
Causal Testing: Understanding Defects’ Root Causes

Brittany Johnson
University of Massachusetts Amherst

Amherst, MA, USA

bjohnson@cs.umass.edu

Yuriy Brun
University of Massachusetts Amherst

Amherst, MA, USA

brun@cs.umass.edu

Alexandra Meliou
University of Massachusetts Amherst

Amherst, MA, USA

ameli@cs.umass.edu

ABSTRACT

Understanding the root cause of a defect is critical to isolating and

repairing buggy behavior. We present Causal Testing, a newmethod

of root-cause analysis that relies on the theory of counterfactual

causality to identify a set of executions that likely hold key causal

information necessary to understand and repair buggy behavior.

Using the Defects4J benchmark, we find that Causal Testing could

be applied to 71% of real-world defects, and for 77% of those, it can

help developers identify the root cause of the defect. A controlled

experiment with 37 developers shows that Causal Testing improves

participants’ ability to identify the cause of the defect from 80% of

the time with standard testing tools to 86% of the time with Causal

Testing. The participants report that Causal Testing provides useful

information they cannot get using tools such as JUnit. Holmes, our

prototype, open-source Eclipse plugin implementation of Causal

Testing, is available at http://holmes.cs.umass.edu/.

CCS CONCEPTS

• Software and its engineering → Software testing and

debugging.

KEYWORDS

Causal Testing, causality, theory of counterfactual causality, soft-

ware debugging, test fuzzing, automated test generation, Holmes

ACM Reference Format:

Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2020. Causal Testing:

Understanding Defects’ Root Causes. In 42nd International Conference on

Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Ko-

rea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3377811.

3380377

1 INTRODUCTION

Debugging and understanding software behavior is an important

part of building software systems. To help developers debug, many

existing approaches, such as spectrum-based fault localization [21,

41], aim to automatically localize bugs to a specific location in

the code [6, 18]. However, finding the relevant line is often not

enough to help fix the bug [56]. Instead, developers need help

identifying and understanding the root cause of buggy behavior.

While techniques such as delta debugging can minimize a failing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380377

test input [74] and a set of test-breaking changes [73], they do not

help explain why the code is faulty [40].

To address this shortcoming of modern debugging tools, this

paper presents Causal Testing, a novel technique for identifying root

causes of failing executions based on the theory of counterfactual

causality. Causal Testing takes a manipulationist approach to causal

inference [71], modifying and executing tests to observe causal

relationships and derive causal claims about the defects’ root causes.

Given one or more failing executions, Causal Testing conducts

causal experiments by modifying the existing tests to produce a

small set of executions that differ minimally from the failing ones

but do not exhibit the faulty behavior. By observing a behavior and

then purposefully changing the input to observe the behavioral

changes, Causal Testing infers causal relationships [71]: The change

in the input causes the behavioral change. Causal Testing looks for

two kinds of minimally-different executions, ones whose inputs

are similar and ones whose execution paths are similar. When

the differences between executions, either in the inputs or in the

execution paths, are small, but exhibit different test behavior, these

small, causal differences can help developers understand what is

causing the faulty behavior.

Consider a developer working on a web-based geo-mapping ser-

vice (such as Google Maps or MapQuest) receiving a bug report

that the directions between “New York, NY, USA” and “900 René

Lévesque Blvd. WMontreal, QC, Canada” are wrong. The developer

replicates the faulty behavior and hypothesizes potential causes.

Maybe the special characters in “René Lévesque” caused a problem.

Maybe the first address being a city and the second a specific build-

ing caused a mismatch in internal data types. Maybe the route is too

long and the service’s precomputing of some routes is causing the

problem. Maybe construction on the Tappan Zee Bridge along the

route has created flawed route information in the database. There

are many possible causes to consider. The developer decides to

step through the faulty execution, but the shortest path algorithm

coupled with precomputed-route caching and many optimizations

is complex, and it is not clear how the wrong route is produced.

The developer gets lost inside the many libraries and cache calls,

and the stack trace quickly becomes unmanageable.

Suppose, instead, a tool had analyzed the bug report’s test and

presented the developer with the information in Figure 1. The devel-

oper would quickly see that the special characters, the first address

being a city, the length of the route, and the construction are not the

root cause of the problem. Instead, all the failing test cases have one

address in the United States and the other in Canada, whereas all the

passing test cases have both the starting and ending addresses in the

same country. Further, the tool found a passing and a failing input

with minimal execution trace differences: the failing execution con-

tains a call to the metricConvert(pathSoFar) method but the passing one

87

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

1 Failing: New York , NY, USA to

900 René Lévesque Blvd. W Montreal , QC , Canada

2 Failing: Boston , MA, USA to

900 René Lévesque Blvd. W Montreal , QC , Canada

3 Failing: New York , NY, USA to

1 Harbour Square , Toronto , ON , Canada

4 Passing: New York , NY, USA to

39 Dalton St, Boston , MA, USA

5 Passing: Toronto , ON, Canada to

900 René Lévesque Blvd. W Montreal , QC , Canada

6 Passing: Vancouver , BC, Canada to

900 René Lévesque Blvd. W Montreal , QC , Canada

Minimally-different execution traces:

7 Failing: Passing:

8 [...] [...]

9 findSubEndPoints(sor6 , tar7); findSubEndPoints(sor6 , tar7);

10 findSubEndPoints(sor7 , tar8); findSubEndPoints(sor7 , tar8);

11 metricConvert(pathSoFar);

12 findSubEndPoints(sor8 , tar9); findSubEndPoints(sor8 , tar9);

13 [...] [...]

Figure 1: Passing and failing tests for a geo-mapping service appli-

cation, and test execution traces.

does not.1 Armed with this information, the developer is now better

equipped to find and edit code to address the root cause of the bug.

We implement Causal Testing in an open-source, proof-of-con-

cept Eclipse plug-in, Holmes, that works on Java programs and

interfaces with JUnit. Holmes is publicly available at http://holmes.

cs.umass.edu/. We evaluate Causal Testing in two ways. First, we

use Holmes in a controlled experiment. We asked 37 developers

to identify the root causes of real-world defects, with and without

access to Holmes. We found that developers could identify the root

cause 86% of the time when using Holmes, but only 80% of the time

without it. Second, we evaluate Causal Testing’s applicability to

real-world defects by considering defects from real-world programs

in the Defects4J benchmark [45]. We found that Causal Testing

could be applied to 71% of real-world defects, and that for 77% of

those, it could help developers identify the root cause.

A rich body of prior research aims to help developers debug

faulty behavior. Earlier-mentioned fault localization techniques [3,

6, 18, 21, 32, 33, 41, 47, 48, 70, 75] rank code locations according

to the likelihood that they contain a fault, for example using test

cases [41] or static code features [47, 48]. The test-based rankings

can be improved, for example, by generating extra tests [6, 75] or

by applying statistical causal inference to observational data [7, 8].

Automated test generation can create new tests, which can help dis-

cover buggy behavior and debug it [29, 30, 35, 42], and techniques

can minimize test suites [38, 54, 68] and individual tests [34, 73, 74]

to help deliver the most relevant debugging information to the

developer. These techniques can help developers identify where

the bug is. By contrast, Causal Testing focuses on explaining why

buggy behavior is taking place. Unlike these prior techniques,

Causal Testing generates pairs of very similar tests that nonetheless

exhibit different behavior. Relatedly, considering tests that exhibit

minimally different behavior, BugEx focuses on tests that differ

slightly in branching behavior [60] and Darwin generates tests that

1Note that prior work, such as spectrum-based fault localization [21, 41], can identify
the differences in the traces of existing tests; the key contribution of the tool we
describe here is generating the relevant executions with the goal of minimizing input
and execution trace differences.

pass a version of the program without the defect but fail a version

with the defect [58]. Unlike these techniques, Causal Testing re-

quires only a single, faulty version of the code, and only a single

failing test, and then conducts causal experiments and uses the

theory of counterfactual causality to produce minimally-different

tests and executions that help developers understand the cause of

the underlying defect.

The rest of this paper is structured as follows. Section 2 illustrates

how Causal Testing can help developers on a real-world defect.

Sections 3 and 4 describe Causal Testing and Holmes, respectively.

Section 5 evaluates how useful Holmes is in identifying root causes

and Section 6 evaluates how applicable Causal Testing is to real-

world defects. Section 7 discusses the implications of our findings

and limitations and threats to the validity of our work. Finally

Section 8 places our work in the context of related research, and

Section 9 summarizes our contributions.

2 MOTIVATING EXAMPLE

Consider Amaya, a developer who regularly contributes to open

source projects. Amaya codes primarily in Java and regularly uses

the Eclipse IDE and JUnit. Amaya is working on addressing a bug

report in the Apache Commons Lang project. The report comes

with a failing test (see 1 in Figure 2).

Figure 2 shows Amaya’s IDE as she works on this bug. Amaya

runs the test to reproduce the error and JUnit reports that an ex-

ception occurred while trying to create the number 0Xfade (see 2 in

Figure 2). Amaya looks through the JUnit failure trace, looking for

the place the code threw the exception (see 3 Figure 2). Amaya ob-

serves that the exception comes from within a switch statment, and

that there is no case for the e at the end of 0Xfade. To add such a case,

Amaya examines the other switch cases and realizes that each case is

making a different kind of number, e.g., the case for l creates either

a long or BigInteger. Since 0Xfade is 64222, Amaya conjectures that this

number fits in an int, and creates a new method call to createInteger()

inside of the case for e. Unfortunately, the test still fails.

