
Software Engineering for Self-Adaptive Systems:
Research Challenges in the Provision

of Assurances

Rogério de Lemos1(B), David Garlan2 , Carlo Ghezzi3 , Holger Giese4
(Dagstuhl Seminar Organizers),

Jesper Andersson, Marin Litoiu, Bradley Schmerl, Danny Weyns
(Section Coordinators),

Luciano Baresi, Nelly Bencomo, Yuriy Brun, Javier Camara, Radu Calinescu,
Myra B. Cohen, Alessandra Gorla, Vincenzo Grassi, Lars Grunske,

Paola Inverardi, Jean-Marc Jezequel, Sam Malek, Raffaela Mirandola,
Marco Mori, Hausi A. Müller, Romain Rouvoy, Cećılia M. F. Rubira,
Eric Rutten, Mary Shaw, Giordano Tamburrelli, Gabriel Tamura,

Norha M. Villegas, Thomas Vogel, and Franco Zambonelli
(Dagstuhl Seminar Participants)

1 University of Kent, Canterbury, UK
r.delemos@kent.ac.uk

2 Carnegie Mellon University, Pittsburgh, USA
3 Politecnico di Milano, Milano, Italy

4 Hasso Plattner Institute for Software Systems Engineering, Potsdam, Germany

Abstract. The important concern for modern software systems
is to become more cost-effective, while being versatile, flexible,
resilient, dependable, energy-efficient, customisable, configurable and
self-optimising when reacting to run-time changes that may occur within
the system itself, its environment or requirements. One of the most
promising approaches to achieving such properties is to equip software
systems with self-managing capabilities using self-adaptation mecha-
nisms. Despite recent advances in this area, one key aspect of self-
adaptive systems that remains to be tackled in depth is the provision
of assurances, i.e., the collection, analysis and synthesis of evidence that
the system satisfies its stated functional and non-functional requirements
during its operation in the presence of self-adaptation. The provision of
assurances for self-adaptive systems is challenging since run-time changes
introduce a high degree of uncertainty. This paper on research challenges
complements previous roadmap papers on software engineering for self-
adaptive systems covering a different set of topics, which are related
to assurances, namely, perpetual assurances, composition and decompo-
sition of assurances, and assurances obtained from control theory. This
research challenges paper is one of the many results of the Dagstuhl Sem-
inar 13511 on Software Engineering for Self-Adaptive Systems: Assur-
ances which took place in December 2013.

c⃝ Springer International Publishing AG 2017
R. de Lemos et al. (Eds.): Self-Adaptive Systems III, LNCS 9640, pp. 3–30, 2017.
https://doi.org/10.1007/978-3-319-74183-3_1



4 R. de Lemos et al.

1 Introduction

Repairing faults, or performing upgrades on different kinds of software systems
have been tasks traditionally performed as a maintenance activity conducted
off-line. However, as software systems become central to support everyday activ-
ities and face increasing dependability requirements, even as they have increased
levels of complexity and uncertainty in their operational environments, there is
a critical need to improve their resilience, optimize their performance, and at
the same time, reduce their development and operational costs. This situation
has led to the development of systems able to reconfigure their structure and
modify their behaviour at run-time in order to improve their operation, recover
from failures, and adapt to changes with little or no human intervention. These
kinds of systems typically operate using an explicit representation of their own
structure, behaviour and goals, and appear in the literature under different des-
ignations (e.g., self-adaptive, self-healing, self-managed, self-*, autonomic). In
particular, self-adaptive systems should be able to modify their behavior and/or
structure in response to their perception of the environment and the system
itself, and their goals.

Self-adaptive systems have been studied independently within different
research areas of software engineering, including requirements engineering,
modelling, architecture and middleware, event-based, component-based and
knowledge-based systems, testing, verification and validation, as well as soft-
ware maintenance and evolution [14,30]. On the one hand, in spite of recent
and important advances in the area, one key aspect of self-adaptive systems
that poses important challenges yet to be tackled in depth is the provision of
assurances, that is, the collection, analysis and synthesis of evidence for building
arguments that demonstrate that the system satisfies its functional and non-
functional requirements during operation. On the other hand, the topic of assur-
ances for software-based systems has been widely investigated by the depend-
ability community, in particular when considered in the context of safety-critical
systems. For these types of systems there is the need to build coherent argu-
ments showing that the system is able to comply with strict functional and non-
functional requirements, which are often dictated by safety standards and general
safety guidelines [7]. However, distinct from conventional systems in which the
assurances are provided in tandem with development, the provision of assurances
for self-adaptive systems should also consider their operation because run-time
changes (e.g., resource variability) introduce a high degree of uncertainty.

In self-adaptive systems, since changes and uncertainty may affect the system
during its operation, it is expected that assurances also need to be perpetually
revised depending on the type and number of changes, and how the system
self-adapts to these changes in the context of uncertainties. In order to allow
the continuous revision of assurances, new arguments need to be formed based
on new evidence or by composing or decomposing existing evidence. Concepts
and abstractions for such evidence can be obtained from classical control theory
for providing reasoning about whether the feedback loop enabling self-adaption
is able to achieve desired properties. Moreover, feedback loops supported by



Software Engineering for Self-Adaptive Systems 5

processes should provide the basis for managing the continuous collection, anal-
ysis and synthesis of evidence that will form the core of the arguments that
substantiate the provision of assurances.

The goal of this paper on the provision of assurances for self-adaptive systems
is to summarize the topic state-of-the-art and identify research challenges yet to
be addressed. This paper does not aim to supersede the previous roadmap papers
on software engineering of self-adaptive systems [14,30], but rather to comple-
ment previous papers by focusing on assurances. Though assurances were lightly
treated in the former papers, this paper goes in more depth on topics that pose
concrete challenges for the development, deployment, operation, evolution and
decommission of self-adaptive systems, and identifies potential research direc-
tions for some of these challenges.

In order to provide a context for this paper, in the following, we summarize
the most important research challenges identified in the two previous roadmap
papers. In the first paper [14], the four topics covered were: modeling dimen-
sions, where the challenge was to define models that can represent a wide range
of system properties; requirements, where the challenge was to define languages
capable of capturing uncertainty at the abstract level of requirements; engineer-
ing, where the challenge was to make the role of feedback control loops more
explicit; assurances, where the challenge was how to supplement traditional V&V
methods applied at requirements and design stages of development with run-time
assurances. In the second paper [30], the four topics covered were: design space,
where the challenge was to define what is the design space for self-adaptive
systems, including the decisions the developer should address; processes, where
the challenge was to define innovative generic processes for the development,
deployment, operation, and evolution of self-adaptive systems; decentralization
of control loops, where the challenge was to define architectural patterns for
feedback control loops that would capture a varying degree of centralization and
decentralization of the loop elements; practical run-time verification and vali-
dation (V&V), where the challenge was to investigate V&V methods and tech-
niques for obtaining inferential and incremental assessments for the provision of
assurances.

For the motivation and presentation of the research challenges associated
with the provision of assurances when engineering self-adaptive systems, we
divide this paper into three parts, each related to one of the identified key
research challenges. For each key research challenge, we present a description
of the topic related to the challenge, and suggest future directions of research
around the identified challenges to the topic. The three key research challenges
are: perpetual assurances (Sect. 2), composition and decomposition of assurances
(Sect. 3), and what can we learn from control theory regarding the provision of
assurances (Sect. 4). Finally, Sect. 5 summarizes our findings.

2 Perpetual Assurances

Changes in self-adaptive systems, such as changes of parameters, components,
and architecture, are shifted from development time to run-time. Furthermore,



6 R. de Lemos et al.

the responsibility for these activities is shifted from software engineers or system
administrators to the system itself. Hence, an important aspect of the software
engineering process for self-adaptive systems, in particular business or safety crit-
ical systems, is providing new evidence that the system goals are satisfied during
its entire lifetime, from inception to and throughout operation until decommis-
sion. The state of the art advocates the use of formal models as one promising
approach to providing evidence for goal compliance. Several approaches employ
formal methods to provide such guarantees by construction. In particular, recent
research suggests the use of probabilistic models to verify system properties
and support decision-making about adaptation at run-time. However, providing
assurances for the goals of self-adaptive systems that must be achieved during
the entire lifecycle remains a difficult challenge. This section summarizes a back-
ground framework for providing assurances for self-adaptive systems that we
term “perpetual assurances for self-adaptive systems.” We discuss uncertainty
as a key challenge for perpetual assurances, requirements for solutions addressing
this challenge, realization techniques and mechanisms to make these solutions
effective, and benchmark criteria to compare solutions. For an extensive descrip-
tion of the background framework for perpetual assurance, we refer the reader
to [46].

2.1 Uncertainty as a Key Challenge for Perpetual Assurances

We use the following working definition for perpetual assurances for self-adaptive
systems:

Perpetual assurances for self-adaptive systems mean providing evidence
for requirements compliance through an enduring process that continu-
ously provides new evidence by combining system-driven and human-driven
activities to deal with the uncertainties that the system faces across its life-
time, from inception to operation in the real world.

Thus, providing assurances cannot be achieved by simply using off-line solu-
tions, possibly complemented with on-line solutions. Instead, we envision that
perpetual assurances will employ a continuous process where humans and the
system jointly and continuously derive and integrate new evidence and argu-
ments required to assure stakeholders (e.g., end users and system administra-
tors) that the requirements are met by the self-adaptive system despite the
uncertainties it faces throughout its lifetime.

