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ABSTRACT
Advances in how we build and use software, specifically the integra-
tion of machine learning for decision making, have led to widespread
concern around model and software fairness. We present fairkit-learn,
an interactive Python toolkit designed to support data scientists’ abil-
ity to reason about and understand model fairness. We outline how
fairkit-learn can support model training, evaluation, and comparison
and describe the potential benefit that comes with using fairkit-learn
in comparison to the state-of-the-art. Fairkit-learn is open source at
https://go.gmu.edu/fairkit-learn/.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging.
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1 INTRODUCTION
Software engineering and data scientists, more and more, use data to
train machine learning models as part of software systems. Not only
is data-driven software becoming more pervasive, it is being adopted
in contexts where unexpected outcomes can have detrimental impact.
From who gets a job [29], to the diagnosis and treatment of medical
patients [32], data-driven software affects many important decisions.

While there is potential for data-driven software to improve our
way of life, recent studies suggest that societal biases are in the
data we use when training machine learning models, which leads to
technological biases [12, 27]. YouTube makes more mistakes when
rendering closed captions for female voices [22, 33]. E-commerce
software has showcased bias in their services and discounts [16, 25].
Facial recognition software has difficulty accurately recognizing
female and non-white faces [6, 17, 21]. Unfortunately, the list goes
on and on.
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Figure 1: Example parameters for model search in fairkit-learn

One way to support data scientists in addressing bias in machine
learning is by providing tools that can help them reason about the
various considerations that come with training high quality, unbi-
ased models. To this end, we developed fairkit-learn, an open source
Python toolkit for evaluating and comparing machine learning mod-
els with respect to fairness and other quality metrics [20]. An eval-
uation of fairkit-learn found that it does in fact support the ability
to find models that are both fair and high quality, and improves the
ability to do so over scikit-learn and AI Fairness 360. This paper
outlines the components of fairkit-learn and how it can be used to
automatically (and with little overhead for the user) train, evaluate,
and compare a large number of model configurations.

Next, Section 2 describes fairkit-learn and Section 3 details how
it can be used to help develop fair software. Section 4 places our
research in the context of related work, and Section 5 summarizes
our contributions. A video of fairkit-learn in action is available at
https://youtu.be/ZC_deJnI9xs/.

2 FAIRKIT-LEARN: MODEL EVALUATION
AND COMPARISON

Figure 2 outlines the steps involved when using fairkit-learn. Along
with the dataset being used for model training, the inputs to fairkit-
learn are models, hyperparameters, metrics, protected attribute, clas-
sification threshold, and pre- and post-processing algorithms. In this
section, we discuss the various components of fairkit-learn and how
it uses these inputs.

Integrated machine learning tools. Fairkit-learn is built on top of
scikit-learn and AIF360 [19, 30]. Given scikit-learn is a foundational
machine learning toolkit, we wanted to make sure fairkit-learn could
interface with its algorithms and metrics. We integrated AIF360,
which also builds on top of scikit-learn, to provide fairkit-learn’s
fairness-related functionality.
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Figure 2: Fairkit-learn workflow, all of which takes place within your Python code and execution environment.

Figure 3: Fairkit learn’s output visualization for the search parameters in Figure 1.

Fairkit-learn supports all of scikit-learn’s and AIF360’s algo-
rithms and metrics, including all of AIF360’s bias mitigating algo-
rithms. Fairkit-learn is currently capable of working with over 70
definition of fairness, including:

• Disparate impact, which measures if a model treats similarly
the same fraction of individuals of each group [10, 14, 37].

• Demographic parity, also called statistical parity and group
fairness, which measures if a model’s predictions are statisti-
cally independent of the attribute with respect to which the
model is fair [8, 11].

• Equal opportunity difference, which requires that false neg-
ative rates among groups are equal [10, 15].

• Causal fairness, also called counterfactual fairness, re-
quires classifiers to predict the same outcome for two individ-
uals that s differ only in protected attributes, and are otherwise
identical [12, 23].

Fairkit-learn also provides extension points for including addi-
tional metrics and algorithms. Fairkit-learn builds on the contribu-
tions of scikit-learn and AI Fairness 360 by providing the following
unique features, which we discuss in more detail next:
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• An automated model search capable of evaluating thousands
of machine learning models with respect to two quality and/or
fairness metrics simultaneously.

• An interactive visualization that allows users to explore and
compare a small, Pareto-optimal set of models for each set of
metrics selected.

Model search. Unlike existing tools, fairkit-learn allows users to
find models that best balance fairness with other quality concerns
across as many models as the user can computationally support
(the more models you want to assess, the more memory and power
needed). Figure 1 shows an example set of inputs used for fairkit-
learn’s ModelSearch. The required inputs for fairkit-learn’s model
search are:

• Models. Fairkit-learn requires the specification of at least
one model (models in Figure 1) to perform the grid search,
but users can specify as many models as their computational
resources will allow.