Using the debugger to step through the test’s execution, Amaya

sees the NumberFormatException thrown on line 545 (see 3 in Figure 2).

She sees that there are two other locations the input touches (see

4 and 5 in Figure 2) during execution that could be affecting the

outcome. She now realizes that the code on lines 497–545, despite

being where the exception was thrown, may not be the location of

the defect’s cause. She is feeling stuck.

But then, Amaya remembers a friend telling her about Holmes, a

Causal Testing Eclipse plug-in that helps developers debug. Holmes

tells her that the code fails on the input 0Xfade, but passes on input

0xfade. The key difference is the lower case x. Also, according to

the execution trace provided by Holmes, these inputs differ in

the execution of line 458 (see 4 in Figure 2). The if statement

fails to check for the 0X prefix. Now, armed with the cause of the

defect, Amaya turns to the Internet to find out the hexadecimal

specification and learns that the test is right, 0X and 0x are both valid

prefixes for hexadecimal numbers. She augments the if statement

and the bug is resolved!

Holmes implements Causal Testing, a new technique for helping

understand root causes of behavior. Holmes takes a failing test

case (or test cases) and perturbs its inputs to generate a pool of

88

Figure 2: Amaya’s Eclipse IDE, while she is debugging a defect evidenced by a failing test.

possible inputs. For example, Holmes may perturb 0Xfade to 0XFADE,

0xfade, edafX, 0Xfad, Xfade, fade, and many more. Holmes then executes

all these inputs to find those that pass the original test’s oracle, and,

next, selects from the passing test cases a small number such that

either their inputs or their execution traces are the most similar to

the original, failing test case. Those most-similar passing test cases

help the developer understand the key input difference that makes

the test pass. Sometimes, Holmes may find other failing test cases

whose inputs are even more similar to the passing ones than the

original input, and it would report those too. The idea is to show

the smallest difference that causes the behavior to change.

Holmes presents both the static (test input) and dynamic (execu-

tion trace) information to the developer to compare the minimally-

different passing and failing executions to better understand the

root cause of the bug. For example, for this bug, Holmes shows

the inputs, 0Xfade and 0xfade, and the traces of the two executions,

showing that the passing test enters a method from createInteger that

the failing test cases do not, dictating to Amaya the expected code

behavior, leading her to fix the bug.

3 CAUSAL TESTING

Amaya’s debugging experience is based on what actual developers

did while debugging real defects in a real-world version of Apache

Commons Lang (taken from the Defects4J benchmark [45]). As

the example illustrates, software is complex and identifying root

causes of program failures is challenging. This section describes our

Causal Testing approach to computing and presenting developers

with information that can help identify root causes of failures.

Figure 3 describes the Causal Testing approach. Given a failing

test, Causal Testing conducts a series of causal experiments starting

with the original test suite. Causal Testing provides experimental

results to developers in the form of minimally-different passing and

failing tests, and traces of their executions.

3.1 Causal Experiments with Test Cases

Causal Testing modifies test cases to conduct causal experiments;

it observes system behavior and then reports the changes to test

inputs that cause system behavior to change. To create these test

assertTrue("createNumber(String) 9b failed", 0xFADE == NumberUtils.createNumber("0Xfade").intValue());

0XFADE
0xfade
edafX0
0Xfad
Xfade
fade
…

0Xfade 0xfade
0Xfade 0XFADE
0Xfade edafX
0Xfade 0Xfad
0Xfade Xfade
0Xfade fade

0Xfade 0xfade
createNumber() createNumber()
str.isBlank() str.startsWith()

… …

Figure 3: Causal Testing computes minimally-different test inputs

that, nevertheless, produce different behavior.

89

case modifications and to then identify the modifications that lead

to behavioral change, Causal Testing needs a systematic way of

perturbing inputs and of measuring test case similarity, which

we describe in this section. Once the experiments are complete,

Causal Testing reports to the developer a list of minimally different

passing and failing test case inputs and their execution traces, to

help explain root causes of the failing behavior.

3.1.1 Perturbing Test Inputs. To conduct causal experiments, Causal

Testing starts with a failing test, which we shall call from now on

the original failing test, and identifies the class this test is testing.

Causal Testing considers all the tests of that class, and generates

more tests using automated test input generation (and the oracle

from the one failing test), to create a set of failing and passing

tests. Then, Causal Testing fuzzes these existing and generated test

inputs to find additional tests that exhibit expected and unexpected

behavior.

Theoretically, it is also possible for Causal Testing to perturb the

test oracle. For example, it might change the assertTrue in Figure 3 to

assertFalse. However, perturbing test oracles is unlikely to produce

meaningful information to guide the developer to the root cause, or,

at least, is likely to produce misleading information. For example,

making a test pass simply by changing the oracle does not provide

information about key differences in test inputs that alter software

behavior. As such, Causal Testing focuses on perturbing test inputs

only.

There are different ways Causal Testing could assemble sets of

passing and failing tests. First, Causal Testing could simply rely on

the tests already in the test suite. Second, Causal Testing could use

automated test generation [1, 26, 55] to generate a large number of

test inputs. Third, Causal Testing could use test fuzzing to change

the existing tests’ inputs to generate new, similar inputs. Fuzz test-

ing is an active research area [29, 30, 35, 42, 67] (although the term

fuzz testing is also used to mean simply generating tests [1]) and

has been applied in the security domain to stress-test an application

and automatically discover vulnerabilities, e.g., [30, 35, 67].

While in real-world systems, existing test suites often contain

both passing and failing tests, these suites are unlikely to have

similar enough pairs of one passing, one failing tests to provide

useful information about the root cause. Still, it is worthwhile

to consider these tests first, before trying to generate more. As

such, our solution to the challenge of generating similar inputs is

to (1) start with all existing tests, (2) use multiple fuzzers to fuzz

these tests, (3) generate many tests, and (4) filter those tests to

select the ones similar to the original failing test. As we observed

with Holmes, our proof-of-concept Causal Testing tool (described

in Section 4), using multiple input fuzzers provided a diverse set

of perturbations, increasing the chances that Causal Testing finds

a set of minimally-different inputs and that at least one of them

would lead to a passing execution.

3.1.2 Input Similarity. Given two tests that differ in their inputs

but share the same oracle, Causal Testing needs to measure the sim-

ilarity between the two tests, as its goal is to find pairs of minimally-

different tests that exhibit opposite behavior. Conceptually, to apply

the theory of causal inference, the two tests should differ in only

one factor. For example, imagine a software system that processes

apartment rental applications. If two application inputs are iden-

tical in every way except one entry, and the software crashes on

one but not on the other, this pair of inputs provides one piece

of evidence that the differing entry causes the software to crash.

(Other pairs that also only differ in that one entry would provide

more such evidence.) If the inputs differed in multiple entries, it

would be harder to know which entry is responsible. Thus, to help

developers understand root causes, Causal Testing needs to pre-

cisely measure input similarity. We propose two ways to measure

input similarity: syntactic differences and execution path differences.

Static Input Differences. The static input similarity can be

viewed at different scopes. First, inputs can agree in some and

differ in others of their arguments (e.g., parameters of a method

call). Agreement across more arguments makes inputs more similar.

Second, each argument whose values for the two tests differ can

differ to varying degrees. A measure of that difference depends

on the type of the argument. For arguments of type String, the

Levenshtein distance (the minimum number of single-character

edits required to change one String into the other) is a reasonable

measure, though there are others as well, such as Hamming distance

(difference between two values at the bit level). For numerical

arguments, their numerical difference or ratio is often a reasonable

measure.

We found that relatively simple measures of similarity suffice

for general debugging, and likely work well in many domains. Us-

ing Levenshtein or Hamming distance for Strings, the arithmetic

difference for numerical values, and sums of elements distances for

Arrays, worked reasonably well, in practice, on the 330 defects from

four different real-world systems we examined from the Defects4J

benchmark [45]. However, more generally, the semantics of sim-

ilarity measures are dependent on the domain. Some arguments

may play a bigger role than others, and the meaning of some types

may only make sense in the particular domain. For example, in

apartment rental applications, a difference in the address may play

a much smaller role than a difference in salary or credit history.

As such, how the similarity of each argument is measured, and

how the similarities of the different arguments are weighed are

specific to the domain and may require fine tuning by the developer,

especially for custom data types (e.g., project-specific Object types).

Still, in the end, we found that simple, domain-agnostic measures

worked well in the domains we examined.

Execution Path Differences. Along with static differences,

two inputs can differ based on their dynamic behavior at runtime.

One challenge when considering only static input differences is

that a statically similar input may not always yield an outcome

that is relevant to the original execution. For example, it is possible

that two inputs that differ in only one character lead to completely

incomparable, unrelated executions. Therefore, Causal Testing

also collects and compares dynamic information in the form of the

execution path the input causes.