A primary underlying challenge for this process stems from uncertainty.
There is no agreement on a definition of uncertainty in the literature. Here
we provide a classification of sources of uncertainty based on [33] using two
dimensions of a taxonomy for uncertainty proposed in [35], i.e., location and
nature. Location refers to where uncertainty manifests in the description (the
model) of the studied system or phenomenon. We can specialize it into: (i) input
parameters, (ii) model structure, and (iii) context. Nature indicates whether
the uncertainty is due to the lack of accurate information (epistemic) or to the



Software Engineering for Self-Adaptive Systems 7

inherent variability of the phenomena being described (aleatory). Recognizing
the presence of uncertainty and managing it can mitigate its potentially neg-
ative effects and increase the level of assurance in a self-adaptive system. By
ignoring uncertainties, one could draw unsupported claims on system validity or
generalize them beyond their bounded scope.

Table 1 shows our classification of uncertainty based on [33], which is inspired
by recent research on self-adaptation, e.g., [18,21]. Each source of uncertainty is
classified according to the location and nature dimensions of the taxonomy.

Table 1. Classification of sources of uncertainty based on [33].

Source of Uncertainty Classification

Location Nature

Simplifying assumptions System Structural/context Epistemic

Model drift Structural Epistemic

Incompleteness Structural Epistemic/Aleatory

Future parameters value Input Epistemic

Adaptation functions Structural Epistemic/Aleatory

Automatic learning Structural/input Epistemic/Aleatory

Decentralization Context/structural Epistemic

Requirements elicitation Goals Structural/input Epistemic/Aleatory

Specification of goals Structural/input Epistemic/Aleatory

Future goal changes Structural/input Epistemic/Aleatory

Execution context Context Context/structural/input Epistemic

Noise in sensing Input Epistemic/Aleatory

Different sources of information Input Epistemic/Aleatory

Human in the loop Human Context Epistemic/Aleatory

Multiple ownership Context Epistemic/Aleatory

Sources of uncertainty are structured in four groups: (i) uncertainty related
to the system itself; (ii) uncertainty related to the system goals; (iii) uncer-
tainty in the execution context ; and (iv) uncertainty related to human aspects.
Uncertainty in its various forms represents the ultimate source of both motiva-
tions for and challenges to perpetual assurance. Uncertainty manifests through
changes. For example, uncertainty in capturing the precise behavior of an input
phenomenon to be controlled results in assumptions made during the imple-
mentation of the system. Therefore, the system must be calibrated later when
observations of the physical phenomenon are made. This in turn leads to changes
in the implemented control system that must be scrutinized to derive assurances
about its correct operation.

2.2 Requirements for Solutions that Realize Perpetual Assurances

The provision of perpetual assurance for self-adaptive systems must cope with a
variety of uncertainty sources that depend on the purpose of self-adaptation



8 R. de Lemos et al.

and the environment in which the assured self-adaptive system operates.
To this end, they must build and continually update their assurance arguments
through the integration of two types of assurance evidence. The first type of
evidence corresponds to system and environment components not affected sig-
nificantly by uncertainty, and therefore can be obtained using traditional off-line
approaches [28]. The second type of evidence is associated with the system and
environment components affected by the sources of uncertainty summarized in
Table 1. This type of evidence is required for each of the different functions
of adaptation: from sensing to monitoring, analyzing, planning, executing, and
activating [15]. The evidence must be synthesized at run-time, when the uncer-
tainty is treated, i.e., reduced, quantified or resolved sufficiently to enable such
synthesis.

Table 2 summarizes the requirements for perpetual assurance solutions. R1–
R7 are functional requirements to treat uncertainty. R8–R10 are non-functional
requirements to provide assurance that are timely, non-intrusive and auditable.

2.3 Approaches to Perpetual Assurances

Several approaches have been developed in previous decades to check whether a
software system complies with its requirements. Table 3 below gives an overview
of these approaches organized in three categories: human-driven approaches
(manual), system-driven (automated), and hybrid (manual and automated).

We briefly discuss one representative approach of each group. Formal proof
is a human-driven approach that uses a mathematical calculation to prove a
sequence of related theorems that refer, or are based upon, a formal specifica-
tion of the system. Formal proofs are rigorous and unambiguous, but can only be
produced by experts with both detailed knowledge about how the self-adaptive
system works and significant mathematical experience. As an example, in [51] the
authors formally prove a set of theorems to assure safety and liveness properties
of self-adaptive systems. The approach is illustrated for data stream compo-
nents that modify their behavior in response to external conditions through the
insertion and removal of filters. Run-time verification is a system-driven app-
roach that is based on extracting information from a running system to detect
whether certain properties are violated. Run-time verification is less complex
than traditional formal verification because only one or a few execution traces
are analyzed at a time. As an example, in [40] the authors introduce an approach
for estimating the probability that a temporal property is satisfied by a run of a
program. Model checking is a well-known hybrid approach that allows design-
ers to check that a property holds for all reachable states in a system. Model
checking can be applied off-line or on-line, and can only work in practice on a
high-level abstraction of an adaptive system or on one of its components. For
example, [25] models MAPE loops of a mobile learning application as timed
automata and verifies robustness requirements expressed in timed computation
tree logic using the UPPAAL tool. In [10] QoS requirements of service-based
systems are expressed as probabilistic temporal logic formulae, which are auto-
matically analyzed at run-time to identify optimal system configurations.



Software Engineering for Self-Adaptive Systems 9

Table 2. Summary requirements.

Requirement Brief description

R1: Monitor uncertainty A perpetual assurance solution must continually observe the
sources of uncertainty affecting the self-adaptive system

R2: Quantify uncertainty A perpetual assurance solution must use its observations of
uncertainty sources to continually quantify and potentially
mitigate the uncertainties affecting its ability to provide
assurance evidence

R3: Manage overlapping
uncertainty sources

A perpetual assurance solution must continually deal with
overlapping sources of uncertainty and may need to treat
these sources in a composable fashion

R4: Derive new evidence A perpetual assurance solution must continually derive new
assurance evidence arguments

R5: Integrate new evidence A perpetual assurance solution must continually integrate
new evidence into the assurance arguments for the safe
behavior of the assured self-managing system

R6: Combine new evidence A perpetual assurance solution may need to continually
combine new assurance evidence synthesized automatically
and provided by human experts

R7: Provide evidence for the
components and activities
that realize R1-R6

A perpetual assurance solution must provide assurance
evidence for the system components, the human activities,
and the processes used to meet the previous set of
requirements

R8: Produce timely updates The activities carried out by a perpetual assurance solution
must produce timely updates of the assurance arguments

R9: Limited overhead The activities of the perpetual assurance solution and their
overheads must not compromise the operation of the assured
self-adaptive system

R10: Auditable arguments The assurance evidence produced by a solution and the
associated assurance arguments must be auditable by human
stakeholders

Table 3. Approaches for assurances.

Assurances approach category Examples

Human-driven approaches Formal proof
Simulation

System-driven approaches Run-time verification
Sanity checks
Contracts

Hybrid approaches Model checking
Testing



10 R. de Lemos et al.

2.4 Mechanisms for Turning Perpetual Assurances into Reality

Turning the approaches of perpetual assurances into a working reality requires
aligning them with the requirements discussed in Sect. 2.2. For the functional
requirements (R1 to R7), the central problem is how to build assurance argu-
ments based on the evidence collected at run-time, which should be composed
with the evidence acquired throughout the lifetime of the system, possibly by
different approaches. For the quality requirements (R8 to R10) the central prob-
lem is to make the solutions efficient and to support the interchange of evidence
between the system and its users. Efficiency needs to take into account the size
of the self-adaptive system and the dynamism it is subjected to. An approach for
perpetual assurances is efficient if it is able to: (i) provide results (assurances)
within defined time constraints (depending on the context of use); (ii) consume
an acceptable amount of resources, so that the resources consumed over time
(e.g., memory size, CPU, network bandwidth, energy, etc.) remain within a lim-
ited fraction of the overall resources used by the system; and (iii) scale well
with respect to potential increases in size of the system and the dynamism it is
exposed to.

It is important to note that orthogonal to the requirements for perceptual
assurance in general, the level of assurance that is needed depends on the require-
ments of the self-adaptive system under consideration. In some cases, combining
regular testing with simple and time-effective run-time techniques, such as sanity
checks and contract checking, will be sufficient. In other cases, more powerful
approaches are required. For example, model checking could be used to verify
a safe envelope of possible trajectories of an adaptive system at design time,
and verification at run-time to check whether the next change of state of the
system keeps it inside the pre-validated envelope. We briefly discuss two classes
of mechanisms that can be used to provide the required functionalities for per-
petual assurances and meet the required qualities: decomposition mechanisms
and model-driven mechanisms.

Decomposition Mechanisms. The first class of promising mechanisms for the
perpetual provisioning of assurances is based on the principle of decomposition,
which can be carried out along two dimensions:

1. Time decomposition, in which: (i) some preliminary/intermediate work is
performed off-line, and the actual assurance is provided on-line, building on
these intermediate results; (ii) assurances are provided with some degree of
approximation/coarseness, and can be refined if necessary.

2. Space decomposition, where verification overhead is reduced by independently
verifying each individual component of a large system, and then deriving
global system properties through verifying a composition of its component-
level properties. Possible approaches that can be used are: (i) flat approaches,
that exploit only the system decomposition into components; (ii) hierarchical
approaches, where the hierarchical structure of the system is exploited; (iii)
incremental approaches targeted at frequently changing systems, in which re-
verification are carried out only on the minimal subset of components affected
by a change.



