since the majority of mobile middleware
platforms do not provide adequate support for the implementation
of architectural abstractions (Malek et al., 2005b; Malek et al.,
2007), the developer is forced either to implement them through
a combination of low-level programming language constructs
(e.g., variables, collections, classes), or to misuse other middleware
constructs (e.g., implement a connector as a middleware compo-
nent). Performing such a complex mapping between constructs
with different semantics and levels of granularity promotes archi-
tectural erosion (Perry and Wolf, 1992). In turn, the analysis per-
formed on the architectural models becomes useless, as one
cannot be certain of the fidelity of the implemented system with
respect to the models.

The above example highlights only one set of problems that
could arise due to the lack of complete life-cycle support for archi-
tecture-based development of mobile software systems. In this pa-
per, we present and evaluate an integrated framework that aims to
alleviate the shortcomings of the existing point solutions.! Specifi-
cally, our framework comprises:

e a tailorable model of mobile software architectural abstractions
(Medvidovic et al., 2003; Edwards et al., 2007), mobile hardware
platforms on which the software executes (Mikic-Rakic et al.,
2004), and system quality requirements that are of particular
importance to mobile systems (Mikic-Rakic et al., 2008);

e an extensible suite of architectural analysis techniques for
mobile systems, including scenario-driven system simulations
(Edwards and Medvidovic, 2008) and determination of effective
deployments based on quality requirements (Mikic-Rakic et al.,
2004, 2005; Malek et al., 2005a);

e a middleware platform (Malek et al., 2005b) targeted at archi-
tecture-centric implementation of mobile software, and an
accompanying facility for stateful and stateless run-time migra-
tion of software components (Carzaniga et al., 1997);

e a continuous monitoring and architectural awareness methodol-
ogy for detecting execution-condition changes in mobile soft-
ware systems (Tisato et al., 2000); and

e a facility for (re)deployment and run-time adaptation of a soft-
ware system distributed among a set of mobile hardware hosts
(Malek et al., 2007; Mikic-Rakic et al., 2008).

With the exception of mobility support, about which we have
only hypothesized in the context of system deployment in Mikic-
Rakic and Medvidovic (2002) and Mikic-Rakic et al. (2008), the
individual elements of the above framework have been published
previously. This paper describes and illustrates those aspects of
our framework that are pertinent to mobility. Moreover, the main

! Note that our notion of framework is consistent with the term architectural
framework as defined in IEEE 1471 and ISO/IEC 42010 standards (Maier et al., 2001;
ANSI/IEEE, 2007). Our framework consists of several view points (e.g., deployment,
dynamic, static), modeling languages (e.g., XADL, FSP), and is accompanied by a tool
suite for specification and analysis.

contribution of our work is the manner in which they are com-
bined to provide complete architecture-driven mobility support.

The framework is broadly concerned with the challenges mobil-
ity presents. We model the impact of physical mobility on the sys-
tem’s resources, such as network connectivity and battery power.
We use simulation and analytical models to assess the degradation
of quality attributes due to movement of devices and employ run-
time adaptation to mitigate such problems. Note that since the
framework has no explicit control over the actual movement of de-
vices, we do not model the movement, but rather its impact on the
system. However, if necessary, we believe the framework could be
extended to model these aspects of mobility as well. We model
logical mobility in terms of changes to the system’s deployment
architecture (Malek, 2007) - a representation of the system’s soft-
ware architecture superimposed on its hardware configuration
and network topology. By adopting an architecture-based ap-
proach to development and adaptation, we avoid architectural ero-
sion due to logical mobility. At run-time, we optimize the software
system’s quality attributes by finding a new deployment architec-
ture and effecting it through logical mobility. Finally, the frame-
work addresses other concerns in the mobile setting, such as
heterogeneity of platforms and efficiency of implementation.

Our experiences with applying the framework on several mo-
bile software systems have been very positive. For evaluation, we
elaborate in detail on one such experience dealing with a family
of mobile robotics systems, provide quantitative data that summa-
rizes the results obtained in other real-world and synthesized
examples, and qualitatively compare the framework with existing
architectural frameworks.

The remainder of the paper is organized as follows. Section 2 de-
tails the challenges of building mobile systems and the framework’s
objectives in mitigating them. Section 3 provides a high-level over-
view of the framework, its accompanying tool suite, and how they
are integrated with one another. Sections 4-8 describe the frame-
work’s support for mobility modeling, analysis, implementation,
monitoring, and adaptation, respectively. Section 9 presents an
overview of our experience to date with the framework, with data
drawn primarily from the domain of mobile robotics. Section 10 re-
lates this approach to existing work. We conclude the paper with
the discussion of challenges that are guiding our ongoing work.

2. Challenges and objectives

As already alluded to in the previous section, mobile setting
presents a number of unique software development challenges
that permeate the entire software-engineering life-cycle:

Fluctuating execution context. Mobile software systems are
characterized by their unknown operational profiles and fluctuat-
ing execution contexts. Since the properties of such systems (e.g.,
network connectivity, bandwidth, and energy consumption) con-
stantly change at run-time and unanticipated events occur, an
accurate analysis of the system’s quality attributes is often not fea-
sible at design-time.

Constrained resources. Mobile devices often have limited
power, network bandwidth, processor speed, and memory. Con-
straints such as these demand highly efficient software systems
in terms of computation, communication, and memory. They also
demand unorthodox solutions, such as off-loading or migrating
parts of a system to other devices.

Heterogeneity. Traditional computing increasingly relies on
standard methods of representing data, computation, and commu-
nication, the best example of which is the SOA technology stan-
dards (i.e., XML, SOAP, WSDL) (Weerawarana et al., 2005). In
contrast, mobile technologies remain largely proprietary. Engineer
of such systems must reconcile proprietary operating systems such

974 S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989

as PalmOS and Symbion, specialized dialects of existing program-
ming languages such as Sun Microsystems’ Java KVM and Micro-
soft’s Embedded Visual C++, and device-specific data formats
such as prc for PalmOS and efs for Qualcomm’s Brew.

Peculiar infrastructure. The computing infrastructure of mobile
platforms often lack certain services due to efficiency purposes.
Since manufacturers cannot accurately determine a priori which
capabilities are more important than others, they make ad hoc deci-
sions that may significantly impact the development of software for
those platforms. For example, Java KVM does not support noninte-
ger numerical data types or server-side sockets. Similarly, typically
employed techniques for code mobility, such as Java XML encoding,
is computationally too expensive and hence rarely supported.

The above challenges have directly motivated the development
of our framework. Our approach is based on five overarching prin-
ciples that delineate the framework’s objectives:

Efficiency of the implementation. The framework should en-
able the development of efficient software systems that can be de-
ployed on resource-constrained mobile platforms.

Coping with heterogeneity. The framework should alleviate
heterogeneity of both implementation (e.g., ability to deal with
the variations in the system substrate) and analysis (e.g., energy
consumption vs. latency) in this setting.

Flexibility and extensibility. The framework should facilitate
the development of flexible software systems that can be adapted
at run-time. Moreover, the framework itself should be extensible
such that it can be customized to the domain-specific characteris-
tics of each mobile application domain.

Context awareness. The framework should support context
awareness to detect and react to changing conditions.

Architectural support. The key objective, and one that sets our
work apart from existing research, is that the framework should
support design, analysis, implementation, adaptation, and mobility
at the architectural level.

3. Framework overview

Fig. 1 shows an overview of the framework’s accompanying tool
suite. Each of the framework’s components has been realized using
a combination of architecture-centric tools, which are integrated to
provide comprehensive support for architecture-driven mobility.
XTEAM supports modeling and analysis activities at design-time,
while DeSi supports the same activities at run-time. Prism-MW
is a middleware platform with extensive support for architec-
ture-based development of mobile software systems. In this sec-
tion we provide an overview of the leveraged tools and elaborate
on their integration into the architecture-centric mobility frame-
work. In the following sections, we will describe the individual
components of the framework in more detail.

XTEAM assists in designing mobile software systems and
XTEAM'’s models can be used to simulate those systems before
their initial deployments. XTEAM'’s simulation capability assesses
architectural decisions with respect to their QoS trade-offs and al-
lows the architect to make informed decisions and select a proper
architecture prior to deployment. Once the architect selects an
architecture, XTEAM can generate (1) DeSi’s initial underlying
model for run-time analysis and deployment, (2) application-spe-
cific code to realize the models, and (3) Prism-MW configuration
files to optimize the system'’s quality attributes.

Unlike XTEAM, DeSi furnishes a run-time model of the system
that reflects the dynamic state of the architecture. In particular,
the notion of software deployment (i.e., the location at which a soft-
ware component executes), which has a significant impact on a mo-
bile system’s QoS, is elevated to the forefront. As further detailed in
this paper, the framework models logical mobility in terms of

changes to the system’s deployment architecture. DeSi provides sev-
eral logical-mobility-analysis algorithms that swiftly explore the
large space of possible deployments and find a (near-)optimal archi-
tecture for the system. If an optimal solution is not available, DeSi’s
mobility analysis capability and XTEAM’s simulation capability
coordinate to select a preferable solution as follows: first, DeSi’s
algorithms find a small number of candidate deployments that
may pose competing trade-offs; and second, XTEAM simulates the
candidate deployments to develop a fine-grained assessment of
the QoS trade-offs and select the most preferable deployment.

As depicted in Fig. 1d, a mobile system implemented on top of
Prism-MW provides support for (1) monitoring through context
awareness and reflection and (2) redeployment through adaptation
and component migration. DeSi uses these two middleware facili-
ties to collect run-time information from the system, assess its
architecture, and, when necessary, redeploy the components.

Prism-MW is a highly configurable architectural middleware
(e.g., it provides the ability to change the size of the event queue,
size of the thread pool, etc.), which allows for optimization with re-
spect to efficiency and performance. Both these properties are con-
sidered critical requirements in the mobile setting. As shown in
Fig. 1, XTEAM may automatically generate the optimal configura-
tion for a system using the middleware’s configuration capabilities
and the resource requirements obtained through simulation.

4. Mobility modeling

A significant focus of software engineering research has been
codification of design abstractions that allow engineers to repre-
sent and reason about complex systems at a high-level. To this
end, software architecture researchers have arrived at a canonical
set of architectural design constructs: components, connectors,
communication ports, interfaces, events, and topologies (or config-
urations). Furthermore, specific prescribed uses of these con-
structs, via design heuristics or constraints, result in architectural
styles (e.g., client-server, peer-to-peer), which are the key design
idioms in software engineering. These design elements and idioms
have been shown to be highly useful in practice, and constitute the
basis of our architectural approach to modeling mobile systems.

4.1. Design-time mobility modeling

Architectural models developed in the early phases of system de-
sign allow engineers to ensure desired properties in a system by
experimenting with alternative designs and codifying design rules.
Evaluation and refinement of architectural choices is much easier
and less costly on a system model or prototype than on a fully con-
structed system. Software engineering research has produced a sub-
stantial variety of modeling and analysis technologies with different
features and goals (Medvidovic and Taylor, 2000), but few of these
address the domain-specific concerns of mobile systems. Our ap-
proach integrally involves explicit software architecture models
and analyses for mobility. To this end, we have adapted our exten-
sible environment, XTEAM (Edwards et al., 2007; Edwards and
Medvidovic, 2008), in order to allow an engineer to:

1. represent the structure and behavior of a mobile software sys-
tem’s architecture,

2. associate the different software architectural elements with the
mobile hardware hosts on which they will execute, and

3. provide mechanisms for applying mobility-related analysis
techniques.