Beyond simplistic ways to compare executions, such as by their

lengths, comparing the statements and method calls in each execu-

tion provides information we found helpful to understanding root

causes. This also strengthens the causal connection between the in-

put change and the behavior change; if two inputs’ executions, one

passing and one failing, only differ by one executed statement, it is

likely that one statement plays an important role in the behavioral

90

change. Augmenting method calls with their return values provides

additional insights in situations where the bug is evident not by the

sequence of statements executed but in the use of a method that

returns an unexpected value.

Both static and execution path measures of similarity can be

useful in identifying relevant tests that convey useful information

to developers. Inputs that are similar both statically and in terms of

execution paths hold potential to convey even more useful informa-

tion, as they have even fewer differences with the original failing

test. Therefore, Causal Testing prioritizes tests whose inputs are

statically and dynamically similar to the original failing test.

3.2 Communicating Root Causes to Developers

After generating and executing test inputs, Causal Testing ranks

them by similarity and selects a user-specified target number of

the most similar passing test cases. In our experience, three tests

was a good target, though, at times, a time-out was necessary

because finding three similar passing tests was computationally

infeasible. Causal Testing reports tests as it finds them, produce

results for the developer as quickly as possible, while it performs

more computation, looking for potentially more results.

Causal Testing collects the input and the execution traces for

each test it executes. These are, of course, used for determining

test case similarity, but also hold the key information in terms of

what differences in test inputs lead to what behavioral changes. For

the pairs of failing and passing tests, Causal Testing presents the

static differences in inputs, and the execution traces (along with

each method call’s arguments and return values) with differences

highlighted. Because execution traces can get large, parsing them

can be difficult for developers; showing differences in the traces

simplifies this task. Causal Testing displays a minimized trace,

focused on the differences.

4 HOLMES: A CAUSAL TESTING PROTOTYPE

We have implemented Holmes, an open source Eclipse plug-in

Causal Testing prototype. Holmes is available at http://holmes.cs.

umass.edu/ and consists of four components: input and test case

generators, edit distance calculators & comparers, a test executor &

comparator, and an output view.

4.1 Input & Test Case Generation

Holmes first task is to create a set of candidate test cases. Holmes

first searches all tests in the current test suite for tests that are

similar to the original failing test using stringmatching to determine

if two tests are similar. More specifically, Holmes converts the entire

test file to a string and parses it line by line. This is an approximation

of test similarity. Future work can improve Holmes by considering

similarity in dynamic execution information between the two tests,

or by creating new tests by using test inputs from other tests but

the oracle from the original failing test.

Next, Holmes proceeds to generate new tests. Holmes gets new

inputs for generating new tests in two ways:

• Test case generation. Holmes uses an existing test case

generation tool, EvoSuite [26]. We chose EvoSuite because

it is a state-of-the-art, open-source tool that works with Java

and JUnit. Holmes determines the target class to generate

tests from based on the class the original failing test tests.

For example, if the original failing test is called NumberUtilsTest,

Holmes tells EvoSuite to generate tests for NumberUtils. To

determine if a test is related to the original failure, Holmes

searches the generated tests for test cases that call the same

method as the original test. From this process, Holmes will

get at least one valid input to use during fuzzing.

• Input fuzzing. To generate additional inputs for new tests,

Holmes fuzzes existing and generated test inputs. Holmes

uses two off-the-shelf, open-source fuzzers, Peach2 and

Fuzzer3. To increase the chances that fuzzed inputs will

produce passing tests, Holmes prioritizes (when available)

inputs from passing tests. Holmes fuzzes the original in-

put and all valid inputs from generated test cases, again to

increase the chance of finding passing tests.

Once Holmes runs test generation and fuzzes the valid inputs,

the next step is to determine which of the generated inputs are

most similar to the original.

4.2 Test Execution & Edit Distance Calculation

The current Holmes implementation uses static input similarity to

identify minimally-different tests. Using only static input similarity

first provided us with a better understanding of how execution

information could be collected and used most effectively. In the user

study described in Section 5, we semi-automated using dynamic

execution trace information for evaluating Holmes. Future work

can improve Holmes by automatically using dynamic execution

trace information, as described in Section 3.1.2.

To evaluate static input differences, Holmes first determines

the data type of each argument in the method-under-test; this

determines how Holmes will calculate edit distance. For arguments

with numerical values, Holmes calculates the absolute value of the

arithmetic difference between the original and generated test input

argument. For example, inputs 1.0 and 4.0 have an edit distance

of 3.0. For String and char inputs, Holmes uses two different metrics.

First, Holmes determines the Hamming distance between the two

arguments. We elected to use Hamming distance first because

we found it increases the accuracy of the similarity measure for

randomly generated inputs. Once Holmes identifies inputs that

are similar using the Hamming distance, it uses the Levenshtein

distance to further refine its findings; inputs that require the fewest

character changes to change from one to the other are most similar.

Holmes uses an edit distance threshold of 3; tests whose inputs are

more than a Levenshtein distance of 3 away from the original failing

tests are considered too different to be reported to the developer.

Holmes uses the executed test behavior to determine which in-

puts satisfy the original failing test’s oracle. Then, Holmes attempts

to further minimize the test differences by, for each original argu-

ment, iteratively replacing the original value with new input value

and executing the modified test to observe if the oracle is satisfied.

Holmes iterates to try to find three similar passing tests to compare

to the failing one.

2https://github.com/MozillaSecurity/peach
3https://github.com/mapbox/fuzzer

91

4.3 Communicating Root Causes to Developers

An important consideration when building a tool is how it will

communicatewith the developer [39]. OnceHolmes has computed a

set of passing (and a set of failing) tests, it organizes the information

for presentation. Holmes organizes tests by whether it passes or

fails, showing the original failing test at the top of the output

window, making it easy to compare the differences. Under each

test, Holmes presents a minimized test execution trace. So as to not

overwhelm the developer with information, Holmes’ user interface

includes the option to toggle showing and hiding trace information.

4.4 Holmes’ Limitations

We implemented Holmes as a prototype Causal Testing tool, to be

used in a controlled experiment with real users (see Section 5). We

have thus prioritized ensuring Holmes implements the aspects of

Causal Testing we needed to evaluate, over fully automating it.

The current version of Holmes automates test generation, exe-

cution, and static edit distance calculation. We used InTrace [36] to

collect runtime execution traces and then manually incorporated

the execution information with the tests. Future versions of Holmes

will automate the dynamic trace collection and comparison.

The current version of Holmes relies on the Defects4J bench-

mark [45] used in our evaluations, and extending it to other defects

may require extending Holmes or setting those defects’ projects

up in a particular way. For simplicity, Holmes works on single-

argument tests with String or primitive arguments. While this is

sufficient for the defects in Defects4J benchmark, this limitation

will need to be lifted for tests with multiple arguments. Our Holmes

prototype implementation is open-source, to allow others to build

on it and improve it.

5 CAUSAL TESTING EFFECTIVENESS

We designed a controlled user study experiment with 37 developers

to answer the following three research questions:

RQ1: Does Causal Testing improve the developers’ ability to iden-

tify the root causes of defects?

RQ2: Does Causal Testing improve the developers’ ability to repair

defects?

RQ3: Do developers find Causal Testing useful, and, if so, what

aspect of Causal Testing is most useful?

5.1 User Study Design

Causal Testing’s goal is to help developers determine the cause of

a test failure, thereby helping developers better understand and

eliminate defects from their code. We designed our user study

and prototype version of Holmes to provide evidence of Causal

Testing’s usefulness, while also providing a foundation of what

information is useful for Causal Testing.

We randomly selected seven defects from Defects4J, from the

Apache Commons Lang project. We chose Apache Commons Lang

because it (1) is the most widely known project in Defects4J, (2) had

defects that required only limited domain knowledge, and (3) can

be developed in Eclipse.

Our user study consisted of a training task and six experimen-

tal tasks. Each task mapped to one of the seven defects. Each

participant started with the training task, and then performed six

experimental tasks. The training task and three of the experimental

tasks used Holmes and the other three experimental tasks belonged

to the control group and did not include the use of Holmes. The

order of the tasks, and which tasks were part of the control group

and which part of the experimental group were all randomized.

For the training task, we provided an Eclipse project with a

defective code version and single failing test. We explained how

to execute the test suite via JUnit, and how to invoke Holmes. We

allowed participants to explore the code and ask questions, telling

them that the goal is to change the code so that all that tests pass.

Each task that followed was similar to the training task; control

group tasks did not have access to Holmes, experimental group

tasks did.

We recorded audio and the screen for later analysis. We asked

participants to complete a causality questionnaire after each task

consisting of two questions: “What caused Test X to fail?” and

“What changes did you make to fix it?”

At then end, the participants completed an exit survey with

open-ended questions, such as “What information did you find

most helpful when determining what caused tests to fail?” and

4-point Likert scale questions, such as “How useful did you find

X?” For the Likert-scale questions, we gave participants the options

“very useful”, “somewhat useful”, “not useful”, and “misleading or

harmful”. We also gave participants an opportunity to provide

additional feedback they saw fit.

Prior to our experiment, we conducted a pilot of our initial user

study design with 23 students from a graduate software engineering

course. Our pilot study consisted of 5 tasks and a mock-up version

of Holmes. We used lessons learned and challenges encountered

to finalize the design of our study. The 23 pilot participants did

not participate in the final study presented here. All final study

materials are available online at http://holmes.cs.umass.edu in the

user_study_materials directory.