• Metrics. Along with models, the user must specify the met-
rics fairkit-learn should use to evaluate each model config-
uration (metrics in Figure 1). All of fairkit-learn’s current
metrics are stored in the UnifiedMetricLibrary.

• Hyperparameters. This is an optional input, where the user
can specify value ranges for each hyperparameter of each
model (hyperparameters in Figure 1). If no hyperparamter
ranges are specified, fairkit-learn will use default model con-
figurations in the grid search.

• Thresholds. Users need to specify the probabilistic thresh-
old required for positive binary classification (thresholds in
Figure 1) . For example, a threshold of 0.8 will consider any
prediction with ≥ 0.7 probability to be favorable.

• Pre- and post-processing algorithms. Lastly, users can add
any pre- and post-processing algorithms to include in the grid
search (preprocessors and postprocessors in Figure 1).

Once the search is done, results are written to a .csv file that is
used to render a visualization of the results from the grid search.

Search visualization. One of the ways that users can process the
grid search results are presented through the interactive visualization
provided by fairkit-learn, as shown in Figure 3. The plot that is
shown was rendered using the results from the search in Figure 1.
The fairkit-learn visualization allows for viewing of Pareto-optimal
models for any two metrics by selecting those metrics from the
checklist in the bottom left corner of Figure 3 and choosing those
metrics as the X and Y axes in the dropboxes in the upper left corner.
Users can also access all of the search results, including non-optimal
models, by selecting all the metrics in the checklist. To toggle be-
tween models and metrics being displayed in the visualization, users
can select the X and Y axes along with selecting (or de-selecting)
models to include using the different color model buttons (e.g., the
magenta AdversarialDebiasing button). Users can export the
results of their search as a plot that comes with a JSON file that
describes the plot.

3 USING FAIRKIT-LEARN TO FIND OPTIMAL
MODELS

Fairkit-learn is an open source Python toolkit that supports inter-
active evaluation and comparison of machine learning models for
fairness and other quality metrics simultaneously. It can evaluate
thousands of models produced by multiple machine learning al-
gorithms, hyperparameters, and data permutations, and compute
then visualize a small Pareto-optimal set of models that provide
an optimal balance between fairness and quality. Data scientists
can then iterate, improving their models and evaluating them us-
ing fairkit-learn. Instructions for installing fairkit-learn, along with
a tutorial implemented in a Jupyter notebook, can be found here:
https://go.gmu.edu/fairkit-learn

To better understand how a data scientist could use fairkit-learn
to train, evaluate, and compare machine learning models, let us look
back at the search written in Figure 1. Here, the user wants to com-
pare the resulting models from three algorithms: LogisticRegres-
sion, RandomForestClassifier, and AdversarialDebiasing.
In this example, she is using the COMPAS recidivism dataset, which
contains recidivism data for Browards County between the years
2013 and 2014 [28]. Let us imagine that the user wants to explore
models that best balance accuracy and fairness; one could choose
any metric for each of these concerns, however, she cares about the
accuracy_score and the disparate_impact.

While the user has only entered three learning algorithms, fairkit-
learn will train approximately 80 different models by using the
hyperparameter value ranges specified to vary the hyperparameter
values in the grid-search. The grid-search will produce a substantially
smaller subset of models (in this case, the output includes only 7
models) that make up the Pareto-optimal set. This smaller set of
models is then presented to the user in a visualization that plots
the models with respect to the metrics chosen by the user; in this
case, we have disparate impact (a fairness metric) on the x-axis and
accuracy (a quality metric) on the y-axis.

The final set of optimal models shown in the visualization are
models for which improving fairness would decrease accuracy and
vice versa (the Pareto-optimal set). For the search shown in Figure 1,
the interactive visualization in Figure 3 makes it easy to come realize
that (1) given this dataset (COMPAS), model fairness and accuracy
are often in opposition – in other domains they may be complemen-
tary, (2) we can achieve a large increase in fairness (69% compared
to 45%) if we sacrifice some accuracy (63% compared to 68%), (3)
while adversarial debiasing (magenta) is a fairness-aware algorithm,
it produces less fair but slights more accurate models in comparison
to random forest classifier models (orange) that produce more fair
models with a small decrease in accuracy, and (4) with respect to
both accuracy and fairness, logistic regression models (purple) tend
to be more balanced than the other two algorithms with accuracy
that is comparable to adversarial debiasing but increased fairness.