Software Engineering for Self-Adaptive Systems 11

Model-based Mechanisms. For any division of responsibilities between
human and systems in the perpetual assurance process, an important issue is
how to define in a traceable way the interplay between the actors involved in the
process. Model-driven mechanisms support the rigorous development of a self-
adaptive system from its high-level design up to its running implementation,
and they support traceable modifications of the system by humans and/or of its
self-adaptive logic, e.g., to respond to modifications of the requirements. In this
direction, [45] presents a domain-specific language for the modeling of adapta-
tion engines and a corresponding run-time interpreter that drives the adaptation
engine operations. The approach supports the combination of on-line machine-
controlled adaptations and off-line long-term adaptations performed by humans
to maintain and evolve the system. Similarly, [24] proposes an approach called
ActivFORMS in which a formal model of the adaptation engine specified in timed
automata and adaptation goals expressed in timed computation tree logic are
complemented by a virtual machine that executes the verified models, guaran-
teeing at run-time compliance with the properties verified off-line. The approach
supports on-the-fly deployment of new models by human experts to deal with
new goals.

2.5 Benchmark Criteria for Perpetual Assurances

We provide benchmark criteria for comparing four key aspects of perpetual assur-
ance approaches: approach capabilities, basis of evidence for assurances, strin-
gency of assurances, and performance. The criteria, shown in Table 4, cover both
functional and quality requirements for perpetual assurances approaches.

Several criteria from Table 4 directly map to a requirement from Table 2.
For example, ‘Timeliness’ directly links to requirement R8 (‘Produce timely
updates’). Other criteria correspond to multiple requirements. For example,
‘Human evidence’ links to R5 (‘Integrate new evidence’), R7 (‘Provide evidence
for human activities that realize R5’), and R10 (‘Auditable arguments’). Other
arguments only link indirectly to requirements from Table 2. This is the case for
the ‘Handling alternatives’ criterion, which corresponds to the solution for self-
adaptation, which may provide different levels of support for the requirements
of perpetual assurances.

2.6 Research Challenges

Assuring requirements compliance of self-adaptive systems calls for an enduring
process where evidence is collected over the lifetime of the system. This process
for the provision of perpetual assurances for self-adaptive systems poses four key
challenges.

First, we need a better understanding of the nature of uncertainty for software
systems and of how this translates into requirements for providing perpetual
assurances. Additional research is required to test the validity and coverage of
this set of requirements.



12 R. de Lemos et al.

Table 4. Summary of benchmark aspects and criteria for perpetual assurances.

Benchmark Aspect Benchmark Criteria

Criteria Description

Capabilities of
approaches to provide
assurances

Variability Capability of an approach to handle variations
in requirements (adding, updating, deleting
goals), and the system (adding, updating,
deleting components)

Inaccuracy &
incompleteness

Capability of an approach to handle inaccuracy
and incompleteness of models of the system and
context

Competing
criteria

Capability of an approach to balance the
tradeoffs between utility (e.g., coverage, quality)
and cost (e.g., time, resources)

User interaction Capability of an approach to handle changes in
user behavior (preferences, profile)

Handling
alternatives

Capability of an approach to handle changes in
adaptation strategies (e.g., pre-emption)

Basis of assurance
benchmarking

Historical data
only

Capability of an approach to provide evidence
over time based on historical data

Projections in
the future

Capability of an approach to provide evidence
based on predictive models

Combined
approaches

Capability of an approach to provide evidence
based on combining historical data with
predictive models

Human
evidence

Capability of an approach to complement
automatically gathered evidence by evidence
provided by humans

Stringency of
assurances

Assurance
rational

Capability of the approach to provide the
required rational of evidence for the purpose of
the system and its users (e.g., completeness,
precision)

Performance of
approaches

Timeliness The time an approach requires to achieve the
required evidence

Computational
overhead

The resources required by an approach (e.g.,
memory and CPU) for enacting the assurance
approach

Complexity The scope of applicability of an approach to
different types of problems

Second, we need a deeper understanding of how to monitor and quantify
uncertainty. In particular, how to handle uncertainty in the system, its goal and
its environment remains to a large extent an open research problem.

Third, the derivation and integration of new evidence pose additional hard
challenges. Decomposition and model-based reasoning mechanisms represent
potential approaches for moving forward. However, making these mechanisms
effective is particularly challenging and requires a radical revision of many exist-
ing techniques.



Software Engineering for Self-Adaptive Systems 13

Last but not least, to advance research on assurances for self-adaptive sys-
tems, we need self-adaptive system exemplars (e.g. [28,47]) that can be used to
assess the effectiveness of different solutions.

3 Composing and Decomposing Assurances

Assuring a self-adaptive system in all the configurations that it could possibly
be in, under all the environments it can encounter, is challenging. One way to
address this challenge is to understand how to decompose assurances so that an
entire revalidation is not required at run-time time when the system changes.
Another source of challenges for assuring self-adaptive systems is when they
are composed together to create larger systems (for example, having multiple
adaptive systems in autonomous vehicles, or having multiple adaptive systems
managing a building). Typically, assurances are also required for this systems-
of-systems context. We therefore need ways to compose assurances that do not
require complete revalidation of each of the constituent parts.

For safety-critical systems there is a large body of work on constructing safety
cases [8], or more generally assurance cases [6], that allow engineers to build
assurance arguments to provide confidence that a system will be safe (in addition
to other qualities). How these assurance cases are constructed for safety-critical
systems can shed some light on how to provide assurances for self-adaptive sys-
tems. Typically, building assurance cases involve decomposing top level goals
into argumentation structures that involve sub-goals, strategies for achieving
the goals, and defining evidence that can be collected to show that the goals
are achieved. For example, a safety case presents a structured demonstration
that a system is acceptably safe in a given context – i.e., it is a comprehensive
presentation of evidence linked by argument to a claim. Structuring evidence in
such a way means that an expert can make a judgment that the argument makes
sense and thus, if the evidence in the case is provided, have confidence that the
system is acceptably safe. Assurance cases are a generalization of safety cases to
construct arguments that are about more than just safety.

Assurance cases themselves can be composed together to provide assurances
about a system with multiple goals, to reuse some assurances for goals in sim-
ilar systems, or to provide assurances in systems-of-systems contexts. We can
therefore use work on assurance case construction and composition as a guide
to how to decompose and compose assurances for self-adaptive systems. For an
extensive description of the ideas presented in this section, we refer the reader
to [37].

3.1 Assurances in Self-adaptive Systems

While the focus of much of the research in self-adaptive systems to date has been
to engineer systems that can maintain stated goals, especially in the presence
of uncertain and changing environments, there is existing research in assurances
for self-adaptive systems that either addresses how to compose assurances, or



14 R. de Lemos et al.

can be used as part of an argument in assurance cases. We categorize existing
work into the following areas:

Evidence types and sub-goals for use in assurance case decomposition.
Each of the classic activities of self-adaptation—monitoring, analysis, plan-
ning, and execution—have existing techniques that help to provide evidence
for goals that can be used in assurance cases. For example, [11,12] provide
theoretical foundations based on information theory for determining if a self-
adaptive system has enough information to diagnose problems. In [1], contex-
tual goals can be used to identify modeling requirements. Models and simula-
tions can provide evidence about whether adaptation should be done. Models
(particularly performance models) have been used in [16,31], for example.
Formal models have also been used to provide evidence that adaptations will
achieve desired results, for example probabilistic models in [19,20,38].

Assurance composition based on the MAPE-K loop. Once assurances
have been decomposed, and evidence sources have been identified, we need
ways to recompose the assurances. Fortunately, in self-adaptive systems, there
is research that takes advantage of the common MAPE-K pattern used for
constructing self-adaptive systems. The integration of V&V tasks into the
MAPE-K loop is discussed in [41]. Both [41,48] discuss the different modes of
self-adaptive systems (called viability zones) that can guide what assurance
techniques can be used in and between each mode.

Combining these approaches with work on assurance cases can lead to a prin-
cipled way of designing, structuring, and adapting assurances for self-adaptive
systems.

Decomposing Assurances in Self-adaptive Systems. Assurance cases nat-
urally guide how to decompose assurances into subgoals and evidence. For self-
adaptive systems there are a number of challenges centered on (a) what types

Managing Systemmonitor

Self-adaptive software system

Managed System

Environment
Non-controllable software hardware, 

network, physical context

monitor

monitor adapt

effect

1
5

3

2

4

On-line Off-line

Development
Processes

Fig. 1. Architectural reference model for self-adaptive software systems.



Software Engineering for Self-Adaptive Systems 15

of evidence can be provided, and (b) where that evidence might come from. A
reference model for self-adaptive systems, depicted in Fig. 1, can be used as a
guide for addressing these challenges. This reference model can help to iden-
tify architectural concerns for self-adaptation that require assurances and that
should be included in the argumentation structure. For example, we must pro-
vide convincing evidence that the managing system:

– makes a correct decision about when and how to adapt the managed system
(cf. 1 in Fig. 1),

– correctly monitors the managed system 2 and the environment 4 and
that the assurances and assumptions provided for the managed system and
environment are correct such that the managing system can rely on them,

– correctly adapts the managed system 3 , which in turn must change accord-
ing to this adaptation,

– correctly interacts with the development process 5 through which engineers
directly adapt the managed system, or change the managing system itself
(e.g., to add new adaptation strategies).

This model can guide strategy selection and evidence placement for both
functional and extra-functional goal decomposition. Within this, though, there
are additional issues to consider when determining the argumentation structures:

Time and Lifecycle. Evidence for self-adaptive systems can be generated dur-
ing development or at run-time. On-line techniques can be embedded in the
managing systems to provide evidence at run-time. Off-line techniques are tra-
ditionally used during development or maintenance to provide static evidence.
The managing system may, however, involve off-line techniques at run-time
as an alternative for resource demanding evidence generation. The work pre-
sented in [36] discusses how one might use off-line formal verification results
when reusing components; such work could also inspire formal verification
reuse during run-time.