XTEAM provides a metamodeling environment for architects to
define domain-specific extensions to the canonical set of architec-

S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989 975
a XTEAM Prism-MW b
o ST
Qn &
()
/ U, {9/, +°('
B G/J' ‘(',,’,) & (7
S e ®
§
== - ‘_ Advanced
i I o ———— sy ‘ Facilities
Runtime
s |Lomorme]_meros]_ IRl i |)
| Architectural
sl / A [Support
I uf‘ u‘ hit u Event | Port | |
. R i Style #es Modular Virtual
:0] - : —_— S s Jconﬁgu-rableHhhadulerumspalnhmu Scaffold Constraints I“i"ﬂml’ |2 Nllla:rhirleua
: @ E \parameters Fories T piayer Thread Event Fiie
; . @ Ei \ : Library | Library Factory Factory Factory ‘,Oparaﬁnu
- - * 1R Semaphore Socket [System
= : oy Abstraction)
Device i
=
L L O E . s O
e = ;n“ e
@ ~ o @ , .
S 85— ¢ :% " , S -
Cc R 29 ‘06'084 / [d
283 T2 N / =
‘E = G £ ’99’. 2% | &
~. 4 og 0,
© © . -
; e s
TR | [P |
ST) Adapter
7 DeSi
/] Monitor | |
’/ DeSi
f
~Monitoring T?
data 1
N
- B Redéploy
e G = commands |
:- /

%8
% 2,
%9

DeSi

| OO B 011

Legend:
Platform Skeleton 4-‘ Pointer to
Architecture Configuration e Architecture
Event frequency 7' Network reliability III Component
o monitor monitor

Distributed Mobile System

Fig. 1. Overview of the framework’s accompanying tool suite: (a) XTEAM, (b) Prism-MW, (c) DeSi, and (d) a hypothetical distributed mobile software system.

tural design constructs. We have developed modeling language
extensions in XTEAM that allow architects to capture information
that is of particular concern for mobile systems. These language
extensions, in turn, enable mobility-related analysis and, as will
be detailed in Section 6.3, can also automate generation of imple-
mentation code.

Domain-specific language extensions in XTEAM may be addi-
tional properties of, or constraints on, the canonical architectural
constructs or they may be entirely new constructs. For example,
we found it necessary in embedded and mobile settings to extend
the set of abstractions to include the notion of hardware hosts
and their relationship to software components. We have also
added properties and constraints to software components to en-
sure their compliance with the capabilities available on the target
platform.

We have developed reliability, energy-consumption, and archi-
tectural-style XTEAM language extensions for mobile systems.

4.1.1. Reliability

Mobile systems operate in unpredictable environments. Wire-
less networks are inherently less reliable than wired networks be-
cause of such factors as interference. As a result, mobile
applications must be robust in the face of network disconnection
and capable of gracefully dealing with intermittent and degraded
network links. The XTEAM language extension for reliability per-
mits architects to specify the probability of disconnection, utilize
stochastic models of available network bandwidth, and model mit-
igation strategies.

4.1.2. Energy consumption

Unlike traditional software systems that have an abundant,
uninterrupted power supply, mobile devices must run on battery
power. The energy usage of software components in mobile appli-
cations has a critical impact on system longevity. In order to use
energy-consumption estimates (along with other concerns) in

976 S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989

weighing design options, design models must capture system
parameters required for power-usage analysis. Our XTEAM lan-
guage extension for energy consumption, shown in Fig. 2, allows
architects to easily include these parameters in their models. The
parameters shown are defined by the energy consumption estima-
tion technique proposed by Seo et al. (2008); we refer the reader to
(Seo et al., 2008) for detailed explanations of these parameters.
This technique estimates the energy consumption of a software
component as the sum of its communication energy cost (due to
exchanging data over a wireless network) and computational en-
ergy cost (due to manipulating data locally). Communication en-
ergy cost is a function of the size of the data exchanged and a set
of platform-specific coefficients. These platform-specific coeffi-
cients are captured as properties of the host element in Fig. 2
and are used to calculate the communication energy costs for all
components assigned to that host. Computational energy cost is
calculated by “profiling” the service interfaces of each component
to produce a characterization of the energy cost of invoking the
interface. For example, some interfaces consume energy propor-
tional to the size of the input. The properties of the Interface ele-
ment in Fig. 2 capture the energy-cost characteristics of each
interface.

4.1.3. Architectural style constraints

While mobility of software components enables dynamic adap-
tation to changing operational contexts, as well as other desirable
behaviors, it must be constrained to ensure that run-time configu-
rations remain consistent with the architects’ intentions. One way
our middleware platform achieves this is through architectural
style-based constraints: individual architectural elements are
tagged with specific roles, and constraints on their behavior are
automatically enforced by the middleware based on those roles.
Style-based roles may be included in architectural models using
our XTEAM modeling extension for styles, and automatically gen-
erated implementations include this information so that it may
be used by the middleware platform.

We have similarly implemented extensions for modeling other
quality attributes of the software, such as performance, memory
usage, and resource allocation. Fig. 1a depicts the structural view
of a system’s architecture along with the behavior of one of its
components, modeled in XTEAM. The structural and behavioral

views of an architecture are accompanied in XTEAM by parameter
lists that represent the desired characteristics of the software (e.g.,
a component’s anticipated memory usage) and hardware (e.g., a
host’s available memory) elements.

4.2. Run-time mobility modeling

A key observation underlying our framework is that mobility
at the architectural level can be treated as a special case of a
change to the system’s deployment architecture (i.e., allocation of
the system’s software components to its hardware hosts). The
deployment architecture of a software system has a significant
impact on its QoS. For example, a service’s latency can be im-
proved if the system is deployed such that the most frequent
and voluminous interactions among the components involved in
delivering the service occur either locally or over reliable and
capacious network links. Therefore, a redeployment of the soft-
ware system via migration of its components may be necessary
to improve its QoS.

To be able to analyze a mobile software system at run-time, one
needs to model not only the system'’s software architecture, but
also the system’s execution context, which may include the hard-
ware and network characteristics. Each of these elements may be
associated with arbitrary parameters. The selection of a set of
parameters to be modeled depends on the criteria (i.e., QoS objec-
tives) that a system’s deployment architecture should satisfy. Fi-
nally, the system users’ usage of the functionality (i.e., services)
provided by the system, and the users’ QoS preferences (i.e., utility)
for those services may change over time. Therefore, we also need to
model the system’s services, users, and users’ QoS preferences.
Note that our notion of a user is very general and could be inter-
preted as either an end-user, the software architect, or another
software client.

We model a distributed software system as:

1. A set of hardware nodes (hosts) with the associated parameters
(e.g., available memory or CPU on a host), and a function that
maps each parameter to a value.

2. A set of software components with the associated parameters
(e.g., required memory for component’s execution or JVM ver-
sion), and a function that maps each parameter to a value.

Entity
description . behaves
desdib I Architecture Implementation
esqibes defines Link
Property : flow
provides contains
ype \I/ SUTemmt}m J/source J/dest executes
implements
Hr—>| Resource mp Interface Task
Host ype _ Element . synchronicity maps demands
batteryCapacity | F— tilizes invokes interaction
transmitOverhead dispatcher energyProfileType
transmitByteCost energyOverhead
receiveOverhead energyCoefficients
receiveByteCost energyEnumeration
Component Connector input output
DataType
type

Fig. 2. A fragment of the XTEAM metamodel, with extensions that capture energy-consumption properties highlighted.

S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989 977

3. A set of physical network links with the associated parameters
(e.g., available bandwidth, reliability of links), and a function
that maps each parameter to a value.

4. A set of logical interaction links between software components
in the distributed system, with the associated parameters (e.g.,
frequency of component interaction, average event size), and a
function that maps each parameter to a value.

5. A set of services, and a function that provides values for service-
specific system parameters. An example service-specific system
parameter is the number of component interactions resulting
from an invocation of a single service (e.g.,find the best route
to the disaster area).

6. A set of QoS dimensions, and a function that quantifies a dimen-
sion (e.g., security) for a given service in the current deployment.

7. A set of users, a utility function that denotes a user’s preference
for a QoS dimension of a service, and a pair of threshold values
that together determine the relative importance of each user.

8. A set of resource and locational constraints, and a function that,
given a constraint and a deployment architecture, determines if
the constraint is satisfied. An example of a resource constraint is
that the total required memory for executing components on a
host should not exceed the available memory on that host. A
component’s locational constraints specify the hardware hosts
on which it can be deployed.

Some elements of the model are intentionally left “loosely
defined” (e.g., system parameter sets, QoS set). These elements cor-
respond to the many and varying factors that are found in different
distributed application scenarios. We leverage DeSi (recall Fig. 1c)
to specify these loosely defined elements of the model. DeSi sup-
ports specification, manipulation, and visualization of mobile soft-
ware system’s run-time architecture (Mikic-Rakic et al., 2004).

Note that physical mobility directly impacts the system’s execu-
tion context, which, as discussed further in Section 5.2, instigates
the run-time mobility analysis of the system. We formulate the
problem of logical-mobility-analysis in terms of the model pre-
sented above as follows: given the current deployment of the sys-
tem, find an improved deployment, such that the users’ overall
utility (i.e., satisfaction with the QoS delivered by the services) is
maximized and all of the locational and resource constraints are
satisfied. In the most general case, the number of possible deploy-
ment architectures is |[H|/', where H is the set of hardware hosts
and C is the set of software components. However, some of these
deployments may not be legal, i.e., they may not satisfy some of
the constraints.

5. Mobility analysis

Architectural models have been shown to provide an appropri-
ate level of granularity for analysis (Edwards et al., 2007; Perry and
Wolf, 1992; Shaw and Garlan, 1996). Our framework provides
extensive support for architecture-based analysis. In this section,
we first describe the framework’s support for design-time analysis,
and afterwards elaborate on the framework’s support for run-time
analysis.

5.1. Design-time mobility analysis

Analysis of the quality properties of software designs allows
software architects to weigh trade-offs and compare design alter-
natives. Frequently, design decisions intended to improve one
quality metric may come at the expense of other quality consider-
ations. For example, instantiating back-up replicas of a component
may improve the perceived availability of services provided by that
component, but also consumes more computational resources.

Determining the right balance between competing concerns re-
quires rigorous, quantitative analysis of the design options.

Our framework implements several types of design analysis
that are of particular importance in the mobile systems domain.
These analyses are implemented using XTEAM’s scenario-based
simulation generator (Edwards et al., 2007; Edwards and Medvido-
vic, 2008). The simulation generator transforms architectural mod-
els into executable simulations that run on an open-source discrete
event simulation engine. We customized the simulation generator
to include logic that leverages our mobility modeling extensions to
monitor specific behaviors and calculate metrics of system-quality
properties.

The specific analytic techniques used in our framework were
obtained from the software architecture and mobility research lit-
erature (Rolia and Sevcik, 1995; Cheung et al., 2008; Seo et al.,
2008). Each technique was evaluated for accuracy by the develop-
ers of the technique, so we do not provide additional evaluation of
the individual techniques here. Some of the design analyses tech-
niques implemented by our framework are:

1. Performance. The performance modeling extensions are utilized
to create a Layered Queuing Network (LQN) simulation. LQNs
can be used to calculate performance metrics, such as latency,
throughput, and utilization (Rolia and Sevcik, 1995). Our LQN
simulation measures and records the end-to-end latency of
each request-response interaction. The observed latencies
may depend on numerous factors, including the load applied
to the system, the computational resources available, the size
of data sets, or other stochastic factors.

2. Reliability. The reliability modeling extensions are leveraged by
a Hidden Markov Model (HMM) simulation to calculate compo-
nent reliability (Cheung et al., 2008). Component reliability is
defined as the percentage of time the component spends in a
normal operational mode. Potential faults specified in the archi-
tectural model occur according to the probability defined by the
architect. Additionally, the architect can model the recovery
actions for mitigating a fault, such as instantiating back-up
components or changing the system deployment. Conse-
quently, effects of different faults and recovery actions can be
assessed.

3. Energy consumption. The energy consumption modeling exten-
sions permit the use of an energy consumption estimation tech-
nique (Seo et al., 2008). This technique defines equations that
calculate the energy used by the executing software based on
a number of application-specific and platform-specific parame-
ters. The total energy cost is the sum of the computational
energy cost, due to CPU and memory usage, and the communi-
cation energy cost, due to sending and receiving data over a
wireless network.

