TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Preserving Privacy in Distributed Systems

Yuriy Brun and Nenad Medvidovic, Member, IEEE Computer Society

Abstract—We present sTile, a technique for distributing trust-needing computation onto insecure networks, while providing probabilistic guarantees
that malicious agents that compromise parts of the network cannot learn private data. With sTile, we explore the fundamental cost of achieving privacy
through data distribution and bound how much less efficient a privacy-preserving system is than a non-private one. While that cost is significant,
we find that sTile-based systems execute orders of magnitude faster than homomorphic encryption systems, the alternative promising approach
to preserving privacy. This paper focuses specifically on NP-complete problems and demonstrates how sTile-based systems can solve important
real-world problems, such as protein folding, image recognition, and resource allocation. We present the algorithms involved in sTile and formally
prove that sTile-based systems preserve privacy. We develop a reference sTile-based implementation and empirically evaluate it on several physical
networks of varying sizes, including the globally distributed PlanetLab testbed. Our analysis demonstrates sTile’s scalability and ability to handle
varying network delay, as well as verifies that problems requiring privacy-preservation can be solved using sTile orders of magnitude faster than using

today’s state-of-the-art alternatives.

1 INTRODUCTION

ECENT advances in Internet technology, such as cloud
Rcomputing, are forcing the nature of computation to
evolve. For example, users no longer run computations on
private machines or machines of which they have physical
awareness. The same evolution has taken place for data
storage: many users no longer keep data, such as email,
on their machines, but rather allow “the cloud” to maintain
and safeguard that data. This transformation has allowed
ubiquitous access to computation and data with higher avail-
ability and reliability than possible with personal machines and
local servers. Simultaneously, however, this transformation has
created new challenges in computing. This paper addresses the
challenge of executing computations on untrusted machines in
a trustworthy manner.

The rapid evolution of how our systems execute and how our
data is handled has affected the meanings of the terms security
and privacy, when referring to software systems. Security
of a computation used to mean ‘“the computer running the
computation should be protected from malicious compromise,”
and privacy of data used to imply “unauthorized entities
could not gain access to the data.” Today, however, with
computations on private data running on remote, unknown,
potentially untrusted machines, security should mean ‘“no
computer, including the one(s) running the computation, may
undetectably compromise it” and privacy should imply “no
entity, including the one(s) executing the computation, should
gain access to the data.” Cyber systems, such as clouds,
have not yet embraced these new definitions, largely due to
the intellectual hurdles and costs of developing systems that
conform to these high standards.

e Y. Brun is with Computer Science & Engineering, University of Washington,
Seattle, WA, 98195.
E-mail: brun@ cs.washington.edu

o N. Medvidovic is with the Computer Science Department, University of
Southern California, Los Angeles, California, 90089.
E-mail: neno@usc.edu

To provide a common example, many of us rely on Google
to deliver, maintain, properly replicate, etc. our email, but the
notion that it may be possible to do that without Google having
access to our email seems unreasonable by today’s practices.
Instead, we rely on legal contracts and promises to guarantee
that Google will not abuse its privileged access to our data.
While this may be acceptable for companies with “a lot to
lose,” such as Google, the key question is whether we are
willing to accept and trust smaller companies that may, for
example, compute our taxes, calculate suggestions for future
purchases based on our past behavior, and mine our social
networks to introduce us to new friends, potential employees,
and businesses that may benefit us? Some of these services
may be provided by nothing more than a desktop in someone’s
garage. Even when we only allow well-respected and trusted
companies to have access to our data and computation, over
$50 billion are still lost each year through identify theft
perpetrated by either pretending to be a reputable company or
simply relying on a user’s trust in an unknown service [34].

In this paper, we present sTile, a technique that is based
on a theoretical model of self-assembly and consists of (1)
a software architecture, (2) a set of algorithms, and (3) an
implementation framework. sTile allows building software
systems that distribute a particular large and important class
of computations onto an untrusted network while providing
guarantees that the computers that execute the computation
cannot learn the computation’s private data. The work de-
scribed in this paper has a specific focus: it is aimed at
large, distributed computational systems solving NP-complete
problems, such as protein folding and image recognition.
However, the ideas we present are a foundation for follow-on
techniques to privately distribute arbitrary computations such
as email and tax calculations.