Independence and additivity. The inherent flexibility in a self-adaptive sys-
tem suggests that argumentation structures be generated and adapted
dynamically to reflect system adaptations. One aspect that promotes dynamic
argumentation is independent evidence, which can be added to support argu-
ments. We discuss this matter in more detail below. However, it is clear that if
two or more evidence types are equally strong, the more independent should
be favored. This will reduce the complexity of combining evidence for parts
when assuring compositions.

Evidence completeness. Complete evidence is key for assurance cases. The
argumentation structure should provide convincing arguments. For a self-
adaptive system, completeness is affected by time and lifecycle concerns. As
mentioned above, some evidence is not generated before run-time, thus com-
plete evidence will be unavailable during development. In fact, completeness
can change during the lifecycle. Evidence violations may, for instance, trig-
ger adaptations, which implies that from time to time, evidence may tran-
sition from complete to incomplete and back to complete after a successful
adaptation.



16 R. de Lemos et al.

Composing Assurances in Self-adaptive Systems. The argumentation
structures with goals, strategies, and evidence have a close analogy with vali-
dation & verification. For example, individual decomposed assurance cases have
similarities with unit tests, while composing assurances is more closely aligned
with integration and system testing. Unit tests are run without the global view of
the system, and may either over- or under-approximate system behavior, while
integration and system tests consider the environment under which they are run.
Test dependencies, a subfield of software testing, provides some pointers to root
causes for dependencies and consequences on a system’s testability and design
for testability is mentioned as a viable resolution strategy. Dependencies between
goals, strategies, and evidence have similar negative effects on the assurance case
composition. We exemplify some causes and their effects in our analysis of three
composition scenarios below.

1. Combining assurance cases for different goals of the same system: Consider
the managing system in Fig. 1 and two goals, one for self-optimization and
one for self-protection. The decomposition strategy described above gener-
ates two separate argumentation structures, one for each goal. We may not
find the two top-level goals conflicting, however, parts in the argumentation
structures may have explicit or implicit dependencies. For example, the inner
components in the MAPE-K loop create numerous implicit and explicit inter-
dependencies, which impact composability negatively.

2. Combining assurance cases for two different systems: In this case, we con-
sider a situation where two independently developed systems are composed.
We need to examine goal, evidence, and resource dependencies the compo-
sition creates. For example, some goals may subsume other goals, i.e., the
weakest claim needs to be replaced with the strongest claim. Further analysis
of resource and evidence dependencies will indicate if evidence is independent
and may be reused or if new evidence is required for the composition.

3. Combining multiple assurances for multiple systems composed in a systems-
of-systems context: This is the extreme case of scenario 2. The analysis will
be more complex and hence, also conflict resolution and evidence generation.

These issues are also challenging for the assurance community. Work in assur-
ance case modularization [26,50] can address both assurance case decomposition
and composition through the use of contracts. Contracts and modularization of
assurance cases will help with independence and additivity. Furthermore, [7]
points out that assurance case decomposition is seldom explicit and that the
assurance case community needs to develop rigorous decomposition strategies.
These efforts should be tracked so that insights can be transferred to self-adaptive
systems.

3.2 Research Challenges

In this section we have proposed that assurance cases can be used to guide
decomposition and composition of assurances for self-adaptive system. We have



Software Engineering for Self-Adaptive Systems 17

shown how self-adaptive systems themselves might help in informing how to
decompose and compose assurance cases, and suggested that the assurance case
community is addressing some of the challenges raised. However, there a number
of challenges that arise when trying to apply assurance cases to self-adaptation,
which researchers in this area should investigate further:

Uncertainty. Self-adaptive systems are often self-adaptive because they are
deployed in environments with uncertainty. This uncertainty affects the types
of evidence that can be collected to support assurances, the ways in which
the evidence can be collected, and even the specification of the assurance case
itself. For example, goals in assurance cases need to specify the environmental
assumptions under which they are valid, but for self-adaptive systems we need
some way to make uncertainty about these assumptions first-class.

Assurance case dependencies. Goals, strategies, and evidence create a com-
plex dependency web that connects argumentation structures. This web
impacts how we derive and combine assurance cases negatively. A better
understanding of the nature of these dependencies and how to mitigate their
consequences will improve current practice for assurance case decomposition
and composition. Existing work on testability and reuse of validation and
verification results could be the point of departure.

Adaptation assurances. When conditions change and the system adapts, an
assurance may describe how quickly or how well it adapts. For example,
increased demand may trigger the addition of a web server. An assurance
may state that when the per-server load exceeds a threshold, the system
adapts within two minutes by adding web servers and the per-server load
falls below the threshold within five minutes. This assurance may hold at all
times, or may be expected to hold only when the demand increases but then
remains constant.

Automatable assurance cases. Assurance cases rely on human judgment to
discern whether the argument and rationale actually makes the case given
the evidence. One of the aims of self-adaptation is to eliminate or at least
reduce the involvement of humans in the management of a software system.
To accomplish this, self-adaptation requires ways to computationally reason
about assurance cases, and a logic to judge whether an assurance case is still
valid, what changes must be made to it in terms of additional evidence, etc.

Adaptive assurances. As just alluded to, self-adaptation may require the
assurance cases themselves to adapt. For example, replacing a new component
in the system may require replacing evidence associated with that component
in the assurance case. Changing goals of the system based on evolving busi-
ness contexts will likely involve changes to the assurance cases for those goals.
Automatable assurance cases are an initial step to addressing this challenge,
but approaches, rules, and techniques for adapting the assurance cases them-
selves are also needed.

Assurance processes for self-adaptive software systems. One overarch-
ing challenge is the design of adequate assurance processes for self-adaptive
systems. Such a process connects the system’s goals, the architecture, and



18 R. de Lemos et al.

implementation realizing the goals to the assurance cases’ argumentation
structures, its strategies, evidence types, and assurance techniques. This chal-
lenge requires that parts of the design and assurance process that were pre-
viously performed off-line during development time must move to run-time
and be carried out on-line in the system itself. The assurance goals of a
system are dependent on a correct, efficient, and robust assurance process,
which employs on-line and off-line activities to maintain continuous assur-
ance support throughout the system lifecycle. Currently, such processes are
not sufficiently investigated and understood.

Reassurance. If we are able to move the evaluation of assurance cases to run-
time, the challenge arises in how to reassure the system when things change.
Reassurance may need to happen when environment states, or the state of
the system itself, change. Which part of the assurance case needs to be re-
evaluated? For composition, where the composition itself is dynamic, we need
ways to identify the smallest set of claims (goals) that have to be reassured
when two systems are composed? Which evidence needs to be re-established,
and which can be reused?

4 Control Theory and Assurances

To realize perpetual assurances for adaptive systems requires effective run-time
instrumentation to regulate the satisfaction of functional and non-functional
requirements, in the presence of context changes and uncertainty (cf. Table 1).
Control theory and feedback loops provide a number of powerful mechanisms
for managing uncertainty in engineering adaptive systems [34]. Basically, feed-
back control allows us to manage uncertainty by monitoring the operation and
environment of the system, comparing the observed variables against static or
dynamic values to achieve (i.e., system goals), and adjusting the system behavior
to counteract disturbances that can affect the satisfaction of system requirements
and goals. While continuous control theory suffices for purely physical systems,
for cyber physical systems with significant software components a mix of discrete
and continuous control is required. Moreover, adaptive systems require adaptive
control where controllers must be modified at run-time. Many exciting and chal-
lenging research questions remain in applying control theory and concepts in the
realm of self-adaptive systems.

The work presented in this paper is fundamentally based on the idea that,
even for software systems that are too complex for direct application of classical
control theory, the concepts and abstractions afforded by control theory can
be useful. These concepts and abstractions provide design guidance to identify
important control characteristics, as well as to determine not only the general
steps but also the details of the strategy that determines the controllability of
the resulting systems. This in turn enables careful reasoning about whether the
control characteristics are in fact achieved in the resulting system.

Feedback loops have been adopted as cornerstones of software-intensive self-
adaptive systems [9,27,30]. Building on this, this paper explores how classical



Software Engineering for Self-Adaptive Systems 19

feedback loops, as defined by control theory, can contribute to the design of
self-adaptive systems, particularly to their assurances. The proposed approach
focuses on the abstract characteristics of classical feedback loops — including
their formulation and afforded assurances, as well as the analysis required to
obtain those assurances. The approach concentrates on the conceptual rather
than the implementation level of the feedback-loop model. We investigated the
relationships among desired properties that can be ensured by control theory
applied in feedback loops (e.g., stability, accuracy, settling time, or efficient
resource use), the ways computational processes can be adjusted, the choice
of the control strategy, and the quality attributes (e.g., responsiveness, latency,
or reliability) of the resulting system.

On the one hand, we discuss how feedback loops contribute to providing
assurances about the behavior of the controlled system, and on the other hand,
how the implementation of feedback loops in self-adaptive systems improves
the realization of assurances in them. To set the stage for identifying concrete
challenges, we first reviewed the major concepts of traditional control theory
and engineering, then studied the parallels between control theory [3,34] and
the more recent research on feedback control of software systems (i.e., MAPE-K
loops and hierarchical arrangements of such loops) [22,27] in the realm of self-
adaptive systems. To gain a good understanding of the role that feedback loops
play in the providing assurances for self-adaptive systems, the following books
and seminal papers [2,3,9,17,27,41,43] are recommended.

In the next sections, we introduce basic concepts and properties that can be
borrowed from control theory to provide assurances for self-adaptive systems.
Then, we discuss research challenges and questions identified in analyzing clas-
sical feedback loops to guarantee desired properties for self-adaptive systems.
For an extensive description of the ideas presented in this section, we refer the
reader to [32].