5.2. Run-time mobility analysis

As mentioned earlier, we represent logical mobility in terms of
its effect on the system’s deployment architecture. In turn, run-
time mobility analysis in our approach deals with the problem of
determining and maintaining a good deployment for a software
system on a set of mobile hosts. Our framework uses run-time
redeployment of software components to alleviate potential degra-
dations in QoS due to physical mobility of devices. For instance,
consider a scenario where due to movement of devices the net-
work throughput connecting the devices decreases, making it diffi-
cult for software components to interact with one another. One
way to tackle this problem is to redeploy the software components,
such that the frequently communicating components are (tempo-
rary) collocated.

978 S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989

The redeployment problem is an instance of multi-dimensional
optimization problems, characterized by many QoS dimensions,
users and user preferences, and constraints that influence the
objective. Our goal has been to devise reusable algorithms that
provide highly accurate results across application scenarios. An
in-depth study of the generally applicable strategies resulted in
several algorithms (Malek, 2007), where each algorithm is suitable
to a particular class of systems or mobility scenarios. This allows
the architect to run the algorithm that is most appropriate in the
given context. For brevity, below we describe two approaches that
pose significant trade-offs: Mixed-Integer Linear Programming
(MIP; Wolsey, 2000), and genetic algorithm.

5.2.1. MIP

The first step in representing our problem as an MIP problem is
defining the decision variables, x.,, which correspond to whether
component c is to be deployed on host h (i.e., x.; = 1) or not (i.e.,
X.n = 0). The next step is defining the constraints (e.g., the com-
bined required component memory cannot exceed the available
memory on a host). Finally, we need to define the objective func-
tion (e.g., maximize availability, minimize latency). Unfortunately,
the objective function is a quadratic function (due to the multipli-
cation of two decision variables). Hence, the problem is by default
a Mixed-Integer Non-Linear Programming (MINLP) problem. Since
there is no known algorithm for solving an MINLP problem opti-
mally (Wolsey, 2000), we transform the MINLP problem into MIP
by adding new “auxiliary” variables (Wolsey, 2000). By leveraging
appropriate heuristics (e.g., variable ordering Wolsey, 2000), it is
possible to cut down the search space. While MIP problems can
be solved optimally in principle, doing so remains computationally
expensive in most cases. Our MIP algorithm may also be used in
calculating the optimal deployment for mobile systems with
extensive locational constraints, which, as discussed in Section 4.2,
could significantly reduce the size of the search space. In such
cases, it may be beneficial to invest the time required for the MIP
algorithm, in order to gain maximum possible overall QoS utility.

5.2.2. Genetic

Unlike the MIP algorithm, which needs to finish executing be-
fore returning a solution, a genetic algorithm may find an im-
proved solution before it has completed execution. Moreover,
genetic algorithms can execute in parallel on multiple processors
with little overhead, making them desirable in mobile and re-
source-constrained settings. In a genetic algorithm, an individual
represents a solution to the problem. In our problem, an individual
is a string of size |C| that corresponds to the deployment mapping
of a system’s software components to hosts. Mutating an individ-
ual corresponds to changing the deployment of a few components
in a given system. To evolve populations of individuals, we define a
fitness function that evaluates the quality of each new individual.
This function returns zero if the individual does not satisfy the re-
source and locational constraints; otherwise it returns the overall
utility achieved by the deployment that corresponds to the individ-
ual. The algorithm improves the quality of a population in each
evolutionary iteration by selecting parent individuals with a prob-
ability that is directly proportional to their fitness values.

The algorithms presented above attempt to find a deployment
that achieves the maximum utility (i.e., optimal) based on the sys-
tem'’s execution history. However, in mobile settings, it is often
more desirable to select a near-optimal solution that is least vul-
nerable to fluctuations in the system'’s resources (e.g., changes in
the network bandwidth). In such cases, DeSi’s mobility analysis
capability and XTEAM’s simulation capability coordinate to select
a suitable solution as follows: first, DeSi’s analytical algorithms
find a small number of candidate deployments with competing
trade-offs; second, XTEAM simulates the candidate deployments

to develop a fine-grained assessment of the QoS trade-offs in the
face of resource fluctuations; and third, the simulation results is
used to identify the deployment that is least impacted by the
changes in the system’s resources.

6. Mobility implementation support

The results of the architectural analysis (recall Section 5) are
valuable only if the actual implementation of the software system
corresponds to the architectural models used for the analysis. In
other words, maintaining consistency between the software sys-
tem’s architectural model and its implementation is of utmost
importance. This is particularly true in mobile and pervasive set-
tings where the configuration of the software may have to change
significantly at run-time in order to deal with the changes in the
system’s context. The fact that in our approach we change the soft-
ware system’s deployment architecture to improve its QoS further
underscores this issue.

An obstacle in maintaining the desired relationship between a
software system’s architecture and its implementation is that the
two rely on different abstractions (Malek et al., 2005b; Malek
et al., 2006). Architects often design their systems using high-level
constructs (e.g., components, connectors, ports), while program-
mers implement those abstract constructs using low-level pro-
gramming language constructs (e.g., pointers, arrays, classes,
variables).

To address this disconnect, we have developed an architectural
middleware platform, called Prism-MW (Malek et al., 2005b), that
provides implementation-level modules for representing each
architectural element, with an API for creating, manipulating, and
destroying the element. These abstractions enable a direct map-
ping between an architecture and its implementation. Since the
middleware constitutes an integral part of our approach and has
directly enabled us to satisfy some of the framework’s key capabil-
ities, we provide an overview of its underlying design with a focus
on its mobility characteristics and point the interested reader to
(Malek et al., 2005b; Malek et al., 2007) for other details.

6.1. Mobile architectural middleware

Fig. 3 shows the class design view of Prism-MW. Brick is an ab-
stract class that represents an architectural building block. It
encapsulates common features of its subclasses (Architecture, Com-
ponent, Connector, and Port). Architecture records the configuration
of its constituent components, connectors, and ports, and provides
facilities for their addition, removal, and reconnection. A distrib-
uted application is implemented as a set of interacting Architecture
objects. Events are used to capture communication in an architec-
ture and are exchanged via Ports. Components perform computa-
tions in an architecture and maintain their own internal state.
Each component can have an arbitrary number of attached ports.
When a component generates an event, it places copies of that
event on its appropriate ports. Components may interact either di-
rectly (through ports) or via connectors. Connectors are used to
control the routing of events among their attached components.
Like components, each connector can have an arbitrary number
of attached ports. Components are attached to connectors by creat-
ing a link between a component port and a single connector port.
Connectors may support arbitrary event delivery semantics (e.g.,
unicast, multicast, broadcast).

In order to support the needs of dynamically changing applica-
tions, each Prism-MW component or connector is capable of add-
ing or removing ports at run-time. This property of components
and connectors, coupled with event-based interaction, provides

S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989

979

Abstract Round Robin .
Dispatcher Q— Dispatcher NetworkR_e"ab'l'ty
Monitor EvtFrequency
T Monitor

Abstract

Scheduler Scaffold /

™~ Abstract Extensible
‘% 47 Monitor Event
. java.io.Serializable
Fifo Abstract
Scheduler Scaffold
i IPort
Brick #mutualPort
ExtensiblePort
IConnector
IComponent j
Abstract
lArchitecture Distribution
Extensible Component AbstractDeployment %
IPCDistribution
Deployer E Admin /v
SocketDistribution

Fig. 3. UML class diagram of the design of Prism-MW.

the underpinning of our support for run-time system adaptation
and mobility, as will be further discussed in Sections 6.2 and 8.

On top of the architectural support, a middleware platform in-
tended for use in the mobile setting needs to satisfy the efficiency,
heterogeneity, flexibility and context-awareness requirements,
which represent some of the framework’s overarching principles
(recall Section 2). To satisfy these requirements, the middleware
was designed from conception to be highly extensible while keep-
ing its core unchanged via its use of abstract classes and inter-
faces. To that end, the core constructs (Component, Connector,
Port, Event, and Architecture) are sub-classed via specialized
classes (ExtensibleComponent, ExtensibleConnector, ExtensiblePort,
ExtensibleEvent, and ExtensibleArchitecture), each of which has a
reference to a number of abstract classes (Fig. 3). Each AbstractEx-
tension class can have multiple implementations, thus enabling
selection of the desired functionality inside each instance of a gi-
ven extensible class. If a reference to an AbstractExtension class is
instantiated in a given extensible class instance, that instance will
exhibit the behavior realized inside the implementation of that
abstract class.

In support of these requirements we extended our original de-
sign of Prism-MW in the manner depicted in Fig. 1b. The Architec-
tural Support layer that was discussed earlier in the context of Fig. 3
forms the centerpiece of the middleware. To satisfy the efficiency
and heterogeneity requirements, instead of accessing the system
resources (e.g., threads, sockets) directly, architectural facilities
leverage the substrate layer, which is called Modular Virtual Ma-
chine (MVM). MVM is composed of three parts: resource abstrac-
tions, implementation, and factories. Resource abstractions provide
a common API that is leveraged by the higher middleware layers
as well as application developers to produce platform-independent
code. An example of a resource made available via resource
abstraction is a thread. A resource abstraction is realized via its
implementation, which may use OS- or hardware-specific libraries.
Resource abstractions are managed via their corresponding facto-
ries. For example, a thread factory may manage the number of
threads that could be created in the system.

For efficiency, we have developed a memory management facil-
ity in MVM for memory pooling, which pre-allocates various ob-

jects (e.g., event, mutex, semaphore, etc.) from the heap when
the middleware starts up. This in turn allows us to efficiently ac-
cess the pool when an object of a particular type is required, and
release it back to the pool when it is not needed any longer. We
are thereby able to reduce the overhead of memory allocation to
a simple pointer operation. Since all of the architectural constructs
are treated as resources and are pre-allocated from the memory
pool, we are able to estimate a system’s resource consumption
from its software architectural models (even at design-time). This
in turn allows us to analyze and inspect the impact of architectural
changes on resource usage. This level of control is important in mo-
bile systems that are typically resource-constrained.

For heterogeneity, we insulate the architectural layer from the
idiosyncrasies of the underlying system via MVM'’s resource abstrac-
tions. As an example consider the support MVM provides for threads.
C++developers typically have to use the OS’s support for threads, and
torely on OS-level semaphore or mutex libraries for thread synchro-
nization. To remove this dependency on the OS, we developed
thread, mutex, and semaphore abstractions and the corresponding
implementations in the MVM layer. Other resource abstractions
were provided similarly. For a given target host, the executable im-
age of MVM is created by building the MVM source code with the
appropriate implementation files included.

Finally, we have leveraged Prism-MW's extensible design to sat-
isfy the flexibility and context awareness requirements. As de-
picted in Fig. 1b, a number of advanced run-time functionalities
(e.g., monitoring, remote deployment, and run-time adaptation)
are developed by extending the core Prism-MW facilities. We will
describe the details of these facilities in Sections 6.2, 7 and 8.

6.2. Component mobility

Our objective in the development of logical mobility support in
Prism-MW has been to keep the implementation consistent with
the architectural model, and thus minimize the possibility of archi-
tectural erosion due to extensive dynamism in this setting. For
that, we have realized support for mobility at the level of system’s
component. In turn the mapping between the decisions made dur-
ing run-time analysis (e.g., a new deployment architecture) and the

980 S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989

changes required for effecting them becomes straightforward.
Prism-MW has facilities to support both stateless and stateful
mobility of components. The process of stateless migration can
be described as follows. The sending Admin packages the migrant
element into an ExtensibleEvent: one parameter in the event is
the compiled image of the migrant element itself (in the Java ver-
sion of the middleware this corresponds to a collection of Java class
files, while in the C++ version this corresponds to a Dynamic Link
Library); another parameter denotes the intended location of the
migrant element in the destination subsystem’s configuration.
The Admin then sends this event to its Connector, which forwards
the event to the attached remote Connectors. Each receiving Con-
nector delivers the event to its attached Admin, which reconstitutes
functional modules (i.e.,, components and connectors) from the
event, and invokes the [Architecture’s add and weld methods to in-
sert the modules into the local configuration.