Users can dig deeper into the search results by hovering over the
data points in the plot to get more information on the Pareto-optimal
models found (e.g., the hyperparameter values for that configuration),
opening the .csv file used to render the visualization, which includes
all models included in the search, or exporting the plot and using the
accompanying JSON file to examine optimal models.

https://go.gmu.edu/fairkit-learn
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User Evaluation. To evaluate the potential for fairkit-learn to be
useful in practice, we conducted a user study with 54 graduate and
undergraduate students with varying experience training machine
learning models [20]. We asked participants to complete a series
of tasks involving training and evaluating machine learning models
for fairness and accuracy. Along with using fairkit-learn, we asked
participants to complete the same tasks using scikit-learn, the state-
of-the-art in training machine learning models, and AIF360, one of
them more recognized model fairness evaluation toolkits. We found
that participants selected fairer, more accurate models when using
fairkit-learn. When trying to balance fairness and accuracy, fairkit-
learn was able to find models that are high performing and generally
more fair than the models found by AIF360 and scikit-learn.

4 RELATED WORK
Typically, machine learning model performance is evaluated using
accuracy metrics. scikit-learn [26], one of the most common tools
used for training and evaluating machine learning models, provides
engineers with a variety of machine learning algorithms and various
metrics for evaluating models for performance. While scikit-learn is
useful for training and evaluating models based on their performance,
there is no built in functionality for measuring model fairness or
mitigating bias. But fairness of machine learning models plays an
important role in software that uses such models [5].

There do exist tools designed to help engineers reason about
fairness in their machine learning models [1, 3, 36]. FairML supports
the detection of unintended discrimination in predictive models by
automatically determining the relative significance of model inputs
to outcomes [1]. Another solution, Fairway, combines pre-processing
and in-processing algorithms to remove bias from training data and
models [9].

Fairkit-learn supports evaluating models with respect to two met-
rics simultaneously via an interactive visualization of Pareto-optimal
models. Most related to our contribution is Microsoft’s Fairlearn, a
Python toolkit that uses interactive visualizations to support evaluat-
ing model fairness and fairness-performance trade-offs [4]. While
both fairkit-learn and Fairlearn provide similar functionality to ac-
complish similar goals, fairkit-learn has a couple of unique features.
First, fairkit-learn was built using state-of-the-art machine learning
and fairness libraries increasing ease of integration into existing
workflows. Also, currently Fairlearn is only capable of measuring
group discrimination while fairkit-learn supports any definition of
fairness in AI Fairness 360 (or that the user would like to add or
implement). Lastly, fairkit-learn only returns Pareto-optimal models.

Google developed the What-If Tool to support the analysis and
understanding of machine learning models without having to write
code [36]. When given a TensorFlow model and a dataset, the What-
If Tool visualizes the dataset, allows for editing of individuals in the
dataset, shows the effects of dataset modification, performs coun-
terfactual analysis, and evaluates models based on performance
and fairness. Fairea, a model behavior mutation approach, is an-
other intervention that supports measuring and evaluating fairness-
accuracy trade-offs when using machine learning bias mititgation
methods [18].

AI Fairness 360 (AIF360), a Python tool suite for evaluating
model fairness and performance [3], includes fairness metrics, metric

explanations, and bias mitigation algorithms for datasets and models.
AIF360 is designed to be extensible and accessible to data scientists
and practitioners. Also similar is FairVis, a visual analytics system
that supports exploring fairness and performance with respect to
certain subgroups in a dataset [7]. Similar to fairkit-learn, FairVis
uses visualizations to support this exploration.

Some machine learning methods, known as Seldonian algorithms,
provide high-confidence guarantees that learned models enforce
user-specified fairness properties, even when applied to unseen
data [24, 34]. These guarantees can even extend to settings when the
distribution of the training data is different from that of the data to
which the model is applied [13].

There also exist tools designed to support engineers ability to
test their software for fairness [2, 12, 31, 35, 38, 39]. Themis, a
software fairness testing tool, was the first of its kind [2, 12]. Themis
automatically generates tests that help engineers detect and measure
causal and group discrimination. Fairness testing can be made more
efficient in finding inputs that exhibit bias [35, 38, 39], and can be
driven by a grammar [31].

While there exists tools that can help engineers evaluate models
for fairness and performance and measure software bias, fairkit-learn
works with existing tools to help engineers find Pareto-optimal mod-
els that balance fairness and performance and provides an interactive
visualization that makes it quicker and easier to explore the effects
of different model configurations.

5 CONTRIBUTIONS
We presented fairkit-learn, a novel open-source toolkit designed to
support the evaluation and comparison of machine learning models
across multiple dimensions, such as fairness and performance. We
described how to use fairkit-learn to train, evaluate, and compare
machine learning models using its interactive visualization interface.
We outline the potential for fairkit-learn to be beneficial in practice
based on results from a controlled user study, demonstrating that
fairkit-learn is an effective tool for helping data scientists understand
the fairness-quality landscape.
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