4.1 Feedback Control

In a simple feedback control system, a process P (i.e., the system to be adapted
or managed in the self-adaptive systems realm) has a tuning parameter u (e.g.,
a knob, which is represented by the little square box in Fig. 2) that can be
manipulated by a controller C to change the behavior of the process, and a
tracked metric y that can be sensed in some way. The system is expected to
maintain the tracked metric y at a reference level yr (i.e., reference input), as
illustrated in Fig. 2. Being a function that depends on time, C compares the value
of y (subject to possible signal translation in the transducer) to the desired value
yr. The difference is the tracking or control error. If this error is significantly
enough, the controller changes parameter u to drive the process in such a way as
to reduce the tracking error. The tuning parameter u is often called the “control
input” and the tracked metric y is often called the “measured output.”

Control theory depends on the definition of reference control points to specify
system behavior and corresponding explicit mathematical models. These models
describe the Process (P), the Controller (C) and the overall feedback system.



20 R. de Lemos et al.

Controller (C) Process (P)

Transducer

+
-

Reference 
level (yr)

Control
Error

Control
Input

External 
Disturbances

Tracked
Metric (y)

u

Fig. 2. The feedback loop control model.

Control theory separates between the design of the process to be controlled and
the design of the controller. Given a model of a process, a controller is designed to
achieve a particular goal (e.g., stability, robustness). Control theory also provides
assurances when the process and the whole system are described by models.

Feedback, as implemented in controlled systems as described above, is espe-
cially useful when processes are subject to unpredictable disturbances. In com-
puting environments, disturbance examples include, among others, system loads,
such as those implied by the number of users or request arrival rates, and variable
hit rates on system caches. Feedback can also be useful when the computation in
the process itself is unpredictable and its accuracy or performance can be tuned
by adjusting its parameters.

4.2 Adaptive and Hierarchical Control

For systems that vary over time or face a wide range of external disturbances, it
is impossible to design one controller that addresses all those changes. In these
cases, there is the need to design a set of controllers (i.e., parameterized con-
trollers). When the current controller becomes ineffective, we switch to a new
controller or adjust its parameters. When the controller is updated while the
system runs, this control strategy is referred to as adaptive control. This control
strategy requires additional logic that monitors the effectiveness of the controller
under given conditions and, when some conditions are met, it re-tunes the con-
troller to adapt it to the new situation. The control community has investigated
adaptive control since 1961 according to Åström and Wittenmark [3]. They pro-
vide a working definition for adaptive control that has withstood the test of
time: “An adaptive controller is a controller with adjustable parameters and a
mechanism for adjusting the parameters.” This definition implies hierarchical
control : arrangements of two (or more) layers of control loops, usually three-
layered architectures.

Control theory offers several approaches for realizing adaptive control. Two
of them are model reference adaptive control (MRAC) and model identification
adaptive control (MIAC) [17]. MRAC and MIAC feature an additional con-
troller that modifies the underlying controller that affects the target system.
This higher-level controller, also referred to as the “adaptation algorithm”, is
specified at design time for MRAC (e.g., using simulation) and identified at



Software Engineering for Self-Adaptive Systems 21

run-time (e.g., using estimation techniques) for MIAC. In practice, given the
dynamic nature of the reference model in MIAC, this approach is used more
often for highly uncertain scenarios. The strategies for changing the underlying
controller range from changing parameters (e.g., three parameter gains in a PID
controller) to replacing the entire software control algorithm (e.g., from a set of
predefined components).

In the seventies, the AI and robotics communities introduced three-layer
intelligent hierarchical control systems (HICS) [39]. The Autonomic Comput-
ing Reference Architecture (ACRA), proposed by Kephart and Chess [23,27] for
the engineering of autonomic systems, is the most prominent reference architec-
ture for hierarchical control. self-adaptive systems based on ACRA are defined
as a set of hierarchically structured controllers. Using ACRA, software policies
and assurances are injected from higher layers into lower layers. Other notable
three-layer hierarchical control reference models include the Kramer and Magee
model [29], DYNAMICO by Villegas et al. [44], and FORMS by Weyns et al. [49].
Please refer to Villegas et al. [42] for a more detailed discussion of these hierar-
chical control models for self-adaptive systems. The models at run-time (MART)
community has developed extensive methods and techniques to evolve models
dynamically for adaptive and hierarchical control purposes [5,15].

4.3 Control Theory Properties

Exploiting control theory to realize effective assurances in self-adaptive systems
implies that special attention needs to be paid to the selection of a “control
strategy” that contributes to guaranteeing desired properties. From this per-
spective, the control strategy is even more critical than the mechanisms used
to adjust the target system. Furthermore, a property that is properly achieved
effectively becomes an assurance for the desired system behavior. We submit
that the lessons learned from control theory in the assurance of desired proper-
ties is a promising research direction. Here, we present an overview of control
theory properties (Villegas et al. comprehensively define these properties in the
context of self-adaptive systems [43]). These properties, even if not captured in
formalized models for self-adaptive systems, must be considered by their design-
ers along the system’s engineering lifecycle.

Broadly, control theory studies two types of control loops: open and closed
loops. Open loop models focus only on the controlled or managed system, that is,
the outputs of the controlled system (i.e., measured outputs) are not considered
to compute the control input. In contrast, in closed loop models control inputs
are computed from measured outputs.

Properties of the Open Loop Model. In the open loop model, the most
important properties are stability, observability and controllability.

Stability means that for bounded inputs (commands or perturbations), the
system will produce bounded state and output values. Unfortunately, pertur-
bations are the enemy of stability in open loop self-adaptive systems, because



22 R. de Lemos et al.

the system is not set up to recognize how much the perturbations affect the
system. If the open self-adaptive systems is not stable, it can be stabilized
through the design of a suitable controller. However, by analyzing the sta-
bility of the open system, we must understand the source of instability and
design the controller appropriately.

Observability is the property of the model that allows to find, or at least
estimate, the internal state variables of a system from the tracked output
variables.

Controllability (or state controllability) describes the possibility of driving the
open system to a desired state, that is, to bring its internal state variables
to certain values [13]. While observability is not a necessary condition for
designing a controller for self-adaptive systems, the controllability property
is. Even if we do not have an explicit open loop model, a qualitative analysis
should be performed.

Properties of the Closed Loop Model. When an explicit model of the open
loop is available, the closed loop model can be synthesized mathematically to
achieve the properties the designer aims to guarantee. In general, the controller
is designed to achieve stability, robustness and performance.

Stability refers to whether control corrections move the open system state,
over time, toward the reference value or level. A system is unstable if the
controller causes overcorrections that never decrease, or that increase without
limit, or that oscillates indefinitely. Instability can be introduced by making
corrections that are too large in an attempt to achieve the reference level
quickly. This leads to oscillating behaviors in which the system overshoots
the reference value alternately to the high side and the low side.

Robust stability, or robustness, is a special type of stability in control theory.
Robust stability means that the closed loop system is stable in the presence of
external disturbances, model parameters and model structure uncertainties.

Performance is another important property in closed loop models and can
be measured in terms of rise time, overshoot, settling time, steady error or
accuracy [2,4].

4.4 Research Challenges

In this section, we have briefly described and analyzed how control theory prop-
erties can be used to guide the realization of assurances in the engineering of
self-adaptive systems. However, for this realization we identify a number of chal-
lenges that require further research work.

Control theory challenges. We argue that the concepts and principles of con-
trol theory and the assurances they provide, at least in abstract form, can
be applied in the design of a large class of self-adaptation problems in soft-
ware systems. Part of these problems correspond to scenarios in which it is
possible to apply control theory directly to self-adaptive systems, that is, by



Software Engineering for Self-Adaptive Systems 23

mathematically modeling the software system behavior, and applying control
theory techniques to obtain desired properties, such as stability, performance
and robustness. These properties automatically provide corresponding assur-
ances about the controlled system behavior. However, there are still no clear
guidelines about the limitations of control theory as directly applied to self-
adaptive systems in the general case.
Another set of problems corresponds to scenarios where it is infeasible to build
a reasonably precise mathematical model, but instead, it is possible to create
an approximated operational or even qualitative model of the self-adaptive
system behavior. In this case, the formal definitions and techniques of control
theory may not apply directly, but understanding the principles of control
theory can guide the sorts of questions the designer should answer and take
care of while designing an self-adaptive system.
Many challenges on the application of feedback control to perpetual assur-
ances in self-adaptive systems arise from the following research questions:
– How can we determine whether a given self-adaptive system will be
stable?

– How quickly will the system respond to a change in the reference value?
Is this fast enough for the application? Are there lags or delays that will
affect the response time? If so, are they intrinsic to the system or can
they be optimized?

– What are the constraints for external disturbances and how do they affect
self-adaptive systems design?

– Can we design a robust controller to achieve robust stability or use adap-
tive or hierarchical control?

– How accurately and periodically shall the system track the reference
value? Is this good enough for the application domain?

– How much resources will the system spend in tracking and adjusting the
reference value? Can this amount be optimized? What is more important:
to minimize the cost of resources or the time for adjusting the reference
values? Can this tradeoff be quantified?

– How likely is that multiple control inputs are needed to achieve robust
stability?

Modeling challenges. These challenges concern the identification of the control
core phenomena (e.g., system identification or sampling periods). The analy-
sis of the system model should determine whether the “knobs” have enough
power (command authority) to actually drive the system in the required direc-
tion. Many open research questions remain, for example:
– How do we model explicitly and accurately the relationship among system
goals, adaptation mechanisms, and the effects produced by controlled
variables?

– Can we design software systems having an explicit specification of what we
want to assure with control-based approaches? Can we do it by focusing
only on some aspects for which feedback control is more effective?

– Can we improve the use of control, or achieve control-based design, by
connecting as directly as possible some real physics inside the software
systems?



24 R. de Lemos et al.

– How far can we go by modeling self-adaptive systems mathematically?
What are the limitations?