The technique described above provides the ability to transfer
code between a set of hosts. As such, the stateless technique is use-
ful for performing initial deployment of a set of components and
connectors onto target hosts. Cases that require run-time migra-
tion of architectural elements need the migrant elements’ state
to be transferred along with the compiled images of those ele-
ments. Additionally, the migrant element may need to be discon-
nected and deleted from the source host (if the element’s
replication is not desired or allowed). We provide two complemen-
tary techniques for stateful mobility: one serialization-based and
one event stimulus-based.

The serialization-based technique relies on the existence of
Java-like serialization mechanisms in the underlying PL. Instead
of sending a set of compiled images, the local Admin possibly dis-
connects and removes the (active) migrant elements from its local
subsystem (using the IArchitecture’s unweld and remove methods),
serializes each migrant element, and packages them into a set of
ExtensibleEvents, which are then forwarded by the Connector. Ad-
min on each receiving host reconstitute the architectural elements
from these events and attach them to the appropriate locations in
their local subsystems.

If the serialization-like mechanism is not available, we use the
event stimulus-based technique: the compiled image of the archi-
tectural element(s) to be migrated is sent across a network using
the stateless technique. In addition, each event containing a mi-
grant element is accompanied by a set of application-level events
needed to bring the state of the migrant element to a desired point
in its execution. Once the migrant architectural element is received
at its destination, it is loaded into memory and added to the archi-
tecture, but is not attached to the running subsystem. Instead, the
migrant element is stimulated by the application-level events sent
with it. Any events the migrant element issues in response are not
propagated, since the element is detached from the rest of the
architecture. Only after the migrant architectural element is
brought to the desired state is it welded and enabled to exchange
events with the rest of the architecture. While less efficient than
the serialization-based scheme, this is a simpler, PL-independent
technique that is natively supported in Prism-MW. At the same
time, the memory cost of the event stimulus-based technique
may be large if the quantity and size of events needed to update
the state of a component are large.

6.3. Code generation

In order to leverage architectural models to automate system
construction, XTEAM provides a Prism-MW code generator that
synthesizes C++ source code for the Prism-MW platform. As noted
before, this not only reduces development effort, but also ensures
that the implemented architecture matches the modeled architec-

ture, which is essential when design decisions are based on analy-
ses of that architecture.

The Prism-MW code generator synthesizes source code to the
greatest extent possible, depending on the level of detail included
in the architectural model. Some architectural models may include
only definitions of component types and their interfaces; in this
case, the code generator only produces skeleton code for each com-
ponent. If the interactions between components are also captured
in the architectural model, then significant amounts of glue-code
can also be generated. When component behaviors are modeled
in sufficient detail, the Prism-MW code generator may be able to
create complete component implementations, including the appli-
cation business logic. However, many architectural models may
omit the details of complex algorithms and operations encapsu-
lated within components, if these are not significant from an archi-
tectural perspective.

The Prism-MW code generator is capable of producing configu-
ration files that are optimized for efficiency (i.e., resource usage).
These configuration files utilize the modeling extensions for mo-
bile systems described in Section 4.1. For instance, the middle-
ware’s MVM layer (recall Section 6.1) allows applications to
specify whether resources are created on-demand or through a
pool, and when pooling is used, applications may control the sizes
of pools for different types of objects. Architectural models may in-
clude decisions about resource allocation, which are represented
via the mobility modeling extensions, in turn allowing configura-
tion files that control this aspect of the middleware to not only
be automatically generated, but also to be optimized with respect
to resource usage (e.g., use the least amount of memory).

7. Context awareness and monitoring

Transparency (i.e., hiding distribution, location, and interaction
of distributed objects) is considered to be one of the cornerstones
of engineering distributed software systems (Tanenbaum and van
Steen, 2006), as it allows for the management of complexity asso-
ciated with the development of such systems. In modern distrib-
uted systems, transparency is often achieved by employing a
middleware platform. While some of its aspects are beneficial in
mobile computing (e.g., support for heterogeneous data serializa-
tion), transparency has been shown to suffer from major shortcom-
ings when applied extensively in this setting (Tanenbaum and van
Steen, 2006; Capra et al., 2003). For instance, the concept of loca-
tion, which is often abstracted away completely by traditional
middleware platforms, becomes a first-class concern that needs
to be readily available for mobile software systems. Therefore, mo-
bile and pervasive setting calls for context awareness (i.e., the abil-
ity to detect changes in certain crucial, potentially external,
parameters and adjust accordingly) (Capra et al., 2003; Schilit
et al.,, 1994; Julien and Roman, 2002).

To support various aspects of awareness, Prism-MW provides
support for architectural reflection (Tisato et al., 2000) via meta-level
components. A meta-level component is implemented as an Exten-
sibleComponent, which contains a reference to the Architecture
object via the IArchitecture interface and allows the component’s in-
stances to make run-time changes on the system'’s local (sub)archi-
tecture. The ExtensibleComponent class can also have references to
abstract classes that provide specific (meta-level) functionality
(see Fig. 3). The role of components at the meta-level is to observe
and/or facilitate different aspects of the execution of application-le-
vel components. At any point, the developer may add meta-level
components to a (running) application. Meta-level components
may be welded to specific application-level connectors to exercise
control over a particular portion of the architecture. Alternatively,
a meta-level component may remain unwelded and may instead

S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989 981

exercise control over the entire architecture via its pointer to the
Architecture object. The structural and interaction characteristics
of meta-level components are identical to those of application-level
components, eliminating the need for their separate treatment in
the middleware.

To date, we have augmented ExtensibleComponent with several
extensions (Malek et al., 2007). Below we describe in detail a par-
ticular type of a meta-level component that we have developed for
monitoring system’s properties and component redeployment. We
describe the component’s support for monitoring below, and pres-
ent its support for run-time redeployment and mobility in the next
section.

In support of monitoring, Prism-MW provides the Abstract-
Monitor class associated through the Scaffold with every Brick
(shown in Fig. 3). This allows for autonomous, active monitoring
of a Brick’s run-time behavior. We have developed several imple-
mentations of the AbstractMonitor class, two of which are shown
in Fig. 3: EvtFrequencyMonitor records the frequencies of differ-
ent events the associated Brick sends, while NetworkReliability-
Monitor records the reliability of connectivity between its
associated connectors and other, remote connectors using a com-
mon “pinging” technique. Fig. 1b depicts the instrumentation of
a software system'’s architectural elements with the above mon-
itoring facilities.

A meta-level components, called Admin, is used to collect and
assess the monitored data. An Admin component is an Extensible-
Component with the implementation of AbstractDeployment in-
stalled on it (recall Fig. 3). Since the Admin component on each
device contains a pointer to its Architecture object, it is able to ac-
cess the architectural elements in its local address space and ob-
tain their monitored data. An Admin also serves as a gauge
(Garlan et al., 2001) for assessing the data that is collected. For in-
stance, in our framework an Admin determines when the monitor-
ing data on an associated device has become stable. Afterwards, it
forwards the data to DeSi, which then uses the collected data to
populate its model with the actual system properties. At this point,
one of the algorithms provided by DeSi (recall Section 5.2) could be
executed for improving the system’s QoS. Finally, the result of
analysis is reported back to the individual Admins, which coordi-
nate the redeployment of the system between different hosts in
the manner described in the next section.

8. Architecture adaptation and deployment

As discussed previously, the nature of mobile systems mandates
frequent changes in the system parameters and possibly the provi-
sioned QoS. As such, to accommodate the new conditions, the sys-
tem'’s architecture and deployment may have to be changed (recall
Section 5). The architectural analysis may prescribe changes that
could range from small, localized (e.g., installation of a new com-
ponent, replacement of an old component) to system-wide (e.g.,
changing the architectural style, new deployment architecture)
adaptations of the software. In either case, support for both remote
component deployment (i.e., remote installation) and component
mobility via migration are crucial. We elaborate on the former be-
low and describe the framework’s support for the latter in the next
section.

Prism-MW allows components to exchange ExtensibleEvents,
which may contain computational elements (components and con-
nectors) as opposed to data. Additionally, ExtensibleEvents imple-
ment the Serializable interface (as shown in Fig. 3), allowing their
dispatching across address spaces. These two properties, along
with the middleware’s reflection capability (recall Section 7), form
the basis for component mobility in systems built on top of Prism-
MW.

In order to deploy the desired set of architectural elements onto
a set of target hosts, we assume that a skeleton configuration is
preloaded on each host (the shaded objects in Fig. 1d). The skeleton
configuration consists of an Architecture object that contains an Ad-
min component and an associated connector with several Distribu-
tionEnabledPorts (i.e., ExtensiblePorts with the appropriate
implementation of AbstractDistribution installed on them) attached
to it. Admin component’s role in monitoring a mobile software sys-
tem was described in the previous section. Similarly, since the Ad-
min component on each device contains a pointer to its Architecture
object, it is capable of making run-time changes to its local subsys-
tem’s architecture: instantiation, addition, removal, connection,
and disconnection of components and connectors. Admins are able
to send and receive the ExtensibleEvents containing application
components from any device to which they are connected.

As depicted in Fig. 1d, Admins and DeSi collaborate as follows:

1. Deployer, a designated Admin component in charge of coordina-
tion, receives a new deployment architecture from DeSi. Deploy-
er then sends events to inform each Admin of its new local
configuration and of the remote locations of software compo-
nents required for making changes to its configuration.

2. Each Admin determines the difference between its current and
new configurations, and issues a series of Prism-MW Events
to remote Admins requesting the components that are to be
deployed locally. If devices that need to exchange components
are not directly connected, the relevant request events are sent
to the Deployer, which then mediates their interaction.

3. Each Admin that receives an event requesting its local compo-
nents to be deployed remotely, detaches these components
from its local configuration, serializes them, and sends them
as a series of events via its Connector to the requesting device.

4. A recipient Admin reconstitutes the migrant components from
the received events and invokes the appropriate methods on
its Architecture object to attach the received components to its
configuration.

While the above protocol is not applicable to all classes of sys-
tems (e.g., highly decentralized, disconnected, and ad hoc mobile
systems), other mechanisms intended for such systems can be
developed in a similar manner, via different implementations of
Admin and Deployer components.

9. Evaluation

We have a broad experience applying the overall framework to
several distributed and highly heterogeneous systems (Malek et al.,
2006, 2007; Malek, 2007). In each case, we investigated the practi-
cality of the framework in meeting the unique challenges pre-
sented by mobile computing. In this section, we describe our
experience applying the framework to a family of mobile robotics
systems with a specific focus on mobility concerns. We first
summarize two evaluation scenarios: environment exploration
and robot-following. We then assess, in detail, each of the
framework’s components and their collaboration with each other
separately.

Our goal in this evaluation has been to verify the framework’s
ability to satisfy the five objectives (principles) mentioned in Sec-
tion 2. In particular, we evaluate the feasibility of software archi-
tecture-based approach to designing, analyzing, implementing,
adapting, and migrating mobile systems while satisfying other tra-
ditional concerns in this setting, such as efficiency of implementa-
tion and the ability to deal with heterogeneity. In Section 10, we
enumerate and discuss the key differences between our framework
and other architecture-driven adaptation frameworks.

982 S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989

9.1. Evaluation scenarios

To scope our exposition of this work, we use mobile robotics as
our target domain. Several recent approaches have taken an expli-
cit software architectural perspective to building mobile robotics
systems, resulting in reusable design and implementation frame-
works (Brugali, 2007; Kramer and Scheutz, 2007; Georgas and Tay-
lor, 2008). At the same time, each of these approaches has tended
to neglect one or more of the issues we consider critical: explora-
tion of the design space, system modeling, analysis, traceability of
the key design decisions in the system’s implementation, deploy-
ment, and run-time adaptation in the face of development plat-
form mobility and heterogeneity. These are the issues that have
directly motivated our framework. We describe two instances of
mobile robotics systems, one of which we developed in collabora-
tion with Bosch Research and Technology Center (Bosch RTC) over
the past year. Section 9.1.1 describes a mobile robotics system that
explores and maps an unknown environment — a common scenario
for robotics applications in domains such as emergency response,
planetary science, and defense. Section 9.1.2 describes several vari-
ations of a collaborative group of mobile robots autonomously nav-
igating a path while avoiding collisions with various obstacles - a
scenario that is representative of robotic applications in domains
such as supply-chain logistics and transportation.