5.2 Participants

We recruited a total of 39 participants from industry and academia:

15 undergraduate students, 12 PhD students, 9 Masters students,

2 industry developers, and 1 research scientist. Participants’ pro-

gramming experience ranged from 1 to 30 years and experience

with Java ranged from a few months to 15 years. All participants

reported having prior experience with Eclipse and JUnit. We ana-

lyzed data from 37 participants; 2 undergraduate participants (P2

and P3) did not follow the instructions, so we removed them from

our dataset.

5.3 User Study Findings

We now summarize the results from our study.

RQ1: Does Causal Testing improve the developers’ ability to

identify the root causes of defects?

The primary goal of Causal Testing is to help developers identify

the root cause of test failures. To answer RQ1, we analyzed the

responses participants gave to the question “What caused Test X

to fail?” We marked responses as either correct (captured full and

the true cause) or incorrect (missing part or all of the true cause).

Figure 4 shows the root cause identification correctness results.

When using Holmes, developers correctly identified the cause 86%

92

Defect Group Correct Incorrect Total

1
Control 17 (89%) 2 (11%) 19

Holmes 17 (94%) 1 (5%) 18

2
Control 12 (60%) 8 (40%) 20

Holmes 9 (53%) 8 (47%) 17

3
Control 19 (95%) 1 (5%) 20

Holmes 16 (94%) 1 (6%) 17

4
Control 15 (83%) 3 (17%) 18

Holmes 18 (95%) 1 (5%) 19

5
Control 13 (87%) 2 (13%) 15

Holmes 21 (95%) 1 (5%) 22

6
Control 12 (67%) 6 (33%) 18

Holmes 15 (79%) 4 (21%) 19

Total
Control 88 (80%) 22 (20%) 110

Holmes 96 (86%) 16 (14%) 112

Figure 4: Distributions of correct and incorrect cause descriptions,

per defect.

Average Resolution Time (in minutes)

Defect: 1 2 3 4 5 6

Control 16.5 10.6 6.8 12.9 3.7 10.0

Holmes 17.0 12.7 6.4 17.7 4.9 10.1

Figure 5: The average time developers took to resolve the defects, in

minutes.

of the time (96 out of 112 times). The control group only identi-

fied the cause 80% of the time (88 out of 110). Fisher’s exact test

finds that these samples come from different distributions with 83%

probability (p = 0.17).
For four of the six defects, (Defects 1, 4, 5, and 6), developers

using Holmes were more accurate when identifying root causes

than the control group. For Defects 1, 4, and 5, participants only

incorrectly identified the cause approximately 5% of the time when

using Holmes, compared to 11–17% of the time without Holmes. For

Defect 6, participants with Holmes identified the correct cause 79%

(15 out of 19) of the time; without Holmes they could only identify

the correct cause 67% (12 out of 18) of the time. Our findings suggest

that Causal Testing supports and improves developer ability

to understand root causes, for at least some defects.

RQ2: Does Causal Testing improve the developers’ ability to

repair defects?

While Causal Testing’s main goal is to help developers under-

stand the root cause, this understanding may be helpful in removing

the defect as well. To answer RQ2, we analyzed participants’ re-

sponses to the question “What changes did you make to fix the

code?” We used the same evaluation criteria and labeling as for

RQ1. To determine if causal execution information improves devel-

opers’ ability to debug and repair defects, we observed the time it

took participants to complete each task and the correctness of their

repairs.

Defect Group Correct Incorrect Total

1
Control 16 (89%) 2 (11%) 18

Holmes 12 (86%) 2 (14%) 14

2
Control 12 (100%) 0 (0%) 12

Holmes 7 (100%) 0 (0%) 7

3
Control 19 (100%) 0 (0%) 19

Holmes 16 (100%) 0 (0%) 16

4
Control 15 (100%) 0 (0%) 15

Holmes 19 (100%) 0 (0%) 19

5
Control 12 (86%) 2 (14%) 14

Holmes 21 (95%) 1 (5%) 22

6
Control 6 (75%) 2 (25%) 8

Holmes 5 (100%) 0 (0%) 5

Total
Control 80 (93%) 6 (7%) 86

Holmes 80 (96%) 3 (4%) 83

Figure 6: Distribution of correct and incorrect repairs implemented

by participants, per defect.

Figure 5 shows the average time it took developers to repair each

defect. We omitted times for flawed repair attempts that do not

address the defect. On average, participants took more time with

Holmes on all but one defect (Defect 3). One explanation for this

observation is that while Holmes helps developers understand the

root cause, this understanding takes time, which can reduce the

overall speed of repair.

Figure 6 shows repair correctness results. When using Holmes,

developers correctly repaired the defect 96% of the time (80 out of

83) while the control group repaired the defect 93% of the time (80

out of 86).

For two of the six defects (Defects 5 and 6), developers us-

ing Holmes repaired the defect correctly more often (Defect 5:

95% vs. 86%; Defect 6: 100% vs. 75%). For Defects 2, 3, and 4, devel-

opers repaired the defect correctly 100% of the time both with and

without Holmes. For one defect (Defect 1), developers with Holmes

were only able to repair the defect correctly 86% (12 out of 14) of

the time while developers without Holmes correctly fixed defects

100% of the time.

Holmes did not demonstrate an observable advantage when

repairing defects. Our findings suggest thatCausal Testing some-

times helps developers repair defects, but neither consistent-

ly nor statistically significantly.

RQ3: Do developers find Causal Testing useful, and, if so,

what aspect of Causal Testing is most useful?

To answer RQ3, we analyzed post-evaluation survey responses

to the question asking which information was most useful when

understanding and debugging the defects. We extracted and ag-

gregated quantitative and qualitative results regarding information

most helpful when determining the cause of and fixing the defects.

We also analyzed the Likert-scale ratings regarding the usefulness of

JUnit and the various components of causal execution information.

Overall, participants found the information provided by Holmes

more useful than other information available when understanding

and debugging the defects. Out of 37 participants, 17 (46%) found

93

the addition of at least one aspect of Holmes more useful than

output provided by JUnit alone. Further, 15 (41%) participants found

the addition of Holmes at least as useful as JUnit. The remaining

5 (13%) found the addition of Holmes not as useful as JUnit alone.

Though majority of participants found Holmes’ output more useful,

JUnit and interactive debuggers are an important part of debugging.

Therefore, our expectations would be that Causal Testing would

augment those tools, not replace them.

Participants found the minimally-different passing tests Holmes

provided the most useful: 20 out of 37 participants (54%) rated this

piece of information as “Very Useful.” The passing and failing test

inputs that Holmes provided received “Very Useful” or “Useful”

rankings more often than the test execution traces. Finally, 18

participants marked either the passing or failing execution trace

as “Not Useful.” One participant felt the passing test traces were

“Misleading or Harmful;” during their session, they noted that they

felt in some cases the execution paths were not as similar as others,

which made interpreting the output more confusing.

To gain a better understanding of what parts of causal execution

information aremost useful, andwhy, we also analyzed participants’

qualitative responses to the questions asked in our post-evaluation

questionnaire.

What information did you find most helpful when determining what

caused tests to fail? Overall, 21 participants explicitly mentioned

some aspect of Holmes as being most helpful. For 6 of these partici-

pants, all the information provided by Holmes was most helpful for

cause identification. Another 8 participants noted that specifically

the similar passing and failing tests were most helpful. For example,

P36 stated these similar tests when presented “side by side” made

it “easy to catch a bug.”

The other 6 participants stated the execution traces were most

helpful. One participant’s response said that the parts of Holmes

output that were most helpful was the output “showing method

calls, parameters, and return values.” This was particularly true

when there were multiple method calls in an execution according

to P26: “it was useful to see what was being passed to them and

what they were returning.”

What information did you find most helpful when deciding changes to

make to the code? Overall, 14 participants mentioned some aspect of

Holmes as being most helpful. Of these, 5 explicitly stated that the

similar passing tests were most helpful of the information provided

by Holmes. P7, who often manually modified failing tests to better

understand expected behavior noted “it helped to see what tests

were passing,” which helped him “see what was actually expected

and valid.”

For the other 4 participants, the execution traces were most help-

ful for resolving the defect. One participant specifically mentioned

that the return values in the execution traces for passing and failing

inputs were most helpful because then he could tell “which parts

are wrong.”

Would you like to add any additional feedback to supplement your

responses? Many participants used this question as an opportunity

to share why they thought Holmes was useful. Many reported

comments such as “Holmes is great!” and “really helpful.” For many,

Holmes was most useful because it provided concrete, working

examples of expected and non-expected behavior that help with

“pinpointing the cause of the bug.”

A participant noted that without Holmes, they felt like it was

“a bit slower to find the reason why the test failed.” Another par-

ticipant noted that the trace provided by Holmes was “somewhat

more useful” than the trace provided by JUnit.

In free-form, unprompted comments throughout the study, par-

ticipants often mentioned that the passing and failing tests and

traces were useful for their tasks; several participants explicitly

mentioned during their session that having the additional passing

and failing tests were “super useful” and saved them time and effort

in understanding and debugging the defect.