– How can we ensure an optimal sampling rate over time? What is the
overhead introduced by oversampling the underlying system?

– Can we control the sampling rate depending on the current state of the
self-adaptive system?

– How can we ensure an optimal sampling rate over time? What is the
overhead introduced by oversampling the underlying system?

– Can we control the sampling rate depending on the current state of the
self-adaptive system?

Run-time validation and verification (V&V) challenges. Run-time V&V
tasks are crucial in scenarios where controllers based on mathematical models
are infeasible. Nonetheless, performing V&V tasks (e.g., using model check-
ing) over the entire system—at run-time, to guarantee desired properties and
goals, is often infeasible due to prohibitive computational costs. Therefore,
other fundamental challenges for the assurance of self-adaptive systems arise
from the need of engineering incremental and composable V&V tasks [41].
Some open research questions on the realization of run-time V&V are:
– Which V&V tasks can guarantee which control properties, if any, and to
what extent?

– Are stability, accuracy, settling-time, overshoot and other properties com-
posable (e.g., when combining control strategies which independently
guarantee them)?

– What are suitable techniques to realize the composition of V&V tasks?
– Which approaches can be borrowed from testing? How can these be reused
or adjusted for the assurance of self-adaptive systems?

– Regarding incrementality: in which cases is it useful? How can incremen-
tality be realized? How increments are characterized, and their relation-
ship to system changes?

Control strategies design challenges. As mentioned earlier, uncertainty is
one of the most challenging problems in assuring self-adaptive systems. Thus,
it is almost impossible to design controllers that work well for all possible
values of references or disturbances. In this regard, models at run-time as well
as adaptive and hierarchical (e.g., three-layer hierarchies) control strategies
are of paramount importance to self-adaptive systems design [30]. Relevant
research questions include:
– How to identify external disturbances that affect the preservation of
desired properties? What about external disturbances affecting third
party services?

– How do we model the influence of disturbances on desired properties?
– How to deal with complex reference values? In the case of conflicting
goals, can we detect such conflicting goals a priori or a posteriori?

– Can we identify the constraints linking several goals in order to capture
a more complex composite goal (reference value)?



Software Engineering for Self-Adaptive Systems 25

– Feedback control may also help in the specification of viability zones for
self-adaptive systems. In viability zones desired properties are usually
characterized in terms of several variables. How many viability zones are
required for the assurance of a particular self-adaptive software system?
Does each desired property require an independent viability zone? How
to manage trade-offs and possible conflicts among several viability zones?

– How to maintain the causal connection between viability zones, adapted
system, and its corresponding V&V software artifacts?

5 Summary and Conclusions

In this section, we present the overall summary of the identified key research
challenges for the provision of assurances for self-adaptive systems. Though the
theme of assurances is quite specific, the exercise was not intended to be exhaus-
tive. Amongst the several topics involved by the challenges on the provision of
assurances when engineering self-adaptive systems, we have focused on three
major topics: perpetual assurances, composition and decomposition of assur-
ances, and assurances inspired by control theory. We now summarize the most
important research challenges for each topic.

– Perpetual Assurances—provision of perpetual assurances during the entire
lifecycle of a self-adaptive system poses three key challenges: how to obtain
a better understanding of the nature of uncertainty in software systems and
how it should be equated, how to monitor and quantify uncertainty, and how
to derive and integrate new evidence.

– Composing and Decomposing Assurances—although assurance cases can be
used to collect and structure evidence, the key challenge is how to compose
and decompose evidence in order to build arguments. There are two reasons
for that: first, there is the need to manipulate different types of evidence
and their respective assumptions because of the uncertainty permeating self-
adaptive systems; and second, whenever a system adapts, it is expected that
its associated assurance cases adapt, preferably autonomously because of the
reduced involvement of humans in managing a self-adaptive system. Another
challenge is the need to provide overarching processes that would allow us to
manage assurance cases, both during development time and run-time, since
assurance cases are dynamic and should be updated whenever the system
self-adapts.

– Control Theory Assurances—although synergies have been identified between
control theory and self-adaptive systems, the challenge that remains is the
definition of clear guidelines that would facilitate the direct application of
control theory principles and practices into self-adaptive systems. As a result,
adapted properties from control theory could be used as evidence for the
provision of assurances. Since modelling is a key aspect in control systems, the
challenge is to identify, in the context of self-adaptive systems, the variables to
be monitored and controlled, suitable control strategies to model for each case,



26 R. de Lemos et al.

and how to implement these models directly in the adaptation mechanisms
to fulfil the goals of the system. In order to deal with uncertainties, and
inspired by practical control systems, there is the need to consider hierarchical
structures of controllers, which should be supported by models that should be
adaptable (i.e., adaptive control). Due to the dynamic aspects of self-adaptive
software systems, there is a need to perform the verification and validation
tasks in an incremental and composable way, both at design and run-time.

There are several aspects that permeate the identified research challenges, but
uncertainty is a key factor in the provision of assurances for self-adaptive systems.
For example, there is uncertainty associated with the generation and composition
of evidence that is used to build assurance arguments. In some contexts the only
way to deal with uncertainty is to make assumptions—for example, assumptions
on the number and type of changes, assumptions about the context in which the
system operates, and assumptions associated with the produced evidence. The
validity of the assumptions need to be perpetually evaluated while providing
assurances. How to manage assumptions considering the limited involvement by
humans during run-time of self-adaptive systems is a research challenge.

The autonomous way in which the provision of assurances ought to be man-
aged is also considered a research challenge. For that, a separate feedback control
loop might be needed to perpetually collect, structure and analyze the evidence.
The role of this feedback control loop is not directly related to the services pro-
vided by the system, but to the management of the assurance arguments that
justify the ability of the system to provide its intended service and its associated
quality. Although a feedback control loop is an excellent mechanism to handle
uncertainty, it should be considered under a set of assumptions, which also need
to be evaluated during run-time.

Furthermore, considering the complexity of the task at hand, processes should
be incorporated into the feedback control loop in order to manage the perpetual
provision of assurances, which should depend, for example, on the trust level
required by the system, the kind of evidence that the system is able to generate,
and how this evidence can be composed in order to build assurance arguments.
If there are any changes in the evidence or its assumptions, the controller should
automatically evaluate the validity of the assurance arguments. Equally, if trust
levels associated with the system goals change, the controller should evaluate
the arguments of the assurance case, and if required, new evidence ought to be
generated and composed in order to rebuild assurance arguments.

The identified research challenges are specifically associated with the three
topics related to the provision of assurances when engineering self-adaptive sys-
tems, which were addressed in this paper. These are challenges that our commu-
nity must face because of the dynamic nature of self-adaptation. Moreover, the
ever changing nature of these type of systems requires to bring uncertainty to
the forefront of system design. It is this uncertainty that challenges the applica-
bility of traditional software engineering principles and practices, but motivates
the search for new approaches when developing, deploying, operating, evolving
and decommissioning self-adaptive systems.



Software Engineering for Self-Adaptive Systems 27

References

1. Ali, R., Griggio, A., Franzén, A., Dalpiaz, F., Giorgini, P.: Optimizing monitoring
requirements in self-adaptive systems. In: Bider, I., Halpin, T., Krogstie, J., Nur-
can, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) BPMDS/EMMSAD
-2012. LNBIP, vol. 113, pp. 362–377. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31072-0 25

2. Åström, K.J., Murray, R.M.: Feedback Systems. An iNtroduction for Scientists
and Engineers (2008)

3. Åström, K., Wittenmark, B.: Adaptive Control. Addison-Wesley series in Electrical
Engineering: Control Engineering. Addison-Wesley (1995)

4. Balzer, B., Litoiu, M., Müller, H., Smith, D., Storey, M.A., Tilley, S., Wong, K.: 4th
international workshop on adoption-centric software engineering. In: Proceedings
of the 26th International Conference on Software Engineering, ICSE 2004, pp.
748–749. IEEE Computer Society, Washington, DC (2004)

5. Blair, G., Bencomo, N., France, R.B.: Models@run.time. IEEE Comput. 42, 22–27
(2009)

6. Blanchette, Jr., S.: Assurance cases for design analysis of complex system of sys-
tems software. Technical report, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, April 2009

7. Bloomfield, R., Bishop, P.: Safety and assurance cases: past, present and possible
future-an Adelard perspective. In: Dale, C., Anderson, T. (eds.) Making Systems
Safer, pp. 51–67. Springer, London (2010). https://doi.org/10.1007/978-1-84996-
086-1 4

8. Bloomfield, R., Peter, B., Jones, C., Froome, P.: ASCAD – Adelard Safety Case
Development Manual. Adelard, 3 Coborn Road, London E3 2DA, UK (1998)

9. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M.,
Müller, H., Pezzè, M., Shaw, M.: Engineering self-adaptive systems through feed-
back loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9 3

10. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic qos management and optimization in service-based systems. IEEE Trans.
Softw. Eng. 37(3), 387–409 (2011)

11. Casanova, P., Garlan, D., Schmerl, B., Abreu, R.: Diagnosing architectural run-
time failures. In: Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2013, pp. 103–112
(2013)

12. Casanova, P., Garlan, D., Schmerl, B., Abreu, R.: Diagnosing unobserved compo-
nents in self-adaptive systems. In: Proceedings of the 9th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014,
pp. 75–84 (2014)

13. Checiu, L., Solomon, B., Ionescu, D., Litoiu, M., Iszlai, G.: Observability and
controllability of autonomic computing systems for composed web services. In:
Proceedings of the 6th IEEE International Symposium on Applied Computational
Intelligence and Informatics, (SACI 2011), pp. 269–274. IEEE (2011)

14. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research
roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9 1

https://doi.org/10.1007/978-3-642-31072-0_25
https://doi.org/10.1007/978-3-642-31072-0_25
https://doi.org/10.1007/978-1-84996-086-1_4
https://doi.org/10.1007/978-1-84996-086-1_4
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1007/978-3-642-02161-9_1


28 R. de Lemos et al.

15. Cheng, B.H.C., et al.: Using models at runtime to address assurance for self-
adaptive systems. In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.)
Models@run.time. LNCS, vol. 8378, pp. 101–136. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08915-7 4

16. Cheng, S.W., Garlan, D., Schmerl, B., Sousa, J.a.P., Spitznagel, B., Steenkiste, P.:
Using architectural style as a basis for self-repair. In: Bosch, J., Gentleman, M.,
Hofmeister, C., Kuusela, J. (eds.) Proceedings of the 3rd Working IEEE/IFIP Con-
ference on Software Architecture, 25–31 August 2002, pp. 45–59. Kluwer Academic
Publishers (2002)

17. Dumont, G., Huzmezan, M.: Concepts, methods and techniques in adaptive control.
IEEE American Control Conf. (ACC) 2, 1137–1150 (2002)

18. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-
adaptive Systems II. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5 9

19. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model
checking. In: 33rd International Conference on Software Engineering (ICSE), pp.
341–350, May 2011

20. Filieri, A., Tamburrelli, G.: Probabilistic verification at runtime for self-adaptive
systems. In: Cámara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds.) Assurances for
Self-Adaptive Systems. LNCS, vol. 7740, pp. 30–59. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36249-1 2

21. Garlan, D.: Software engineering in an uncertain world. In: Proceedings of the
FSE/SDP Workshop on Future of Software Engineering Research, FoSER 2010,
pp. 125–128 (2010)

22. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. Wiley (2004)

23. IBM Corporation: An Architectural Blueprint for Autonomic Computing. IBM
Corporation, Technical report (2006)

24. Iftikhar, M.U., Weyns, D.: Activforms: active formal models for self-adaptation.
In: Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2014, pp. 125–134 (2014)

25. Gil de la Iglesia, D., Weyns, D.: Guaranteeing robustness in a mobile learning
application using formally verified MAPE loops. In: Proceedings of the 8th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS 2013, pp. 83–92 (2013)

26. Kelly, T.P.: Managing complex safety cases. In: Redmill, F., Anderson, T. (eds.)
Current Issues in Safety-Critical Systems, pp. 99–115. Springer, London (2003).
https://doi.org/10.1007/978-1-4471-0653-1 6

27. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput.
36(1), 41–50 (2003)

28. Kit, M., Gerostathopoulos, I., Bures, T., Hnetynka, P., Plasil, F.: An architec-
ture framework for experimentations with self-adaptive cyber-physical systems.
In: Proceedings of the 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2015, pp. 93–96 (2015)

29. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In:
FOSE 2007: 2007 Future of Software Engineering, pp. 259–268. IEEE Computer
Society, Washington, DC (2007)

https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1007/978-3-642-36249-1_2
https://doi.org/10.1007/978-1-4471-0653-1_6


Software Engineering for Self-Adaptive Systems 29

30. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Soft-
ware Engineering for Self-adaptive Systems II. LNCS, vol. 7475, pp. 1–32. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5 1

31. Litoiu, M.: A performance analysis method for autonomic computing systems.
ACM Trans. Auton. Adapt. Syst. 2(1), 3 (2007)

32. Karsai, G., Ledeczi, A., Sztipanovits, J., Peceli, G., Simon, G., Kovacshazy, T.:
An approach to self-adaptive software based on supervisory control. In: Laddaga,
R., Shrobe, H., Robertson, P. (eds.) IWSAS 2001. LNCS, vol. 2614, pp. 24–38.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36554-0 3

33. Mahdavi-Hezavehi, S., Avgeriou, P., Weyns, D.: A classification framework of
uncertainty in architecture-based self-adaptive systems with multiple quality
requirements. In: Mistrik, I., Ali, N., Kazman, R., Grundy, J., Schmerl, B. (eds.)
Managing Trade-Offs in Adaptable Software Architectures, pp. 45–77. Morgan
Kaufmann, Boston (2017)

34. Murray, R.M.: Control in an Information Rich World: Report of the Panel on
Future Directions in Control, Dynamics, and Systems. SIAM (2003)

35. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: Proceedings of
the 5th ACM/SPEC International Conference on Performance Engineering, ICPE
2014, pp. 3–14 (2014)

36. Redondo, R.P.D., Arias, J.J.P., Vilas, A.F.: Reusing verification information of
incomplete specifications. In: Component-based Software Engineering Workshop,
Lund, Sweden (2002)

37. Schmerl, B., et al.: Challenges in composing and decomposing assurances for self-
adaptive systems. In: de Lemos, R., Garlan, D., Ghezzi, C., Giese, H. (eds.) Self-
Adaptive Systems III. LNCS, vol. 9640, pp. 64–89. Springer, Heidelberg (2017)

38. Schmerl, B., Cámara, J., Gennari, J., Garlan, D., Casanova, P., Moreno, G.A.,
Glazier, T.J., Barnes, J.M.: Architecture-based self-protection: composing and rea-
soning about denial-of-service mitigations. In: HotSoS 2014: 2014 Symposium and
Bootcamp on the Science of Security, 8–9 April 2014, Raleigh, NC, USA (2014)

39. Shibata, T., Fukuda, T.: Hierarchical intelligent control for robotic motion. IEEE
Trans. Neural Networks 5(5), 823–832 (1994)

40. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen, K.
(eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29860-8 15

41. Tamura, G., et al.: Towards practical runtime verification and validation of self-
adaptive software systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M.
(eds.) Software Engineering for Self-adaptive Systems II. LNCS, vol. 7475, pp. 108–
132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5 5

42. Villegas, N., Tamura, G., Müller, H.: Chapter 2 - Architecting software systems
for runtime self-adaptation: concepts, models, and challenges. In: Mistrik, I., Ali,
N., Kazman, R., Grundy, J., Schmerl, B. (eds.) Managing Trade-Offs in Adaptable
Software Architectures, pp. 17–43. Morgan Kaufmann, Boston (2017)

43. Villegas, N., Müller, H., Tamura, G., Duchien, L., Casallas, R.: A framework for
evaluating quality-driven self-adaptive software systems. In: Proceedings of the 6th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2011), pp. 80–89. ACM (2011)

https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1007/3-540-36554-0_3
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-35813-5_5


30 R. de Lemos et al.

44. Villegas, N.M., Tamura, G., Müller, H.A., Duchien, L., Casallas, R.: DYNAMICO:
a reference model for governing control objectives and context relevance in self-
adaptive software systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M.
(eds.) Software Engineering for Self-adaptive Systems II. LNCS, vol. 7475, pp. 265–
293. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5 11

45. Vogel, T., Giese, H.: Model-driven engineering of self-adaptive software with
EUREMA. ACM Trans. Auton. Adapt. Syst. 8(4), 18:1–18:33 (2014)

46. Weyns, D., et al.: Perpetual assurances for self-adaptive systems. In: de Lemos,
R., Garlan, D., Ghezzi, C., Giese, H. (eds.) Self-Adaptive Systems III. LNCS, vol.
9640, pp. 31–63. Springer, Heidelberg (2017)

47. Weyns, D., Calinescu, R.: Tele assistance: a self-adaptive service-based system
examplar. In: Proceedings of the 10th International Symposium on Software Engi-
neering for Adaptive and Self-managing Systems, SEAMS 2015, pp. 88–92. IEEE
Press, Piscataway (2015)

48. Weyns, D., Iftikhar, M.U., de la Iglesia, D.G., Ahmad, T.: A survey of formal
methods in self-adaptive systems. In: Proceedings of the Fifth International C*
Conference on Computer Science and Software Engineering, C3S2E 2012, pp. 67–
79(2012)

49. Weyns, D., Malek, S., Andersson, J.: FORMS: unifying reference model for formal
specification of distributed self-adaptive systems. ACM Trans. Auton. Adapt. Syst.
7(1), 8:1–8:61 (2012)

50. Ye, F., Kelly, T.: Contract-based justification for cots component within safety
critical applications. In: Cant, T. (ed.) Ninth Australian Workshop on Safety-
Related Programmable Systems (SCS 2004). CRPIT, vol. 47, pp. 13–22. ACS,
Brisbane (2004)

51. Zhang, J., Cheng, B.H.: Using temporal logic to specify adaptive program seman-
tics. J. Syst. Softw. 79(10), 1361–1369 (2006)

https://doi.org/10.1007/978-3-642-35813-5_11

	Preface
	Contents
	Research Challenges
	Software Engineering for Self-Adaptive Systems: Research Challenges in the Provision of Assurances
	1 Introduction
	2 Perpetual Assurances
	2.1 Uncertainty as a Key Challenge for Perpetual Assurances
	2.2 Requirements for Solutions that Realize Perpetual Assurances
	2.3 Approaches to Perpetual Assurances
	2.4 Mechanisms for Turning Perpetual Assurances into Reality
	2.5 Benchmark Criteria for Perpetual Assurances
	2.6 Research Challenges

	3 Composing and Decomposing Assurances
	3.1 Assurances in Self-adaptive Systems
	3.2 Research Challenges

	4 Control Theory and Assurances
	4.1 Feedback Control
	4.2 Adaptive and Hierarchical Control
	4.3 Control Theory Properties
	4.4 Research Challenges

	5 Summary and Conclusions
	References

	Perpetual Assurances for Self-Adaptive Systems
	Abstract
	1 Introduction
	2 Key Challenges for Perpetual Assurances
	3 Requirements for Solutions to Realize Perpetual Assurances
	4 Approaches to Realize Perpetual Assurances
	4.1 Human-Driven Approaches
	4.2 System-Driven Approaches
	4.3 Hybrid Approaches