The applications for the two scenarios involved varying num-
bers of mobile hosts, components, and quality objectives, which
provided a broad evaluation medium of the framework. We used
three mobile hardware platforms: iRobot Create platforms en-
hanced with the eBox 3854 embedded PC, laptops, and Compaq
iPAQ PDAs. These hardware devices ran five different operating
systems: the eBox embedded PCs ran Fedora Linux, the laptops
ran Windows XP and Windows Vista, and the PDAs ran GPE 2.6
Linux and Windows CE. To control the iRobot mechanical devices,
we relied on three different libraries: the Player library (imple-
mented in C), the Create Open Interface Library (implemented in
C), and our custom-built iRobot driver (implemented in Java). This
enabled us to evaluate two versions of Prism-MW: the Java version
running on the JamVM and the GNU C++ version running on a vir-
tual machine we developed previously in collaboration with Bosch
RTC. We used Player version 2.0.5, which is implemented in C but
is also compatible with JavaClient2, presenting us with two options
for interacting with iRobots for each implementation of Prism-
MW. Finally, there were four other devices used in our scenarios:
iRobot Home Bases (to dock iRobots and charge batteries during
scenario execution), Creative Webcam and Logitech QuickCam
cameras (controlled via the Java Media Framework, or JMF), and
Sun SPOT Java-based sensors.

9.1.1. Environment exploration
The first scenario, environment exploration, involves mobile ro-
bots exploring and mapping an unknown environment with ran-

domly-placed obstacles, as shown in Fig. 4. Five teams, each
consisting of two graduate students, built unique solutions for this
scenario during a 10-week, two-part project. Among the ten stu-
dents, only one had prior robotics experience. The project allowed
us to investigate whether a software architecture-focused develop-
ment and implementation framework could (1) simplify the initial
development, (2) enable subsequent adaptation of mobile systems,
and (3) make the developed code more portable and reusable. All
three of these objectives are critical factors in the development
of mobile software systems, which are characterized by the heter-
ogeneity of the computing substrate and often force developers to
create one-off, highly coupled, and rigid software systems.

The project began before but was completed after we obtained
the iRobots, which parallels what typically occurs in industrial
embedded system development - the design and development of
software begins before the hardware platform becomes available.
The solutions were finally deployed in the heterogeneous environ-
ment described above consisting of iRobots, laptops, and PDAs. The
first development phase of the exploration system utilized a virtual
environment simulation. The second development iteration re-
placed the simulated robots with the newly obtained, real iRobots.

All five teams succeeded in preserving their designed architec-
tures during implementation and deployment to the iRobots, dem-
onstrating the framework’s ability to prevent architectural erosion.
Components that controlled the high-level behavior of the virtual
robots ported seamlessly to the new hardware platforms. Although
all the solutions were operational, two did not work as intended
due to misuse of the iRobot’s API (i.e., programming errors that fall
outside of the scope of the challenges intended to be addressed by
our framework). Functionally, the five developed applications were
similar. Minor variations included the introduction of a component
that implements the A" algorithm for point-to-point navigation.
However, the quality attributes of the solutions were observably
and measurably different.

The differences in quality were a direct consequence of the sig-
nificant differences in the five software architectures and deploy-
ments. The teams relied on different architectural styles, which,
in turn, endowed their architectures with different characteristics.
This experience verified our earlier assertions that while many
software architectures may provide the same functionality, they
may exhibit significantly different quality attributes.

Fig. 5 shows two example architectures that emerged from this
project. The peer-to-peer solution in Fig. 5a is scalable and tolerant
of host failures. On the other hand, it may experience data-consis-
tency and synchronization problems if the events sent by peers are
dropped, arrive too late or out of order, or are processed in the
wrong order. The client-server solution in Fig. 5b has a central
GRID component that ensures a consistent global view of the sys-
tem data and avoids synchronization problems. At the same time,
this component represents a single point of failure, and a potential
performance bottleneck. Additionally, the stateless robots operate

Fig. 4. Two robots are controlled remotely to map out a 5 x 5 grid with unknown obstacles. The initial configuration (a) is the blank map containing only the robots’ positions
and orientations. An intermediate configuration (b) has the majority of the grid traversed and four found obstacles.

S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989 983

only in the proximity of the central component, which is an unde-
sirable property in a mobile environment.

This experience demonstrated the framework’s ability to meet
the heterogeneity and reusability requirements in the mobile set-
ting. Students were able to easily include the robot control libraries
as part of the middleware MVM layer (recall Section 6.1) and use
them inside application-level components developed in the first
phase of the project. Additionally, many of the components devel-
oped by the students were reused in our subsequent work, as we
will describe in the next section.

9.1.2. Robot-following

Our findings from Section 9.1.1 encouraged further investiga-
tion of the utility of our framework in the field of mobile robotics.
For example, we observed that some environment-exploration
solutions were significantly more power-efficient than others and
our framework could have discovered such properties during the
architectural design phase. In collaboration with Bosch RTC, we
used the framework to design and implement solutions to several
variations of a second scenario: robot-following. The framework
provided invaluable support throughout the development lifecy-
cle: from early modeling, design, and initial analyses to subsequent
implementation, deployment, monitoring, adaptation, and
redeployment.

In the robot-following scenario, a platoon of mobile robots
assembles autonomously and follows a leader robot along a given
path (Fig. 6a). Fig. 6 depicts the execution of a representative in-
stance of the robot-following scenario: one robot, designated as
the leader, follows a line on the floor using front cliff sensors; an-
other robot uses a mounted camera to observe and follow the lea-
der robot; finally, a third robot uses its camera to follow the second
robot. Fig. 7 shows the architecture of the leader robot with
line-following components (LineFollower and LineFollowerPeer)
deployed. The architectures of the follower robots are identical,
except those two components are replaced with color-following

P2P Connector
P2P Connector

Connector ()

) Connector

components. Other scenarios not described here contain compo-
nents that perform infrared-following and spacial coordinate-fol-
lowing in similar manners.

Along the path, the robots encounter base stations that assess
the state of the robots, allow a robot to dock to recharge its battery
(Fig. 6b), upload and download data to and from the robot, and
even install software updates on the robot. In addition to their
on-board sensors, the robots collect and process data from external
Sun SPOT sensor nodes deployed throughout the environment.

For example, the Sun SPOTSs can act as remote controllers to cor-
rect the orientation of robots that have lost sight of the robot in
front of it.

The robots collaborate by exchanging data and, when necessary,
computational components (i.e.,, mobile code) to enable system
autonomy and adaptability. Each robot runs on-board analyses to
track its health. For example, a robot that is depleting its battery
too rapidly may reduce its remote communication and/or its on-
board computation. A recharged robot may rejoin the convoy when
it sees the trailing robot. The robots execute autonomous control
components to dock and update software. Alternatively, users
may issue commands from the management and control platforms
(laptops and iPAQ PDAs) and receive feedback about the robots’
progress (e.g., position and direction) and resource status (e.g., en-
ergy consumption) on a graphical display, as shown in Fig. 8.

Finally, an unexpected outcome of our experience was that the
engineers found the framework to be helpful not only for improv-
ing QoS, but also for rapidly testing a fix to a problem during the
development. This is a task that is traditionally performed manu-
ally in this setting, which our framework’s redeployment and mon-
itoring facilities can help to streamline.

9.2. Assessment of framework capabilities

Using the two mobile robotics scenarios, we evaluated each of
the elements of the framework individually, as well as the ability

CS Connector
CS Connector

CS Connector

CS Connector

CS Connector

Fig. 5. Two different architectures for the environment exploration scenario, each relying on a different style: peer-to-peer (a) and client-server (b).

Fig. 6. (a) A platoon of three robots is following a leader and passing by a base station, shown in the top-left corner. (b) The middle robot leaves the platoon to dock with the

base station.

984 S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989

EnergyMonitor
[|
u
LineFollower

LineFollowerPeer

c
<
o

(5]
7]
-]

]

=
<
[
>

w

SunSPOTController

4-]:
52
|53
Se
S E
=]
)

()

I_l::—| L

Radio Signal

()
Ul Connector

SunSPOTRemote

GUl/
DeploymentUIComp Display

Component

A - request port
u - reply port
2 - extensible request port
“ - extensible reply port
R - multicast request port
H - multicast reply port

. _ - communication link
é - radio request port across remote ports

- radio reply port

- host

- communication link
across local ports

Fig. 7. A software architecture configuration deployed on a single robot and a single
stationary host. The four types of ports support local interaction, point-to-point
distributed interaction (extensible ports), multicast distributed interaction (multi-
cast ports), and socket-like peer-to-peer distributed interaction (radio ports).

of the overall framework to address end-to-end system-quality
goals.

9.2.1. Mobility modeling

We modeled several candidate architectures for each scenario
using the architectural modeling facilities provided by XTEAM
(Fig. 9 shows a partial model). The models flexibly captured the rel-

B Robot Following GUT %

Leader Power

=

Follower 1 Power

N)

Follower 2 Power

Base Station Charging
Follower 1

Fig. 8. Graphical display of the robot-following application. The middle robot has
departed to dock with the base station.

evant system parameters and quality objectives. Moreover, we
were able to easily reuse common portions of the models across
different instances of the application family. The XTEAM environ-
ment allowed us to assess different configurations of the compo-
nents and connectors in our system, which proved useful in
making architectural decisions. For example, design-time energy-
consumption analysis convinced us of the need to incorporate a
new functionality in the system: when needed, robots can autono-
mously dock to the base stations to recharge. We used the XTEAM
modeling extension for architectural styles to check selected con-
figurations for completeness and consistency. We also performed
other types of analysis (e.g., reliability and performance) which
demonstrates one of the framework overarching principles,
namely support for modeling and analyzing heterogeneous
concerns.

Furthermore, from XTEAM, we were able to generate the under-
lying run-time model of DeSi, as well as the corresponding skele-
ton structure of the system’s implementation in Prism-MW. The
tightly integrated environment (e.g., model transformation and
code generation capability) enabled us to alleviate the overhead
associated with adopting an architecture-driven development
approach.

9.2.2. Mobility analysis

During the design phase and prior to initial deployment of the
software, we compared quality attributes for different designs
and determined the most suitable deployments. We simulated
the execution of the robotic systems in postulated scenarios and
observed how quality metrics varied over time. This result corrob-
orated our earlier empirical studies (Seo et al., 2008), and helped us
to find the most suitable software architectural configuration for
systems of robots.

At run-time, DeSi, which was running on the laptop, continu-
ously analyzed the overall deployment architecture of the system.
For instance, in the case of the robot-following scenario that con-
sisted of 5 hosts and 13 software components, DeSi used its algo-
rithms to find the best deployment among 5" = 1,220,703,125
possible combinations. The choice of algorithm (e.g., MIP versus
genetic) was based on the number of location constraints specified
in the model.

In our experiments, we observed more improvement in some
QoS dimensions than others. For instance, since our experiments
were conducted on a dedicated LAN, we noticed relatively few
redeployment decisions intended to improve the system’s latency
and throughput. On the other hand, we observed significantly
more redeployments intended to minimize the energy consump-
tion of the battery-depleted robots. From our experiments we can-
not conclude an absolute level of improvement that one should
expect by using the framework, since such improvements heavily
depend on the system’s characteristics and the environmental set-
up. For example, in a controlled study (Malek, 2007) performed on
a dedicated LAN, we observed the energy usage of the system could
improve on average by 94% as a result of timely redeployment of
the system’s components. The same study showed that while
improvements in energy consumption could be lower when the
communication occurs on a slow network link, other QoS dimen-
sions (e.g., latency) become a lot more sensitive to deployment
decisions and could improve significantly through redeployment.
Our experience with the family of mobile robotics systems corrob-
orated these trade-offs, and served as a proof of concept that such
improvements can be obtained in real-world systems.