While the qualitative feedback is largely positive, it is impor-

tant to point out that we do not view Causal Testing tools as a

replacement for JUnit. The intent is for them to complement each

other and help developers understand and debug software behav-

ior. Three participants explicitly mentioned that Holmes is most

useful in conjunction with JUnit and other tools available in the

IDE. Several participants highlighted the complementary nature of

these tools. For example, P26 explained that though Holmes was

“very useful when debugging the code,” it is most useful with other

debugging tools as “it does not provide all information.”

Finally, participants also suggests ways to improve Holmes. One

participant mentioned that Holmes should add the ability to click

on the output and jump to the related code in the IDE. Another

suggested making the differences between the passing and failing

tests visibly more explicit. Three participants explicitly suggested,

rather than bolding the entire fuzzed input, only bolding the parts

that are different from the original failing test. Our findings suggest

thatCausal Testing is useful for both cause identification and

defect resolution, and is complementary to other debugging

tools.

6 CAUSAL TESTING APPLICABILITY TO
REAL-WORLD DEFECTS

To evaluate the usefulness and applicability of Causal Testing to real-

world defects, we conducted an evaluation on the Defects4J bench-

mark [45]. Defects4J is a collection of reproducible defects found in

real-world, open-source Java software projects: Apache Commons

Lang, Apache Commons Math, Closure compiler, JFreeChart, and

Joda-Time. For each defect, Defects4J provides a buggy version and

fixed version of the source code, along with the developer-written

test suites, which include one or more tests that fail on the buggy

version but pass on the fixed version.

We manually examined 330 defects in four of the five projects in

the Defects4J benchmark and categorized them based on whether

Causal Testing would work and whether it would be useful in

identifying the root cause of the defect. We excluded Joda-Time

from our analysis because of difficulty reproducing the defects.4

6.1 Evaluation Process

To determine applicability of Causal Testing to defects in the De-

fects4J benchmark, we first imported the buggy version and fixed

version into Eclipse. We then executed the developer-written test

4Some such difficulties have been documented in the Joda-Time issue tracker:
https://github.com/dlew/joda-time-android/issues/37.

94

suites on the buggy version to identify the target failing tests and

the methods they tested.

Once we identified the target failing tests and methods under

test, we ran Holmes using the target failing tests. If Holmes ran and

produced causal test pairs, we ran InTrace to produce execution

traces. Sometimes, Holmes was unable to produce an output. In

these cases, we attempted to evaluate if a more mature version of

Holmes could have produced an output. To do this, we manually

made small perturbations to the test inputs in an attempt to produce

reasonably similar passing tests. We made perturbations based on

the type of input and how a more mature Causal Testing tool would

work. For example, if the test input was a number, we made small

changes such as adding and subtracting increments of one from

the original value or making the number positive or negative. We

then executed the tests and attempted to produce causal test pairs.

In cases where Holmes or our manual analysis was able to pro-

duce similar passing tests, we next determined if this information

could be useful for understanding the root cause of that defect.

To do this, we first used the fixed version to determine what we

believed to be the root cause. If we were able to determine the

root cause, we then made a determination on whether the similar

passing tests and execution information would help developers

understand the root cause and repair the defect.

We used this process and the produced information to categorize

the defects, as we describe next.

6.2 Defect Applicability Categories

We categorized Causal Testing’s applicability to each defect into

the following five categories:

I. Works, useful, and fast. For these defects, Causal Testing

can produce at least one minimally-different passing test

that captures its root cause. We reason Causal Testing would

be helpful to developers. In our estimate, the difference

between the failing and minimally-different passing tests

is reasonably small that it can be found on a reasonable

personal computer, reasonably fast. For most of these defects,

our existing Holmes implementation was able to produce

the useful output.

II. Works, useful, but slow. For these defects, Causal Testing

can produce at least one minimally-different passing test

that captures its root cause, and this would be helpful to

developers. However, the difference between the tests is

large, and, in our estimation, Causal Testing would need

additional computation resources, such as running overnight

or access to cloud computing. For most of these defects, our

current Holmes implementation was unable to produce the

necessary output, but a more mature version would.

III. Works, but is not useful. For these defects, Causal Test-

ing can produce at least one minimally different passing

test, but in our estimation, this test would not be useful to

understanding the root cause of the defect.

IV. Will not work. For these defects, Causal Testing would not

be able to perturb the tests, and would tell the developer it

cannot help right away.

V. Wecould notmake a determination. Because the defects

in our study are from real-world projects, some required

Applicability Category

Project I II III IV V Total

Math 14 15 11 20 46 106

Lang 11 6 3 14 31 65

Chart 2 4 1 1 18 26

Closure 2 22 8 5 96 133

Total 29 47 23 40 191 330

Figure 7: Distribution of defects across five applicability categories

described in Section 6.2.

project-specific domain knowledge to understand. As we

are not the original projects’ developers, for these defects,

the lack of domain-specific knowledge prevented us from

understanding what information would help developers un-

derstand the root cause and debug, and we elected not to

speculate. As such, we opted not to make an estimation of

whether Causal Testing would be helpful for these defects.

6.3 Results

Figure 7 shows our defect classification results. Of the 330 defects,

we could make a determination for 139. Of these, Causal Testing

would try to produce causal test pairs for 99 (71%). For the re-

maining 40 (29%), Causal Testing would simply say it cannot help

and would not waste the developer’s time. Of these 99 defects, for

76 (77%), Causal Testing can produce information helpful in iden-

tifying the root cause. For 29 (29%), a simple local IDE-based tool

would work, and for 47 (47%), a tool would need more substantial

resources, such as running overnight or on the cloud. The remain-

ing 23 (23%) would not benefit from Causal Testing. Our findings

suggest that Causal Testing produces results for 71% of real-

world defects, and for 77% of those, it can help developers

identify and understand the root cause of the defect.

7 DISCUSSION

Our findings suggest that Causal Testing can be useful for under-

standing root causes and debugging defects. This section discusses

implications of our findings, as well as threats to the validity of our

studies and limitations of our approach.

Encapsulating causality in generated tests. Our user study

found that having passing and failing tests that are similar to the

original failin test that exposed a defect are useful for understanding

and debugging software defects, though not all defects. Participants

found the passing tests that provided examples of expected behavior

useful for understandingwhy a test failed. This suggests that Causal

Testing can be used to generate tests that encapsulate causality in

understanding defective behavior, and that an important aspect

of debugging is being able to identify expected behavior when

software is behaving unexpectedly.

Execution information for defect understanding & repair.

Execution traces can be useful for finding the location of a de-

fect [20], and understanding software behavior [10–14, 28, 46, 53].

Our study has shown that such traces can also be useful for under-

standing root causes of defects, and, in some cases, can highlight

these root causes explicitly. Participants in our study found com-

paring execution traces useful for understanding why the test was

95

failing and how the code should behave differently for a fix. For

some participants, the execution trace information was the most

useful of all information provided. These results support further

use of execution traces when conducting causal experiments.

Causal Testing as a complementary testing technique. Our

findings support Causal Testing as a complement to existing debug-

ging tools, such as JUnit. Understandably, participants sometimes

found themselves needing information that Holmes does not pro-

vide, especially once they understood the root cause and needed

to repair the defect. Our findings suggest that Causal Testing is

most useful for root cause identification. Still, a majority of the

participants in our study found Holmes useful for both cause iden-

tification and defect repair, despite, on average, taking longer to

resolve defects with Holmes. We speculate that increased familiar-

ity with Causal Testing would improve developers’ ability to use

the right tool at the right time, improving debugging efficiency, as

supported by prior studies [39].

Supporting developers with useful tools. The goal of soft-

ware development tools is often to decrease developer effort, such

that developers will want to use that tool in practice. However,

research suggests that the first thing practitioners consider when de-

ciding whether to use a given tool is that tool’s usefulness [59]. Our

study shows that participants often took more time to debug when

using Holmes; however, despite this and other challenges develop-

ers encountered, participants still generally found Holmes useful

for both understanding and debugging defects. This suggests that

an important part of evaluating a tool intended for developer use is

whether the tool provides useful information in comparison to, or in

our case, along with, existing tools available for the same problem.

7.1 Threats to Validity

External Validity. Our studies used Defects4J defects, a collec-

tion of curated, real-world defects. Our use of this well-known

and widely-used benchmark of real-world defects aims to ensure

our results generalize. We selected defects for the user study ran-

domly from those that worked with our current implementation of

Holmes and that required little or no prior project or domain knowl-

edge, with varying levels of difficulty. The applicability evaluation

considered all defects across four projects.

The user study used 37 participants, which is within range of

higher data confidence and is above average for similar user stud-

ies [9, 25, 50, 62]. Our study also relied on participants with different

backgrounds and experience.

Internal Validity. Our user study participants were volunteers.

This leads to the potential for self-selection bias. We were able to

recruit a diverse set of participants, somewhat mitigating this threat.

Construct Validity. Part of our analysis of whether Causal

Testing would apply and be useful for debugging specific defects

was manual. This leads to the potential for researcher bias. We

minimized this threat by developing and following concrete, repro-

ducible methodology and criteria for usefulness.