	5 Mechanisms to Make Perpetual Assurances Working
	5.1 Quality Properties for Perpetual Assurances Approaches
	5.2 Decomposition Mechanisms for Perpetual Assurances Approaches
	5.2.1 Time Decomposition
	5.2.2 Space Decomposition
	5.2.3 Discussion

	5.3 Model-Based Mechanisms for Perpetual Assurances Approaches

	6 Benchmark Criteria for Perpetual Assurances
	6.1 Capabilities of Approaches to Provide Perpetual Assurances
	6.2 Basis of Assurance Benchmarking
	6.3 Stringency of Perpetual Assurances
	6.4 Performance of Approaches to Provide Perpetual Assurances

	7 Example Case
	7.1 Domain and General Adaptation Scenarios
	7.2 Tele Assistance System
	7.3 Adaptation Scenarios and Benchmark Criteria
	7.4 Concrete Example Scenario

	8 Conclusions
	References

	Challenges in Composing and Decomposing Assurances for Self-Adaptive Systems
	1 Introduction
	2 Preliminaries
	2.1 Self-Adaptive Systems
	2.2 Assurance Cases
	2.3 Illustrative Example

	3 Assurance Decomposition and Composition in Self-Adaptive Systems
	3.1 Evidence Types for Use in Assurance Case Decomposition
	3.2 Assurance Composition Based on the MAPE-K Loop

	4 Decomposing and Composing Assurances to Self-Adaptation
	4.1 Decomposition of Assurances
	4.2 Composition of Assurances

	5 Applying Assurance Cases to Self-Adaptation
	5.1 Assurance Case Decomposition and Composition Research
	5.2 Challenges Applying Assurance Cases to Self-Adaptation

	6 Conclusions
	References

	What Can Control Theory Teach Us About Assurances in Self-Adaptive Software Systems?
	1 Introduction
	2 Self-Adaptive Software (SAS) Systems
	3 Feedback Control
	3.1 Correspondences Between Feedback Control and MAPE-K

	4 Adaptive and Hierarchical Control
	5 Control Theory Applied to Self Adaptive Software - An Overview
	5.1 The Open Loop Model
	5.2 The Closed Loop Model
	5.3 Feedback Control Behavior

	6 Assurances
	6.1 Classic Control Strategies
	6.2 Control Theory to the Rescue of the MAPE-K Loop
	6.3 Properties of the Open Loop Model
	6.4 Complex Open SAS and Model Composition
	6.5 Properties of the Closed Loop Model
	6.6 Open Questions

	7 Assurance Challenges for Self-Adaptive Software
	7.1 Modeling Challenges
	7.2 Composition and Incrementality: V&V Tasks
	7.3 Timing Issues and Lags
	7.4 Challenges in Control Strategies Design

	8 Conclusions
	References

	Evaluation
	MCaaS: Model Checking in the Cloud for Assurances of Adaptive Systems
	1 Introduction
	2 Motivating Example
	3 MCaaS: Model Checking as a Service
	3.1 MCaaS Overview
	3.2 MCaaS Client-Side Components
	3.3 MCaaS Provider-Side Components
	3.4 Resource Prediction

	4 MCaaS in Practice
	4.1 MCaaS Implementation
	4.2 Accuracy of Resource Prediction
	4.3 Discussion

	5 Related Work
	6 Conclusion and Outlook
	References

	Analyzing Self-Adaptation Via Model Checking of Stochastic Games
	1 Introduction
	2 Background and Related Work
	2.1 Fuzzy Sets and Possibility Theory
	2.2 Probability Theory
	2.3 Probability and Game Theory
	2.4 Probabilistic Model Checking of Stochastic Multiplayer Games

	3 Analysis of Self-Adaptation Via Model Checking of Stochastic Multiplayer Games
	3.1 Model Specification
	3.2 Strategy Synthesis

	4 Applications
	4.1 Self-protecting Systems
	4.2 Latency-Aware Proactive Adaptation
	4.3 Human-in-the-Loop Adaptation

	5 Conclusions and Future Work
	References

	An Approach for Isolated Testing of Self-Organization Algorithms
	1 Introduction
	2 Case Study: Self-Organized Creation of Virtual Power Plants in Smart Grids
	3 The Corridor Enforcing Infrastructure (CEI) for Testing Self-Organizing, Adaptive Systems
	4 A Framework for Isolated Testing of Self-Organization Algorithms (IsoTeSO)
	4.1 Test Model of the Framework IsoTeSO
	4.2 Test Suite Generator Component of IsoTeSO
	4.3 Execution Component of IsoTeSO
	4.4 Monitoring and Evaluation Component of IsoTeSO

	5 Tested Self-Organization Algorithms
	5.1 A Decentralized Algorithm for Partitioning Multi-agent Systems
	5.2 A Particle Swarm Optimizer for Partitioning Multi-agent Systems

	6 Evaluation
	6.1 Fault Injection
	6.2 Test Execution
	6.3 Evaluation Results

	7 Related Work
	8 Conclusion and Future Work
	References

	Using Runtime Quantitative Verification to Provide Assurance Evidence for Self-Adaptive Software
	1 Introduction
	2 Overview
	2.1 Quantitative Verification
	2.2 Runtime Quantitative Verification

	3 Recent Advances
	3.1 Efficient Runtime Quantitative Verification 
	3.2 Learning Probabilistic Models 

	4 Applications
	4.1 Self-Verifying Service-Based Systems
	4.2 Dynamic Management of Cloud Computing Infrastructure

	5 Summary and Research Challenges
	References

	Integration and Coordination
	Contracts-Based Control Integration into Software Systems
	1 Introduction
	2 Adaptation Scenario
	3 Feedback Control Definition Language in a Nutshell
	3.1 Modeling Feedback Control Loops
	3.2 Illustration
	3.3 Modeling Support

	4 Adaptive Element Contracts
	4.1 Interaction Contracts
	4.2 Behavioral Contracts
	4.3 Interaction Invariants
	4.4 Structural Invariants

	5 Failure Handling
	5.1 Failures and Exceptions
	5.2 Exception Handling
	5.3 Supervision Strategies

	6 Assessment
	6.1 Modeling with Contracts
	6.2 Limitations
	6.3 Discussion

	7 Related Work
	7.1 Interaction Specification
	7.2 Component Contracts
	7.3 Self-Adaptive Software Systems Engineering

	8 Conclusion
	References

	Synthesis of Distributed and Adaptable Coordinators to Enable Choreography Evolution
	1 Introduction
	2 Running Example
	3 Method Description
	4 Dealing with Choreography Evolution
	5 Method at Work
	6 Related Work
	7 Conclusions and Future Work
	References

	Models for the Consistent Interaction of Adaptations in Self-Adaptive Systems
	1 Introduction
	2 Background
	2.1 Case Study: Smart-Home Systems
	2.2 Consistency Assurance Requirements

	3 Approaches for Consistency Management
	3.1 Formal Approaches
	3.2 Architectural Modeling Approaches
	3.3 Rule-Based Approaches
	3.4 Transition System Approaches

	4 Analysis and Challenges of Consistency Management
	4.1 Analysis of Consistency Assurance Models
	4.2 Challenges in Self-adaptation Consistency

	5 Conclusion
	References

	Feedback Control as MAPE-K Loop in Autonomic Computing
	1 Feedback Loops in Computing Systems
	1.1 Adaptive and Reconfigurable Computing Systems
	1.2 Autonomic Computing
	1.3 Need for Control
	1.4 Outline

	2 Continuous Control for Autonomic Computing
	2.1 Brief Basics of Continuous Control
	2.2 The MAPE-K Loop as a Continuous Control Loop
	2.3 Continuous Feedback Computing
	2.4 Basic Control
	2.5 Advanced Modeling and Control

	3 Discrete Control for Autonomic Computing
	3.1 Brief Basics of Supervisory Control of Discrete Event Systems
	3.2 The MAPE-K Loop as a Discrete Supervisory Control Loop
	3.3 Discrete Feedback Computing

	4 Case Studies
	4.1 Video Decoding and DVFS
	4.2 Server Provisioning
	4.3 Coordination of Multiple Autonomic Administration Loops

	5 Conclusions and Perspectives
	References

	Reference Architectures and Platforms
	An Extended Description of MORPH: A Reference Architecture for Configuration and Behaviour Self-Adaptation
	1 Introduction
	2 MORPH: A Reference Architecture for Configuration and Behaviour Self-Adaptation
	2.1 Target System
	2.2 Common Knowledge Repository
	2.3 Goal Management Layer
	2.4 Strategy Management Layer
	2.5 Strategy Enactor
	2.6 An Integrating Scenario

	3 Relation to Existing Systems and Architectures
	3.1 RAINBOW DBLP:journalsspscomputerspsGarlanCHSS04
	3.2 PLASMA Tajalli:2010:PPL:1858996.1859092
	3.3 Three Layer Conceptual Model DBLP:confspsicsespsKramerM07

	4 Prior Experience
	5 Related Work
	6 Conclusions
	References

	MOSES: A Platform for Experimenting with QoS-Driven Self-Adaptation Policies for Service Oriented Systems
	1 Introduction
	2 MOSES Framework
	2.1 Problem Space Characterization
	2.2 System Model
	2.3 Benchmarking Criteria

	3 MOSES High-Level Architecture
	4 MOSES Prototype
	4.1 MOSES Modules
	4.2 MOSES Extensions
	4.3 MOSES Overheads
	4.4 MOSES Evaluation Tool

	5 Related Work
	6 Conclusions
	References

	Author Index