9.2.3. Mobility implementation support

We leveraged Prism-MW to deploy the desired architecture
onto the robot hardware while enforcing the constraints of speci-
fied architectural styles. Prism-MW's small footprint (less than

S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989

PrismeADl Wobet [Rabolhrchiteciure filobotsRebotMotbArc hitecturesl]

985

#J/d A RE DTTEDED ?
x T N Pibicrencrs fuincien PR — T Zowa 108w
"
o
b
4
& Enatg
AL
-
-
e ;" 2
- s y
® -]
x | Mut EvenEaConnecnr |
x PrivmmAln
X W e O e e oo
& siuax 20
iy T Mo e P o (v
u
oP < '

»

4

&

-

G B

BXxxx§

P

Wabot [handle FilobatfRatetMobotMetal emps nenta/Manegnt Manage g ementations]

FJ/d A M METEOED ?

=] Bane Zoom [T+

Betaacr

Bast

PR

EDH1 0% PneAL 5725 M

Fig. 9. Screenshots of small portions of the XTEAM model of the mobile robotics architecture.

2.3 KB) made it possible to deploy Prism-MW components both on
iRobots and on significantly more resource-constrained Sun SPOTSs,
providing common communication mechanisms, interfaces, and
protocols. On average, Prism-MW proved to be efficient, which is
a key requirement for a middleware platform intended for execu-
tion on mobile devices: Prism-MW introduced less than 4%
overhead on dynamic memory consumption and negligible perfor-
mance overhead (around 0.5%) when compared to equivalent base-
line solutions implemented in plain Java or C++.

The middleware also proved to be scalable. In one experiment,
intended to evaluate the middleware’s performance, a middleware
instance running on one of the PDAs was configured with 10 shep-
herd threads and a queue of 1000 events. The system’s architecture
consisted of a total of 51 software components formed in a flat
architecture communicating over a single connector. One software
component sent 10,000 request events to 50 other components,
resulting in a total of 500,000 reply events being handled in under
1.8 s. In this experiment, since the objective was to evaluate the
middleware’s performance, the component’s did not have robot-
ics-specific application logic.

We successfully leveraged Prism-MW's extensible design to de-
velop a number of robotics-specific facilities. This experience,
along with our previous results (Malek et al., 2005b; Malek et al.,
2007), verified the practicality and flexibility of Prism-MW’s exten-
sibility mechanisms, which is particularly important in the mobile
systems setting as it permits customization for heterogeneous mo-
bile platforms. For example, Prism-MW’s flexibility and extensibil-
ity allowed us to deal with robots leaving the convoy to recharge.
Using Prism-MW’s communication facilities, the robot departing to
dock notifies its follower, causing the remaining robots to dynam-
ically adjust their leader-follower roles to maintain their organiza-
tion. As we mentioned earlier, Prism-MW supports communication
even between components deployed on different platforms and
developed in different programming languages.

These experiments enabled us to verify the framework’s ability
to satisfy some of its overarching principles of efficiency, perfor-
mance, and flexibility.

9.2.4. Architecture awareness and monitoring

In the robot-following applications, the monitoring capabilities
of Prism-MW and DeSi allowed users to observe and control sys-
tem behavior from a management console (implemented by the
DeploymentUIComp and Display components in Fig. 7). The manage-
ment console allows users to issue control commands directly to
application components and architectural adaptation commands
such as adding or removing components. Our assessment of
Prism-MW’s monitoring support shows that monitoring on each
host induced as little as 0.1% and no greater than 10% in memory
and computation overheads. In our experiments, we monitored
parameters required for performing reliability, performance, and
energy consumption analysis. To further reduce the overhead of
monitoring, we utilized a technique where the frequency of sam-
pling a system resource varies based on the amount of fluctuations
in that resource.

For example, the system monitored itself for failures and ineffi-
cient battery usage. An energy-efficient architecture is highly
desirable because the robots typically exhaust their batteries
quickly. To that end, we developed the EnergyMonitor component
that employs the architecture-monitoring and energy-awareness
facilities of our framework. EnergyMonitor is an implementation
of AbstractMonitor, another instance of reliance on Prism-MW’s
extensibility (see Section 7). The EnergyMonitor component is
responsible for making decisions about when to dock and charge
particular robots. Additionally, as we described in Section 7, Ener-
gyMonitor periodically sends the aggregated data to an instance of
DeSi running on the laptop. DeSi then calculates a new deployment
architecture to prolong the system lifetime through redeployment

986 S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989

of energy-intensive components to platforms with greater capacity
(e.g., laptop, docks).

9.2.5. Architecture adaptation and deployment

Prism-MW’s dynamic redeployment capabilities allowed seam-
less adjustment of robot functionality at run-time. When software
components or hardware devices (e.g., cameras) failed, the system
detected these failures and took appropriate action to alleviate the
situation, demonstrating the practical applications of the run-time
adaptation capabilities of the framework. For instance, the system
automatically deployed new software components to replace fail-
ing versions, or adapted the existing software to use a backup
hardware device, such as an infrared sensor to replace a failed cam-
era. When the robots’ battery power diminished, the redeployment
analysis suggested a new deployment architecture with energy-
intensive components deployed on the docking base. The frame-
work then initiated a redeployment of the system.

The adaptation capabilities and software updates rely on a run-
ning skeleton configuration that corresponds to the Admin and
Manager components in Fig. 7. DeSi is used throughout the system
for: (1) initial deployment of the system (e.g., the ColorFollower and
LineFollower components are initially deployed to corresponding
robots), (2) adaptive redeployment (e.g., when the leader robot
goes to a docking station, DeSi is used to redeploy the LineFollower
component to the new convoy leader) and (3) pushing software
updates (e.g., besides recharging the battery, the docking stations
feed the software updates to the robots).

The applications were initially deployed on the robots via
Prism-MW’s stateless component mobility support. This resulted
in the class files of 6 components with a total size of 56 KB to be
transmitted to the robots. Afterwards, 6 Prism-MW events were
sent from DeSi to the Admin component for enacting the system’s
initial architecture. The total amount of time required for the sys-
tem’s initial deployment was 1.43 s.

In scenarios that required redeployment or replacement of
software components, the framework leveraged Prism-MW’s
stateful component mobility support to adapt the system at
run-time. While the actual overhead of redeployment (in terms
of the time that the system is unavailable) depends on the size
of software components and the characteristics of network links,
in the cases we encountered, this overhead was not prohibitive.
For instance, on average, the mobility analysis resulted in two
components to be serialized and migrated and such changes re-
quired 0.25s. for completion. Finally, note that the overhead
may also depend on the application-specific characteristics of
the system. We encountered such a situation when as a result
of redeploying the ColorFollower component, the communication
with the robot’s camera had to be reinitialized, resulting in an
additional delay of 0.93 s. When such delay was not desirable,
we specified a locational constraint to prevent the component
from redeployment.

10. Related work

There are four general categories of research relevant to our
work: architecture-based implementation and evolution, quality
attributes of software architectures, software mobility technolo-
gies, and development frameworks for mobile robotics systems.
We provide an overview of the most relevant previous works from
these areas below, and outline the differences between them and
our approach.

Previous work has investigated the development and evolution
of a software system at the architectural level. Archjava (Aldrich
et al., 2002), an extension of Java, ensures that the implementation
conforms to architectural constraints. However, it lacks explicit

support for mobility, beyond what is provided in the Java language.
ArchJava also does not have any constructs to support quality
assessment of different architectures, or any tools for aiding and
optimizing the system’s deployment. Aura (Sousa and Garlan,
2002) is an architectural style and supporting middleware for
ubiquitous computing with a special focus on context awareness,
and context switching. Although Aura supports component mobil-
ity and recognizes the importance of QoS in ubiquitous applica-
tions, it makes several simplifying assumptions (e.g., that the
different QoS are independent from one another, which is clearly
not the case for many QoS). Aura is thus only applicable to limited
classes of applications in the embedded setting.

We categorize the techniques available for assessing the prop-
erties of a software system at the architectural level into two
groups: design-time and run-time analysis.

With respect to design-time analysis, we consider Prediction-
Enabled Component Technology (PECT) (Hissam et al., 2002) and
Cadena (Childs et al., 2006) to be most closely related to our work.
PECT is a proposed framework for the integration of component
technologies and analysis technologies (Hissam et al., 2002). A
PECT can be used to determine the emergent properties of a highly
complex assembly of software components when certain charac-
teristics of the individual components can be certified. We are
not aware of an application of PECT to the mobile computing do-
main. Cadena is an extensible environment for modeling and
development of component-based architectures (Childs et al.,
2006). Cadena also provides an integrated model-checking infra-
structure, Bogor, which enables automatic verification of the logi-
cal properties of a system, such as event sequencing. However,
Cadena provides little support for the implementation of additional
types of non-functional analysis.

The most relevant previous work in run-time analysis deals
with the quality of a software system’s deployment architecture.
I5 (Bastarrica et al., 1998) proposes the use of binary integer pro-
gramming for generating a deployment of a distributed application
that minimizes the overall remote communication. As such, I5 is
computationally expensive and does not provide support for other
QoS. I5 also does not deal with run-time reconfiguration, but as-
sumes all the parameters for determining the optimal deployment
are stable and known a priori. Kichkaylo et al. (2003) provide a
model for describing a distributed system in terms of the con-
straints on its deployment, and an Al planning algorithm for solv-
ing the model. This approach does not provide approximative
solutions for large application scenarios or deployment and run-
time facilities for deployment.

Mobility technologies are also related to our work. XMIDDLE
(Mascolo et al., 2002) is a data-sharing middleware for mobile
computing. It allows applications to share data encoded as XML
with other hosts to access the shared data when disconnected from
the network and reconcile data inconsistencies. Lime (Murphy
etal., 2001) is a middleware that provides a coordination layer that
can be exploited for designing applications that exhibit either log-
ical or physical mobility. Lime is specifically targeted at the com-
plexities of ad hoc mobile environments. MobiPADS (Chan and
Chuang, 2003) is a middleware that supports active deployment
of augmented services for mobile computing. It allows dynamic
adaptation to support configuration of resources and optimize
the operations of mobile applications. While Prism-MW may in-
clude features and exhibit characteristics that are similar to those
provided by some of the above technologies, unlike them, it pro-
vides native implementation facilities for software architecture-
based development and adaptation in a manner that is suitable
to mobile systems. Finally, unlike our framework, the above mobil-
ity technologies do not explicitly support capturing relevant
parameters that affect a system’s QoS and do not provide analysis
facilities to improve system deployment.

S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989 987

Over the past several years, a number of technologies for devel-
oping robotics software systems have emerged. Several such tech-
nologies are surveyed in (Kramer and Scheutz, 2007; Brugali, 2007;
Georgas and Taylor, 2008). They typically provide higher-order
development support for robotics software, in the form of inte-
grated development environments, libraries, frameworks, and
middleware. Unlike our approach, these technologies are not gen-
erally applicable to other domains and they do not attempt to
explicitly address the challenges posed by mobility. Sykes et al.
(2008) developed a 3-layer architecture that uses formalized goals
to control a robotics system. The highest layer in the architecture
generates reactive plans from goals, the middle layer assembles
and configures the components according to the plans and execute
the plans, and the lowest layer contains the deployed components.
To support architecture-based implementation, Sykes et al. used
Backbone, a language that allows implementation of components
as Java objects (McVeigh et al., 2006). Backbone allows instantia-
tion and interconnection of components and can modify an archi-
tecture at run-time, similarly to our Prism-MW’s capabilities. The
architecture can handle some application failures by replacing
components or choosing a new plan step when application reaches
an unexpected state. Future work includes plans to perform
run-time re-planning from different goals at the highest layer;
however, this work focuses on system self-management and not
mobility concerns. Georgas and Taylor (2008) applied the Knowl-
edge-Based Architectural Adaptation Management (KBAAM)
(Georgas and Taylor, 2004) approach to robotics applications. The
architectural model manager represents the system architecture
model with connectors and components as first-class entities.
The architectural run-time manager implements and executes
the model and collects run-time data for the architectural adapta-
tion manager, which, in turn, uses that data and environmental
data to evaluate preset policies to determine the need for adapta-
tion. The model manager can then adapt the model accordingly,
and inform the run-time manager to change the system architec-
ture at run-time. This framework leverages several languages and
tools, e.g., XADL 2.0 (a highly extensible XML-based ADL) for archi-
tectural modeling, extended xADL schema for policy support, and
ArchStudio 3 for run-time architecture implementation and evalu-
ation. Again, this work did not focus on QoS and mobility concerns.