The user study asked participants to understand and debug code

they had not written, which may not be representative of a sitation

in which developers are debugging code they are familiar with (but

is representative of a common scenario of developers debugging

others’ code). We aimed to select defects for the study that required

little project and domain knowledge. Additionally, we did not

disclose the true purpose of the user study to the subjects until after

the end of each participant’s full session.

7.2 Limitations and Future Work

Causal Testing mutates tests’ inputs while keeping the oracles

constant (recall Section 3.1.1). This process makes an implicit as-

sumption that small perturbations of the inputs should not affect

the expected behavior, and, thus, if small perturbations do affect

the behavior, knowing this information is useful to the developer

for understanding the root cause of why the faulty behavior is

taking place. This assumption is common in many domains, such

as testing autonomous cars [66] and other machine-learning-based

systems [57]. However, it also leads Causal Testing limitations. In

particular, some changes to the inputs do affect expected behavior,

and using the unmodified oracle will not be valid in these cases.

This can lead Causal Testing to generate pairs of tests that do not

capture causal information about the expected behavior properly.

For example, it could produce a test that passes but that uses the

wrong oracle and should, in fact, fail. It remains an open question

whether such tests would be helpful for understanding root causes.

The causal test pair still indicates what minimal input change can

satisfy the oracle, which might still be useful for developers to un-

derstand the root causes, even if the passing test does not properly

capture the expected behavior.

Future work could extend Causal Testing to include oracle mu-

tation. A fruitful line of research, when specifications, formal or

informal, are available, is to extract oracles from those specifica-

tions. For example, Swami [49] can extract test oracles (and gen-

erate tests) from structured, natural language specifications, and

Toradacu [31], Jdoctor [15], and @tComment [65] can do so from

Javadoc specifications. Behavioral domain constraints [2, 4, 27],

data constraints [23, 51, 52], or temporal constraints [11, 12, 14, 22,

53] can also act as oracles for the generated tests.

By fuzzing existing tests and focusing on test inputs that are

similar to the original failing test, Causal Testing attempts to miti-

gate the risk that the tests’ oracle will not apply. In a sense, a test’s

inputs must satisfy a set of criteria for the oracle to remain valid,

and by modifying the inputs only slightly (as defined by static or

dynamic behavior), our hope is that in sufficiently many cases, these

criteria will not be violated. Future work could consider implement-

ing oracle-aware fuzzing that modifies inputs while specifically

attempting to keep the oracle valid.

In some cases, it may not be possible to generate passing tests

by generating new tests. For example, code that never throws an

exception cannot have a test pass if that test’s oracle expects the

exception to be thrown. In such cases, Causal Testing will not

produce false positive results for the developer, and will simply say

no causal information could be produced.

Our studies have identified that Causal Testing is often, but not

always, helpful. Future work can examine properties of defects or

tests for which Causal Testing is more effective at producing causal

information, and for which that causal information is more helpful

to developers. This information can, in turn, be used to improve

Causal Testing.

96

8 RELATEDWORK

The closest work to Causal Testing is BugEx [60], which is also in-

spired by counterfactual causality. Given a failing test, BugEx uses

runtime information, such as whether a branch is taken, to find pass-

ing and failing tests that differ with respect to that piece of informa-

tion. Darwin [58] targets regression failures and uses concrete and

symbolic execution to synthesize new tests such that each test dif-

fers in control flow when executed on the buggy and the non-buggy

version of the code. By contrast, Causal Testing requires only a sin-

gle version of the code, and only a single failing test, and generates

pairs of tests that differ minimally either statically or dynamically

(or both) to help developers understand the root cause of the defect.

Delta debugging [73, 74] aims to help developers understand the

cause of a set of failing tests. Given a failing test, the underlying

ddmin algorithmminimizes that test’s input such that removing any

other piece of the test makes the test pass [34]. Delta debugging can

also be applied to a set of test-breaking code changes to minimize

that set, although in that scenario, multiple subsets that cannot be

reduced further are possible because of interactions between code

changes [64, 74]. By contrast, Causal Testing does not minimize

an input or a set of changes, but rather produces other inputs

(not necessarily smaller) that differ minimally but cause relevant

behavioral changes. The two techniques are likely complementary

in helping developers debug.

When applied to code changes, delta debugging requires a correct

code version and a set of changes that introduce a bug. Iterative

delta debugging does not need the correct version, using the version

history to produce a correct version [5]. Again, Causal Testing is

complementary, though future work could extend Causal Testing

to consider the development history to guide fuzzing.

Fault localization (also known as automated debugging) is con-

cerned with locating the line or lines of code responsible for a

failing test [3, 41, 70]. Spectral fault localization uses the frequency

with which each code line executes on failing and passing tests

cases to identify the suspicious lines [21, 41]. When tests (or fail-

ing tests) are not available, static code elements or data about the

process that created the software can be used to locate suspicious

lines [47, 48]. Accounting for redundancy in test suites can im-

prove spectral fault localization precision [32, 33]. MIMIC can

also improve fault localization precision by synthesizing additional

passing and failing executions [75], and Apollo can do so by gen-

erating tests to maximize path constraint similarity [6]. Statistical

causal inference uses observational data to improve fault localiza-

tion precision [7, 8]. Importantly, while statistical causal inference

aims to infer causality, it does not apply the manipulationist ap-

proach [71] that Causal Testing uses; as a result, Causal Testing can

make more powerful statements about the causal relationships it

discovers. Unfortunately, research has shown that giving develop-

ers the ground truth fault location (even from state-of-the-art fault

localization techniques) does not improve the developers’ ability

to repair defects [56], likely because understanding defect causes

requires understanding more code than just the lines that need to

be edited. By contrast, Causal Testing discovers the changes to soft-

ware inputs that cause the behavioral differences, and a controlled

experiment has shown promise that Causal Testing positively af-

fects the developers’ ability to understand defect causes.

Mutation testing targets a different problem than Causal Testing,

and the approaches differ significantly. Mutation testing mutates

the source code to evaluate the quality of a test suite [43, 44]. Causal

Testing does not mutate source code (it perturbs test inputs) and

helps developers identify root causes of defects, rather than improve

test suites (although it does generate new tests.) In a special case

of Causal Testing, when the defect being analyzed is in software

whose input is a program (e.g., compiler), Causal Testing may rely

on code mutation operators to perturb the inputs.

Reproducing field failures [37] is an important part of debugging

complementary to most of the above-described techniques, includ-

ing Causal Testing, which require a failing test case. Field failures

often tell more about software behavior than in-house testing [69].

Fuzz testing is the process of changing existing tests to generate

more tests [29, 30] (though, in industry, fuzz testing is often synony-

mous with automated test input generation). Fuzz testing has been

used most often to identify security vulnerabilities [30, 67]. Fuzzing

can be white-box, relying on the source code [30] or black-box,

relying only on the specification or input schema [42, 67]. Causal

Testing uses fuzz testing and improvements to fuzz testing research

can directly benefit Causal Testing by helping it to find similar

test inputs that lead to different behavior. Fuzzing can be used

on complex inputs, such as programs [35], which is necessary to

apply Causal Testing to software with such inputs (as is the case

for Closure, one of the subject programs we have studied). Fuzz

testing by itself does not provide the developer with information to

help understand defects’ root causes, though the failing test cases

it generates can certainly serve as a starting point.

The central goal of automated test generation (e.g., EvoSuite [26],

and Randoop [55]) and test fuzzing is finding new failing test cases.

For example, combining fuzz testing, delta debugging, and tradi-

tional testing can identify new defects, e.g., in SMT solvers [17].

Automated test generation and fuzzing typically generate test in-

puts, which can serve as regression tests [26] or require humans

to write test oracles. Without such oracles, one cannot know if

the tests pass or fail. Recent work on automatically extracting test

oracles from code comments can help [15, 31, 65]. Differential test-

ing can also produce oracles by comparing the executions of the

same inputs on multiple implementations of the same specifica-

tion [16, 19, 24, 61, 63, 72]. Identifying defects by producing failing

tests is the precursor to Causal Testing, which uses a failing test to

help developers understand the defects’ root cause.

9 CONTRIBUTIONS

We have presented Causal Testing, a novel method for identifying

root causes of software defects that supplements existing testing

and debugging tools. Causal Testing is applicable to 71% of real-

world defects in the Defects4J benchmark, and for 77% of those, it

can help developers identify the root cause of the defect. Developers

using Holmes, a proof-of-concept implementation of Causal Testing,

were more likely to correctly identify root causes than without

Holmes (86% vs. 80% of the time). Majority of developers who used

Holmes found it most useful when attempting to understand why

a test failed and in some cases how to repair the defect. Overall,

Causal Testing shows promise for improving the debugging process,

especially when used together with other debugging tools.

97

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation under
grants no. CCF-1453474, IIS-1453543, and CCF-1763423, and by
Google and Oracle Labs.

REFERENCES
[1] AFL 2018. American fuzzy lop. http://lcamtuf.coredump.cx/afl/.
[2] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha.