11. Conclusion

Software architecture provides useful abstractions, techniques,
and tools for designing and organizing software systems. Further,
software architecture is particularly important in the case of com-
plex pervasive and mobile software systems. In this paper, we have
presented a software architecture-based framework that provides
complete support for the entire life-cycle of a mobile software sys-
tem. The framework consists of an integrated tool suite that allow
for design, analysis, implementation, deployment, and run-time
migration of mobile software systems. At design-time, the frame-
work is used to assess the quality attributes of the system’s initial
architecture. Once a good initial architecture is determined, the
framework’s architectural middleware and code-generation facil-
ity ensure that the implemented system satisfies the architectural
requirements. At run-time, the framework copes with the chal-
lenges posed by the highly dynamic nature of mobile systems
through continuous monitoring and calculation of the most suit-
able architecture. If a better architecture is found, the framework
adapts at run-time the software, potentially via component
mobility.

Our experience with applying the framework to a family of dis-
tributed mobile robotics systems has been positive. The framework
helped us to improve the quality of the software built within the

robotics domain and make the process of designing, implementing,
and maintaining that software more efficient. In particular, it al-
lowed us to alleviate the challenges posed by mobility that devel-
opers often face in this setting. We are currently in the process of
transitioning the methodology and the technologies underlying
this work to our industrial collaborators at Bosch and anticipate
a number of additional, interesting challenges as a result of their
application of the framework to new settings.

Our experience has also suggested several remaining challenges
that form avenues of our future work. One challenge pertains to a
class of mobile systems that are long lived. These systems require a
solution that is itself adjustable. For instance, while the system’s
architects may choose a computationally expensive redeployment
strategy initially (e.g., a precise but inefficient redeployment algo-
rithm), during the system’s execution they may be forced to switch
to light-weight system monitoring and fast, though less precise,
redeployment calculations. In other words, the framework would
have to be able to reflect on itself and adjust accordingly. Another
factor that must be taken into account is the amount of downtime,
or downgraded QoS, the system will experience in order to migrate
a component. In fact, sometimes a suboptimal deployment archi-
tecture may be preferable if it can be deployed more quickly.

While our framework is not the first software architecture-
based development framework, it is the first to offer complete
life-cycle support for the development of mobile systems. Our
framework focuses on the most challenging of those concerns that
engineers encounter when developing mobile systems, though
more concerns remain. This framework is a first step toward an
integrated start-to-finish tool suite for development of mobile
systems.

Acknowledgements

This work is partially funded by: contract W9132V-07-C-0006
with US Army Geospatial Center; NSF grants 0820060, 0820170,
0312780, and 0120778 (as part of the Center for Embedded Net-
work Sensing (CENS)); Bosch; and a gift from the Okawa
Foundation.

References

Abowd, G.D., Allen, R., Garlan, D., 1995. Formalizing style to understand
descriptions of software architecture. ACM Transactions on Software
Engineering and Methodology 4 (4), 319-364. doi:10.1145/226241.226244.

Aldrich,]., Chambers, C., Notkin, D., 2001. Archjava: connecting software
architecture to implementation, In: Proceedings of the 24th International
Conference on Software Engineering (ICSE02), ACM New York, NY, USA, pp.
187-197.

ANSI/IEEE standard 1471 and ISO/IEC 42010, 2007. <http://www.iso-architecture.
orgfieee-1471>.

Bastarrica, M.C., Shvartsman, A.A., Demurjian, S., 1998. A binary integer
programming model for optimal object distribution. In: Proceedings of the
Second International Conference on Principles of Distributed Systems.

Brugali, D., 2007. Software Engineering for Experimental Robotics (Springer Tracts
in Advanced Robotics). Springer-Verlag, New York, Inc., Secaucus, NJ, USA.
Capra, L., Emmerich, W., Mascolo, C., 2003. Carisma: context-aware reflective
middleware system for mobile applications. IEEE Transactions on Software

Engineering 29 (10), 929-945.

Carzaniga, A., Picco, G., Vigna, G., 1997. Designing distributed applications with
mobile code paradigms. In: Proceedings of the 19th International Conference on
Software Engineering, Boston, MA, pp. 22-32.

Chan, A.T.S., Chuang, S.N., 2003. MobiPADS: a reflective middleware for context-
aware mobile computing. IEEE Transactions on Software Engineering, 1072-
1085.

Cheung, L., Roshandel, R., Medvidovic, N., Golubchik, L., 2008. Early prediction of
software component reliability. In: ICSE ’'08: Proceedings of the 30th
international conference on Software engineering, ACM, New York, NY, USA,
pp. 111-120. doi:10.1145/1368088.1368104.

Childs, A., Greenwald, J., Jung, G., Hoosier, M., Hatcliff, J., 2006. Calm and Cadena:
metamodeling for component-based product-line development. Computer 39
(2), 42-50. d0i:10.1109/MC.2006.51.

http://dx.doi.org/10.1145/226241.226244
http://www.iso-architecture.org/ieee-1471
http://www.iso-architecture.org/ieee-1471
http://dx.doi.org/10.1145/1368088.1368104
http://dx.doi.org/10.1109/MC.2006.51

988 S. Malek et al./The Journal of Systems and Software 83 (2010) 972-989

Ciancarini, P., Mascolo, C., 1998. Software architecture and mobility. In: Proceedings
of the Third International Workshop on Software Architecture, ACM New York,
NY, USA, pp. 21-24.

Clements, P., Kazman, R., Klein, M., 2002. Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley.

Dashofy, E.M., van der Hoek, A., Taylor, R.N., 2005. A comprehensive approach for
the development of modular software architecture description languages. ACM
Transactions on Software Engineering and Methodology 14 (2), 199-245.
doi:10.1145/1061254.1061258.

Edwards, G., Medvidovic, N., 2008. A methodology and framework for creating
domain-specific development infrastructures. In: Proceedings of the
International Conference on Automated Software Engineering (ASE08), IEEE,
L'Aquila, Italy, pp. 168-177.

Edwards, G., Malek, S., Medvidovic, N., 2007. Scenario-driven dynamic analysis of
distributed architectures. In: Proceedings of the International Conference on
Fundamental Approaches to Software Engineering (FASE07), LNCS, Barga,
Portugal, pp. 125-139.

Garlan, D., Schmerl, B., Chang,], 2001. Using gauges for architecture-based
monitoring and adaptation. In: Proceedings of the Working Conference on
Complex and Dynamic System Architecture, Brisbane, Australia.

Georgas,].C., Taylor, RN, 2004. Towards a knowledge-based approach to
architectural adaptation management. In: Proceedings of the First ACM
SIGSOFT Workshop on Self-Managed Systems (WOSS04), Newport Beach, CA,
pp. 59-63. doi:10.1145/1075405.1075417.

Georgas, J.C., Taylor, RN., 2008. Policy-based self-adaptive architectures: a
feasibility study in the robotics domain. In: Proceedings of the International
Workshop on Software Engineering for Adaptive and Self-Managing Systems
(SEAMSO08), ACM, Leipzig, Germany, pp. 105-112. doi:10.1145/
1370018.1370038.

Hissam, S.A., Moreno, G.A., Stafford,].A., Wallnau, K.C., 2002. Packaging predictable
assembly. In: Proceedings of the IFIP/ACM Working Conference on Component
Deployment (CD02), Springer-Verlag, pp. 108-124.

Julien, C., Roman, G.C., 2002. Egocentric context-aware programming in ad hoc
mobile environments. SIGSOFT Software Engineering Notes 27 (6), 21-30.
doi:10.1145/605466.605471.

Kichkaylo, T., Ivan, A., Karamcheti, V., 2003. Constrained component deployment in
wide-area networks using Al planning techniques, in: Proceedings of the 17th
International Symposium on Parallel and Distributed Processing (IPDPS03), IEEE
Computer Society, Washington, DC, USA, p. 3.1.

Kramer,]., Scheutz, M., 2007. Robotic development environments for autonomous
mobile robots: a survey. Autonomous Robots 22 (2), 101-132. doi:10.1007/
s10514-006-9013-8.

Maier, M.W., Emery, D., Hilliard, R., 2001. Software architecture: introducing ieee
standard 1471. Computer 34 (4), 107-109.

Malek, S., 2007. A user-centric approach for improving a distributed software
system’s deployment architecture, Ph.D. Thesis, University of Southern
California.

Malek, S., Mikic-Rakic, M., Medvidovic, N., 2005a. A decentralized redeployment
algorithm for improving the availability of distributed systems. In: Proceedings
of the Third International Conference on Component Deployment (CD05), LNCS,
Grenoble, France, pp. 99-114. doi:10.1007/115907128.

Malek, S., Mikic-Rakic, M., Medvidovic, N., 2005b. A style-aware architectural
middleware for resource-constrained, distributed systems. IEEE Transactions on
Software Engineering 31 (3), 256-272. doi:10.1109/TSE.2005.29.

Malek, S., Seo, C., Ravula, S., Petrus, B., Medvidovic, N., 2006. Providing middleware-
level facilities to support architecture-based development of software systems
in pervasive environments. In: Proceedings of the Fourth International
Workshop on Middleware for Pervasive and Ad-Hoc Computing (MPACO06),
Melbourne, Australia, p. 2. doi:10.1145/1169075.1169077.

Malek, S., Seo, C., Ravula, S., Petrus, B., Medvidovic, N., 2007. Reconceptualizing
a family of heterogeneous embedded systems via explicit architectural
support. In: Proceedings of the 29th International Conference on Software
Engineering (ICSE07), Minneapolis, MN, USA, pp. 591-601. doi:10.1109/
ICSE.2007.69.

Mascolo, C., Capra, L., Zachariadis, S., Emmerich, W., 2002. XMIDDLE: a data-sharing
middleware for mobile computing. Wireless Personal Communications 21 (1),
77-103.

McVeigh, A., Kramer, ., Magee,]J., 2006. Using resemblance to support component
reuse and evolution. In: Proceedings of the 2006 Conference on Specification
and Verification of Component-Based Systems (SAVCBS06), Portland, Oregon,
pp. 49-56. doi:10.1145/1181195.1181206.

Medvidovic, N., Taylor, R.N., 2000. A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software
Engineering 26 (1), 70-93. doi:10.1109/32.825767.

Medvidovic, N., Mikic-Rakic, M., Mehta, N.R., Malek, S., 2003. Software architectural
support for handheld computing. Computer 36 (9), 66-73. doi:10.1109/
MC.2003.1231196.

Mikic-Rakic, M., Medvidovic, N., 2002. Architecture-level support for software
component deployment in resource constrained environments. In: Proceedings
of the IFIP/ACM Working Conference on Component Deployment (CD02),
Springer-Verlag, London, UK, pp. 31-50.

Mikic-Rakic, M., Malek, S., Beckman, N., Medvidovic, N. 2004. A tailorable
environment for assessing the quality of deployment architectures in highly
distributed settings. In: Proceedings of the Second International Conference on
Component Deployment (CD04), LNCS, Edinburgh, UK, pp. 1-17. doi:10.1145/
1075405.1075424.

Mikic-Rakic, M., Malek, S., Medvidovic, N., 2005. Improving availability in large,
distributed component-based systems via redeployment. In: Proceedings of the
Third International Conference on Component Deployment (CDO05), LNCS,
Grenoble, France, pp. 83-98. do0i:10.1007/115907127.

Mikic-Rakic, M., Malek, S., Medvidovic, N., 2008. Architecture-driven software
mobility in support of qos requirements. In: Proceedings of the First
International Workshop on Software Architectures and Mobility (SAMOS),
Leipzig, Germany, pp. 3-8. doi:10.1145/1370888.1370891.