2018. Automated test generation to detect individual discrimination in AI models.
CoRR abs/1809.03260 (2018), 1–8. https://arxiv.org/abs/1809.03260

[3] Hiralal Agrawal, Joseph R. Horgan, Saul London, and W. Eric Wong. 1995. Fault
localization using execution slices and dataflow tests. In International Symposium
on Software Reliability Engineering (ISSRE). Toulouse, France, 143–151. https:
//doi.org/10.1109/ISSRE.1995.497652

[4] Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2018. Themis:
Automatically testing software for discrimination. In European Software Engi-
neering Conference and ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE) Demonstration track (6–9). Lake Buena Vista,
FL, USA, 871–875. https://doi.org/10.1145/3236024.3264590

[5] Cyrille Artho. 2011. Iterative delta debugging. International Journal on Software
Tools for Technology Transfer 13, 3 (2011), 223–246. https://doi.org/10.1007/978-
3-642-01702-5_13

[6] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. 2010. Directed test
generation for effective fault localization. In International Symposium on Software
Testing and Analysis (ISSTA). Trento, Italy, 49–60. https://doi.org/10.1145/1831708.
1831715

[7] George K. Baah, Andy Podgurski, and Mary Jean Harrold. 2010. Causal inference
for statistical fault localization. In International Symposium on Software Test-
ing and Analysis (ISSTA). Trento, Italy, 73–84. https://doi.org/10.1145/1831708.
1831717

[8] George K. Baah, Andy Podgurski, and Mary Jean Harrold. 2011. Mitigating
the confounding effects of program dependences for effective fault localization.
In European Software Engineering Conference and ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE). Szeged, Hungary,
146–156. https://doi.org/10.1145/2025113.2025136

[9] Titus Barik, Yoonki Song, Brittany Johnson, and Emerson Murphy-Hill. 2016.
From quick fixes to slow fixes: Reimagining static analysis resolutions to enable
design space exploration. In Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME). Raleigh, NC, USA, 211–221. https://doi.org/
10.1109/ICSME.2016.63

[10] Ivan Beschastnikh, Jenny Abrahamson, Yuriy Brun, and Michael D. Ernst. 2011.
Synoptic: Studying logged behavior with inferred models. In European Software
Engineering Conference and ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (ESEC/FSE) Demonstration track (5–9). Szeged,
Hungary, 448–451. https://doi.org/10.1145/2025113.2025188

[11] Ivan Beschastnikh, Yuriy Brun, Jenny Abrahamson, Michael D. Ernst, and Arvind
Krishnamurthy. 2013. Unifying FSM-inference algorithms through declarative
specification. In ACM/IEEE International Conference on Software Engineering
(ICSE) (22–24). San Francisco, CA, USA, 252–261. https://doi.org/10.1109/ICSE.
2013.6606571

[12] Ivan Beschastnikh, Yuriy Brun, Jenny Abrahamson, Michael D. Ernst, and
Arvind Krishnamurthy. 2015. Using declarative specification to improve the
understanding, extensibility, and comparison of model-inference algorithms.
IEEE Transactions on Software Engineering (TSE) 41, 4 (April 2015), 408–428.
https://doi.org/10.1109/TSE.2014.2369047

[13] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, Arvind Krishnamurthy, and
Thomas E. Anderson. 2011. Mining temporal invariants from partially ordered
logs. ACM SIGOPS Operating Systems Review 45, 3 (Dec. 2011), 39–46. https:
//doi.org/10.1145/2094091.2094101

[14] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D.
Ernst. 2011. Leveraging existing instrumentation to automatically infer invariant-
constrained models. In European Software Engineering Conference and ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (ESEC/FSE)
(5–9). Szeged, Hungary, 267–277. https://doi.org/10.1145/2025113.2025151

[15] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating code
comments to procedure specifications. In International Symposium on Software
Testing and Analysis (ISSTA). Amsterdam, Netherlands, 242–253. https://doi.org/
10.1145/3213846.3213872

[16] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly
Shmatikov. 2014. Using frankencerts for automated adversarial testing of certifi-
cate validation in SSL/TLS implementations. In IEEE Symposium on Security and
Privacy (S&P). San Jose, CA, USA, 114–129. https://doi.org/10.1109/SP.2014.15

[17] Robert Brummayer and Armin Biere. 2009. Fuzzing and delta-debugging SMT
solvers. In International Workshop on Satisfiability Modulo Theories (SMT). Mon-
treal, QC, Canada, 1–5. https://doi.org/10.1145/1670412.1670413

[18] José Campos, Rui Abreu, Gordon Fraser, and Marcelo d’Amorim. 2013. Entropy-
based test generation for improved fault localization. In IEEE/ACM International
Conference on Automated Software Engineering (ASE). Silicon Valley, CA, USA,
257–267. https://doi.org/10.1109/ASE.2013.6693085

[19] Yuting Chen and Zhendong Su. 2015. Guided differential testing of certificate vali-
dation in SSL/TLS Implementations. In European Software Engineering Conference
and ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (ESEC/FSE). Bergamo, Italy, 793–804. https://doi.org/10.1145/2786805.2786835

[20] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. 2005. Lightweight defect
localization for Java. In European Conference on Object Oriented Programming
(ECOOP). Glasgow, UK, 528–550. https://doi.org/10.1007/11531142_23

[21] Higor Amario de Souza, Marcos Lordello Chaim, and Fabio Kon. 2016. Spectrum-
based software fault localization: A survey of techniques, advances, and chal-
lenges. CoRR abs/1607.04347 (2016), 1–46. http://arxiv.org/abs/1607.04347

[22] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in
property specifications for finite-state verification. In ACM/IEEE International
Conference on Software Engineering (ICSE). Los Angeles, CA, USA, 411–420. https:
//doi.org/10.1145/302405.302672

[23] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001.
Dynamically discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering (TSE) 27, 2 (2001), 99–123. https:
//doi.org/10.1145/302405.302467

[24] Robert B. Evans and Alberto Savoia. 2007. Differential testing: A new approach to
change detection. In European Software Engineering Conference and ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE) Poster
track. Dubrovnik, Croatia, 549–552. https://doi.org/10.1145/1295014.1295038

[25] Laura Faulkner. 2003. Beyond the five-user assumption: Benefits of increased
sample sizes in usability testing. Behavior Research Methods, Instruments, &
Computers 35, 3 (2003), 379–383. https://doi.org/10.3758/BF03195514

[26] Gordon Fraser and Andrea Arcuri. 2013. Whole test suite generation. IEEE
Transactions on Software Engineering (TSE) 39, 2 (February 2013), 276–291. https:
//doi.org/10.1109/TSE.2012.14

[27] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness test-
ing: Testing software for discrimination. In European Software Engineering
Conference and ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (ESEC/FSE) (6–8). Paderborn, Germany, 498–510. https:
//doi.org/10.1145/3106237.3106277

[28] Carlo Ghezzi, Mauro Pezzè, Michele Sama, and Giordano Tamburrelli. 2014.
Mining behavior models from user-intensive web applications. In ACM/IEEE
International Conference on Software Engineering (ICSE). Hyderabad, India, 277–
287. https://doi.org/10.1145/2568225.2568234

[29] Patrice Godefroid. 2007. Random testing for security: Blackbox vs. whitebox
fuzzing. In International Workshop on Random Testing (RT). Minneapolis, MN,
USA, 1. https://doi.org/10.1145/1292414.1292416

[30] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated
whitebox fuzz testing. In Network and Distributed System Security Symposium
(NDSS). San Diego, CA, USA, 151–166.

[31] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Auto-
matic generation of oracles for exceptional behaviors. In International Sympo-
sium on Software Testing and Analysis (ISSTA). Saarbrücken, Genmany, 213–224.
https://doi.org/10.1145/2931037.2931061

[32] Dan Hao, Ying Pan, Lu Zhang, Wei Zhao, Hong Mei, and Jiasu Sun. 2005. A
similarity-aware approach to testing based fault localization. In IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). Long Beach, CA,
USA, 291–294. https://doi.org/10.1145/1101908.1101953

[33] Dan Hao, Lu Zhang, Hao Zhong, Hong Mei, and Jiasu Sun. 2005. Eliminating
harmful redundancy for testing-based fault localization using test suite reduction:
An experimental study. In IEEE International Conference on Software Maintenance
(ICSM). Budapest, Hungary, 683–686. https://doi.org/10.1109/ICSM.2005.43

[34] Ralf Hildebrandt and Andreas Zeller. 2000. Simplifying failure-inducing input. In
International Symposium on Software Testing and Analysis (ISSTA). Portland, OR,
USA, 135–145. https://doi.org/10.1145/347324.348938

[35] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code
fragments. In USENIX Security Symposium. Bellevue, WA, USA, 445–458.