Murphy, A.L, Picco, G.P., Roman, G.-C., 2001. LIME: a middleware for physical and
logical mobility, in: Proceedings of the 21st International Conference on
Distributed Computing Systems (ICDCS01), pp. 524-533. doi:10.1109/
ICDSC.2001.918983.

Perry, D.E., Wolf, A.L., 1992. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17 (4), 40.

Rolia, J.A., Sevcik, K.C., 1995. The method of layers. IEEE Transactions on Software
Engineering 21 (8), 689-700. doi:10.1109/32.403785.

Schilit, B., Adams, N., Want, R., 1994. Context-aware computing applications. In:
Proceedings of the Workshop on Mobile Computing Systems and Applications,
IEEE Computer Society, pp. 85-90.

Seo, C., Malek, S., Medvidovic, N., 2008. Component-level energy consumption
estimation for distributed java-based software systems. In: Chaudron, M.R.V.,,
Szyperski, C.A., Reussner R. (Eds.), CBSE, LNCS, vol. 5282, Springer, pp. 97-113.

Shaw, M., Garlan, D., 1996. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, Upper Saddle River, NJ.

Sousa, J.P., Garlan, D., 2002. Aura: an architectural framework for user mobility in
ubiquitous computing environments. In: Bosch, J., Gentleman, M., Hofmeister,
C., Kuusela J. (Eds.), Proceedings of the Third Working IEEE/IFIP Conference on
Software Architecture: System Design, Development, and Maintenance, Kluwer
Academic Publishers, pp. 29-43.

Sykes, D., Heaven, W., Magee,]., Kramer, J., 2008. From goals to components: a
combined approach to self-management. In: Proceedings of the 2008
International Workshop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMSO08), Leipzig, Germany, pp. 1-8. doi:10.1145/
1370018.1370020.

Tanenbaum, A.S., van Steen, M. 2006. Distributed Systems: Principles and
Paradigms, second ed. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Tisato, F., Savigni, A., Cazzola, W., Sosio, A., 2000. Architectural reflection. Realising
software architectures via reflective activities. In: Proceedings of the Second
Engineering Distributed Objects Workshop (EDOO00), Springer, pp. 102-115.

Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F., 2005. Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging, and More. Prentice Hall, Upper Saddle River, NJ.

Wolsey, L.A., 2000. Integer programming. IIE Transactions 32, 273-285.

Sam Malek is an Assistant Professor in the Department of Computer Science at
George Mason University (GMU). He is also a faculty member of the C4I Center at
GMU. Malek’s general research interests are in the field of software engineering,
and to date his focus has spanned the areas of software architecture, distributed and
embedded software systems, autonomic computing, service-oriented architectures,
and quality of service analysis. The underlying theme of his research has been to
devise techniques and tools that aid with the construction, analysis, and mainte-
nance of large-scale distributed, embedded, and pervasive software systems. His
research has been funded by NSF, US Army, and SAIC. Malek received his Ph.D. in
2007 from the Computer Science Department at the University of Southern Cali-
fornia (USC) under the direction of Professor Nenad Medvidovic. His dissertation
research was nominated by USC for the final round of the ACM Doctoral Disserta-
tion Competition in 2007. He also received an M.S. degree in Computer Science in
2004 from USC, and a B.S. degree in Information and Computer Science cum laude in
2000 from the University of California, Irvine. Malek is the recipient of numerous
awards, including USC Viterbi School of Engineering Fellow Award in 2004, and the
USC Computer Science Outstanding Student Research Award in 2005. He is a
member of the ACM, the ACM SIGSOFT, and the IEEE.

George Edwards is a Ph.D. candidate in the Computer Science Department at the
University of Southern California (USC), where he is a USC Viterbi School of Engi-
neering Fellow, an Annenberg Graduate Fellow, and a member of the Software
Architecture Research Group in the Center for Systems and Software Engineering.
He has also worked as a software architect at The Boeing Company and as a research
intern at IBM’s T.J. Watson Research Center. Edwards holds an M.S. in Computer
Science from USC and a B.S. in Computer Science from Vanderbilt University. He has
authored over twenty scholarly journal articles and conference papers on varied
topics related to software engineering and distributed systems, and, in 2008, he
received the USC Computer Science Outstanding Student Research Award.

Yuriy Brun is an NSF CRA postdoctoral Computing Innovation Fellow at the Uni-
versity of Washington. He received his Ph.D. degree in 2008 from the University of
Southern California, as a Viterbi School of Engineering Fellow, and his M.Eng. degree
in 2003 from the Massachusetts Institute of Technology. His doctoral research was a
finalist in the ACM Doctoral Dissertation Competition in 2008. Brun’'s research
interests are in the area of engineering self-adaptive systems, and, in particular,
using mechanisms from nature to create engineering paradigms for robustness,

http://dx.doi.org/10.1145/1061254.1061258
http://dx.doi.org/10.1145/1075405.1075417
http://dx.doi.org/10.1145/1370018.1370038
http://dx.doi.org/10.1145/1370018.1370038
http://dx.doi.org/10.1145/605466.605471
http://dx.doi.org/10.1007/s10514-006-9013-8
http://dx.doi.org/10.1007/s10514-006-9013-8
http://dx.doi.org/10.1007/115907128
http://dx.doi.org/10.1109/TSE.2005.29
http://dx.doi.org/10.1145/1169075.1169077
http://dx.doi.org/10.1109/ICSE.2007.69
http://dx.doi.org/10.1109/ICSE.2007.69
http://dx.doi.org/10.1145/1181195.1181206
http://dx.doi.org/10.1109/32.825767
http://dx.doi.org/10.1109/MC.2003.1231196
http://dx.doi.org/10.1109/MC.2003.1231196
http://dx.doi.org/10.1145/1075405.1075424
http://dx.doi.org/10.1145/1075405.1075424
http://dx.doi.org/10.1007/115907127
http://dx.doi.org/10.1145/1370888.1370891
http://dx.doi.org/10.1109/ICDSC.2001.918983
http://dx.doi.org/10.1109/ICDSC.2001.918983
http://dx.doi.org/10.1109/32.403785
http://dx.doi.org/10.1145/1370018.1370020
http://dx.doi.org/10.1145/1370018.1370020

S. Malek et al./ The Journal of Systems and Software 83 (2010) 972-989 989

fault and malice tolerance, scalability, and security. He does (1) theoretical work on
design and complexity analysis of biologically inspired algorithms and (2) software
engineering work on implementing these algorithms for Internet-sized distributed
systems, grids, and clouds. He is a member of the ACM and the ACM SIGSOFT.

Hossein Tajalli is a Ph.D. student in the Computer Science Department at the
University of Southern California (USC), where he is a member of the Software
Architecture Research Group in the Center for Systems and Software Engineering.
His research interests are in the field of software architecture and self-adaptation in
robotics applications. Prior to his work at USC, Hossein received his Master of Sci-
ence in Electrical Engineering from University of Tehran, Iran.

Joshua Garcia received the M.S. degree in Computer Science from the University of
Southern California (USC) in 2008 and the B.S. degree in Computer Science from USC
in 2006. Currently, he is a Ph.D. student in the Computer Science Department at
USC, a USC Viterbi School of Engineering Fellow, a member of the Software Archi-
tecture Research Group in the Center for Systems and Software Engineering, and a
software engineer at the NASA Jet Propulsion Laboratory. He has also worked as a
research intern and research assistant at the Southern California Earthquake Center
at USC. His research interests are in the area of software architecture reconstruc-
tion, program analysis for program comprehension, software architecture for dis-
tributed systems, and software architecture for embedded systems. He is a member
of the ACM, the ACM SIGSOFT, and IEEE.

Ivo Krka is a Ph.D. student in the Computer Science Department at the University of
Southern California (USC), where he is a USC Provost’s Fellow, and a member of the
Software Architecture Research Group in the Center for Systems and Software
Engineering. He has also worked as an engineering intern at Google Inc. and is a
recipient of the Google Intern Scholarship. His main research interests include
requirements specification, software architecture modeling and evaluation, and
architectural recovery. Krka holds an M.S. in Computer Science from USC and an
M.Eng. in Computing from University of Zagreb, where he was the top student of
the graduating class. He is a member of the IEEE and the ACM SIGSOFT.

Nenad Medvidovic is an Associate Professor in the Computer Science Department
at the University of Southern California (USC). He is the director of the USC Center
for Systems and Software Engineering and a faculty associate of the Institute for
Software Research at the University of California, Irvine (UCI). Medvidovic is the
Program Co-Chair of the 2011 International Conference on Software Engineering
(ICSE). Medvidovic received his Ph.D. in 1999 from the Department of Information
and Computer Science at UCI. He also received an M.S. in Information and Computer

Science in 1995 from UC Irvine, and a B.S. in Computer Science summa cum laude in
1992 from the Computer Science and Engineering Department at Arizona State
University. Medvidovic is a recipient of the National Science Foundation CAREER
(2000) and ITR (2003) awards, the Okawa Foundation Research Grant (2005), and
the IBM Real-Time Innovation Award (2007). He is a co-author of the ICSE 1998
paper titled “Architecture-Based Runtime Software Evolution,” which was recently
named that conference’s Most Influential Paper. His paper “A Classification and
Comparison Framework for Software Architecture Description Languages” was
recognized by the Elsevier Information and Software Technology Journal as the
most cited journal article in software engineering published in 2000. Medvidovic’s
research interests are in the area of architecture-based software development. His
work focuses on software architecture modeling and analysis; middleware facilities
for architectural implementation; domain-specific architectures; architectural
styles; and architecture-level support for software development in highly distrib-
uted, mobile, resource constrained, and embedded computing environments. He is
a co-author of a new textbook on software architectures. He is a member of the
ACM, the ACM SIGSOFT, and the IEEE Computer Society.

Marija Mikic-Rakic is a Senior Software Engineer and Technical Lead Manager at
Google, Santa Monica. She holds a Ph.D. in Computer Science from the University of
Southern California. Her research interests are in large-scale distributed systems.
She is a member of the ACM and the ACM SIGSOFT.

Gaurav S. Sukhatme is a Professor of Computer Science (joint appointment in
Electrical Engineering) at the University of Southern California (USC). He received
his undergraduate education at IIT Bombay in Computer Science and Engineering,
and M.S. and Ph.D. degrees in Computer Science from USC. He is the co-director of
the USC Robotics Research Laboratory and the director of the USC Robotic
Embedded Systems Laboratory, which he founded in 2000. His research interests
are in multi-robot systems and sensor/actuator networks. He has published
extensively in these and related areas. Sukhatme has served as Pl on numerous NSF,
DARPA, ONR, and NASA grants. He is a Co-PI on the Center for Embedded Networked
Sensing (CENS), an NSF Science and Technology Center. He is a senior member of
the IEEE, and a member of the AAAI and the ACM. He is a recipient of the NSF
CAREER award and the Okawa foundation research award. He has served on many
conference program committees, and is one of the founders of the Robotics: Science
and Systems conference. He was one of the program chairs of the 2008 IEEE
International Conference on Robotics and Automation. He is the Editor-in-Chief of
Autonomous Robots. In the past, he has served as Associate Editor of the IEEE
Transactions on Robotics and Automation, the IEEE Transactions on Mobile Com-
puting, and on the editorial board of IEEE Pervasive Computing.

	An architecture-driven software mobility framework
	Introduction
	Challenges and objectives
	Framework overview
	Mobility modeling
	Design-time mobility modeling
	Reliability
	Energy consumption
	Architectural style constraints

	Run-time mobility modeling

	Mobility analysis
	Design-time mobility analysis
	Run-time mobility analysis
	MIP
	Genetic

	Mobility implementation support
	Mobile architectural middleware
	Component mobility
	Code generation

	Context awareness and monitoring
	Architecture adaptation and deployment
	Evaluation
	Evaluation scenarios
	Environment exploration
	Robot-following

	Assessment of framework capabilities
	Mobility modeling
	Mobility analysis
	Mobility implementation support
	Architecture awareness and monitoring
	Architecture adaptation and deployment

	Related work
	Conclusion
	Acknowledgements
	References