[36] InTrace 2018. InTrace. https://mchr3k.github.io/org.intrace/.
[37] Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing field failures for in-

house debugging. In ACM/IEEE International Conference on Software Engineering
(ICSE). Zurich, Switzerland, 474–484. https://doi.org/10.1109/ICSE.2012.6227168

[38] Wei Jin, Alessandro Orso, and Tao Xie. 2010. Automated behavioral regression
testing. In International Conference on Software Testing, Verification, and Validation
(ICST). Paris, France, 137–146. https://doi.org/10.1109/ICST.2010.64

[39] Brittany Johnson, Rahul Pandita, Justin Smith, Denae Ford, Sarah Elder, Emer-
son Murphy-Hill, Sarah Heckman, and Caitlin Sadowski. 2016. A cross-tool
communication study on program analysis tool notifications. In ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE). Seattle,
WA, USA, 73–84. https://doi.org/10.1145/2950290.2950304

[40] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs? In

98

Proceedings of the 2013 International Conference on Software Engineering. San
Fransisco, CA, USA, 672–681. https://doi.org/10.1109/ICSE.2013.6606613

[41] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In International Conference on Software
Engineering (ICSE). Orlando, FL, USA, 467–477. https://doi.org/10.1145/581339.
581397

[42] Jaeyeon Jung, Anmol Sheth, Ben Greenstein, David Wetherall, Gabriel Maganis,
and Tadayoshi Kohno. 2008. Privacy oracle: A system for finding application
leaks with black box differential testing. In ACM Conference on Computer and
Communications Security (CCS). Alexandria, VA, USA, 279–288. https://doi.org/
10.1145/1455770.1455806

[43] René Just. 2014. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In International Symposium on Software Testing and Analysis
(ISSTA). San Jose, CA, USA, 433–436. https://doi.org/10.1145/2610384.2628053

[44] René Just, Michael D. Ernst, and Gordon Fraser. 2014. Efficient mutation anal-
ysis by propagating and partitioning infected execution states. In International
Symposium on Software Testing and Analysis (ISSTA). San Jose, CA, USA, 315–326.
https://doi.org/10.1145/2610384.2610388

[45] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the International Symposium on Software Testing and Analysis (ISSTA). San
Jose, CA, USA, 437–440. https://doi.org/10.1145/2610384.2628055

[46] Ivo Krka, Yuriy Brun, and Nenad Medvidovic. 2014. Automatic mining of specifi-
cations from invocation traces and method invariants. In ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (FSE) (16–22). Hong
Kong, China, 178–189. https://doi.org/10.1145/2635868.2635890

[47] Tim Menzies, Jeremy Greenwald, and Art Frank. 2007. Data mining static code
attributes to learn defect predictors. IEEE Transactions on Software Engineering
33, 1 (January 2007), 2–13. https://doi.org/10.1109/TSE.2007.10

[48] Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, and Ayş Bener.
2010. Defect prediction from static code features: Current results, limitations,
new approaches. Automated Software Engineering 17, 4 (May 2010), 375–407.
https://doi.org/10.1007/s10515-010-0069-5

[49] Manish Motwani and Yuriy Brun. 2019. Automatically generating precise oracles
from structured natural language specifications. In ACM/IEEE International Con-
ference on Software Engineering (ICSE) (29–31). Montreal, QC, Canada, 188–199.
https://doi.org/10.1109/ICSE.2019.00035

[50] Kıvanç Muşlu, Yuriy Brun, Michael D. Ernst, and David Notkin. 2015. Reducing
feedback delay of software development tools via continuous analyses. IEEE
Transactions on Software Engineering (TSE) 41, 8 (August 2015), 745–763. https:
//doi.org/10.1109/TSE.2015.2417161

[51] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. 2013. Data debugging
with continuous testing. In European Software Engineering Conference and ACM
SIGSOFT International Symposium on Foundations of Software Engineering (ES-
EC/FSE) New Ideas track (18–26). Saint Petersburg, Russia, 631–634. https:
//doi.org/10.1145/2491411.2494580

[52] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. 2015. Preventing data errors
with continuous testing. In ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA) (12–17). Baltimore, MD, USA, 373–384. https:
//doi.org/10.1145/2771783.2771792

[53] Tony Ohmann, Michael Herzberg, Sebastian Fiss, Armand Halbert, Marc Palyart,
Ivan Beschastnikh, and Yuriy Brun. 2014. Behavioral resource-aware model infer-
ence. In IEEE/ACM International Conference on Automated Software Engineering
(ASE) (15–19). Västerås, Sweden, 19–30. https://doi.org/10.1145/2642937.2642988

[54] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression
testing to large software systems. In ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE). Newport Beach, CA, USA, 241–252.
https://doi.org/10.1145/1029894.1029928

[55] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-directed random
testing for Java. In Conference on Object-oriented Programming Systems and Ap-
plications (OOPSLA). Montreal, QC, Canada, 815–816. https://doi.org/10.1145/
1297846.1297902

[56] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers? In International Symposium on Software Testing
and Analysis (ISSTA). Toronto, ON, Canada, 199–209. https://doi.org/10.1145/
2001420.2001445

[57] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Au-
tomated whitebox testing of deep learning systems. In ACM Symposium on
Operating Systems Principles (SOSP). Shanghai, China, 1–18. https://doi.org/10.
1145/3132747.3132785

[58] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani. 2012. Darwin:
An approach to debugging evolving programs. ACM Transactions on Software
Engineering and Methodology (TOSEM) 21, 3 (2012), 19:1–19:29. https://doi.org/
10.1145/2211616.2211622

[59] Cynthia K. Riemenschneider, Bill C. Hardgrave, and Fred D. Davis. 2002. Ex-
plaining software developer acceptance of methodologies: A comparison of five
theoretical models. IEEE Transactions on Software Engineering (TSE) 28, 12 (2002),
1135–1145. https://doi.org/10.1109/TSE.2002.1158287

[60] Jeremias Rößler, Gordon Fraser, Andreas Zeller, and Alessandro Orso. 2012.
Isolating failure causes through test case generation. In International Symposium
on Software Testing and Analysis (ISSTA). Minneapolis, MN, USA, 309–319. https:
//doi.org/10.1145/2338965.2336790

[61] Vipin Samar and Sangeeta Patni. 2017. Differential testing for variational analyses:
Experience from developing KConfigReader. CoRR abs/1706.09357 (2017), 1–18.
http://arxiv.org/abs/1706.09357

[62] Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bill Chu, and
Heather Richter Lipford. 2015. Questions developers ask while diagnosing
potential security vulnerabilities with static analysis. In European Software
Engineering Conference and ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (ESEC/FSE). Bergamo, Italy, 248–259. https:
//doi.org/10.1145/2786805.2786812

[63] Varun Srivastava, Michael D. Bond, Kathryn S. McKinley, and Vitaly Shmatikov.
2011. A security policy oracle: Detecting security holes using multiple API
implementations. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). San Jose, CA, USA, 343–354. https://doi.org/10.1145/
1993498.1993539

[64] Roykrong Sukkerd, Ivan Beschastnikh, Jochen Wuttke, Sai Zhang, and Yuriy
Brun. 2013. Understanding regression failures through test-passing and test-
failing code changes. In International Conference on Software Engineering New
Ideas and Emerging Results Track (ICSE NIER) (22–24). San Francisco, CA, USA,
1177–1180. https://doi.org/10.1109/ICSE.2013.6606672

[65] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tCom-
ment: Testing Javadoc comments to detect comment-code inconsistencies. In
International Conference on Software Testing, Verification, and Validation (ICST).
Montreal, QC, Canada, 260–269. https://doi.org/10.1109/ICST.2012.106

[66] Yuchi Tianand, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest:
Automated testing of deep-neural-network-driven autonomous cars. InACM/IEEE
International Conference on Software Engineering (ICSE). Gothenburg, Sweden,
303–314. https://doi.org/10.1145/3180155.3180220

[67] Robert J. Walls, Yuriy Brun, Marc Liberatore, and Brian Neil Levine. 2015. Dis-
covering specification violations in networked software systems. In International
Symposium on Software Reliability Engineering (ISSRE) (2–5). Gaithersburg, MD,
USA, 496–506. https://doi.org/10.1109/ISSRE.2015.7381842

[68] Kaiyuan Wang, Chenguang Zhu, Ahmet Celik, Jongwook Kim, Don Batory, and
Milos Gligoric. 2018. Towards refactoring-aware regression test selection. In
ACM/IEEE International Conference on Software Engineering (ICSE). Gothenburg,
Sweden, 233–244. https://doi.org/10.1145/3180155.3180254

[69] Qianqian Wang, Yuriy Brun, and Alessandro Orso. 2017. Behavioral execution
comparison: Are tests representative of field behavior? In International Conference
on Software Testing, Verification, and Validation (ICST) (13–18). Tokyo, Japan, 321–
332. https://doi.org/10.1109/ICST.2017.36

[70] W. Eric Wong, Vidroha Debroy, and Byoungju Choi. 2010. A family of code
coverage-based heuristics for effective fault localization. Journal of Systems and
Software (JSS) 83, 2 (2010), 188–208. https://doi.org/10.1016/j.jss.2009.09.037

[71] James Woodward. 2005. Making things happen: A theory of causal explanation.
Oxford University Press.

[72] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and un-
derstanding bugs in C compilers. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI). San Jose, CA, USA, 283–294.
https://doi.org/10.1145/1993498.1993532

[73] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?
In European Software Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE). Toulouse, France, 253–267.
https://doi.org/10.1145/318773.318946

[74] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering 28, 2 (February 2002),
183–200. https://doi.org/10.1109/32.988498

[75] Daniele Zuddas, Wei Jin, Fabrizio Pastore, Leonardo Mariani, and Alessandro
Orso. 2014. MIMIC: Locating and understanding bugs by analyzing mimicked
executions. In ACM/IEEE International Conference on Software Engineering (ICSE).
Hyderabad, India, 815–826. https://doi.org/10.1145/2642937.2643014

99