sTile-based systems offer a trade-off between privacy and
efficiency. In other words, if a domain does not require privacy,
the same problems can be solved more efficiency using non-
privacy-preserving methods. There exists a fundamental cost
of achieving privacy through data distribution. In this paper,
we explore this cost and bound it by producing a reference

mailto:brun@cs.washington.edu
mailto:neno@usc.edu

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

implementation and executing it on several distributed testbed
networks. In some sense, we push the idea of distribution
for privacy to its limit, exposing no more than 2 bits of data
to each distributed unit of computation. This implementation
represents an upper bound on the cost and we envision that
future work can improve this bound. In a number of ways,
our technique is similar to homomorphic encryption [29].
Both provide probabilistic privacy guarantees with exponential
drop-offs in the likelihood of a malicious party compromising
private data. However, homomorphic encryption provides such
guarantees even when the computation is performed by a
single node, whereas sTile is explicitly geared toward the
distributed setting and requires that fewer than half of the
network nodes are compromised. The restriction that no ad-
versary controls more than half of the network allows sTile to
outperform homomorphic encryption, executing computations
several orders of magnitude faster. In fact, while we have
deployed sTile-based systems on real-world networks, to date,
the efficiency issue has prevented deployment of homomorphic
encryption systems.

Existing approaches to using the Internet’s computational
resources to perform NP-complete computations [10], [22],
[25], [32] have resulted in commercial enterprises deployed
on over a million machines [36], [39], [49], providing results
to some of the largest computational problems solved to date
in the areas of artificial intelligence [20], physics [38], and
neuroscience [19]. However, these approaches have assumed
reliable and trustworthy underlying networks, and employed
only rudimentary fault-tolerance and privacy safeguards, ren-
dering them useful only (1) for rich companies that own
their own, large, trustworthy clusters, and (2) in research but
not for wide-scale commercial applications. In contrast, our
approach brings the privacy and security to the forefront and
allows distribution of private data onto untrusted machines
while preserving the data’s privacy, with high probability.
In Section 6, we will, in detail, compare sTile to existing,
well-known approaches, such as BOINC [3], which includes
SETI@home [36] and Folding@home [39], MapReduce [25],
and homomorphic encryption [29]. While sTile can compete
with existing techniques in a number of dimensions, in this
paper, we focus on scalability and efficiency, while demon-
strating sTile’s unique ability to guarantee a quantified, high
probability of data privacy. We have previously discussed
sTile’s ability to handle faults and malicious attacks [17], [18],
and do not focus on that dimension here.

We formally analyze and prove that sTile-based systems
preserve the privacy of the data used in the computation as
long as no adversary controls more than one half of the public
network — a highly unlikely occurrence. Furthermore, in order
to demonstrate the computational feasibility of our solution,
sTile includes Mahjong, an implementation framework real-
ized on top of a middleware platform. We deploy Mahjong-
based systems on three distinct networks, including the glob-
ally distributed PlanetLab testbed [43]. We also simulate a
sTile-based system’s execution on virtual networks of up to
1,000,000 nodes. We empirically verify that the speed of sTile
computation is proportional to the number of nodes and that
network delay has little-to-no effect on that speed. Finally, we

formally analyze the communication and computation costs
induced by sTile, provide bounds on their time requirements,
and then use the Mahjong-based implementations to verify
them empirically.

The rest of this paper is structured as follows: Section 2
elaborates on the paper’s scope by presenting several prob-
lems sTile-based systems target. Section 3 describes sTile,
its architectural underpinnings, and the associated algorithms.
Section 4 discusses our Mahjong-based implementations and a
set of experiments designed to demonstrate sTile’s feasibility.
Section 5 formally analyzes sTile’s privacy-preservation. Sec-
tion 6 positions our work in terms of related research. Finally,
Section 7 summarizes the paper.

2 TARGET PROBLEMS AND RESEARCH SCOPE

To highlight our research contributions, in this section we
present two representative problems our technique helps to
solve and then summarize the scope of our work.

2.1 Target Problems

Existing techniques that use the Internet to solve complex
computationally-intensive problems [25], [36], [39] do not take
into account that data involved in these computations may
be sensitive and that network nodes may be malicious and
may attempt to extract private data from the computation. In
fact, these techniques make it trivial to learn the nature of the
computation and the relevant data. By contrast, our primary
objective behind sTile is privacy-preservation: the involved
data must remain private during and after the computation.
The following are two example scenarios sTile targets.

1. A pharmaceutical company has generated a series of
candidate proteins for treating a particular cancer. The com-
pany needs to predict the 3-D structure of the proteins as they
would fold within the human body but the proteins’ amino acid
sequences are valuable intellectual property and must remain
private. The protein-folding problem is NP-complete [8], and
thus for reasonably sized proteins, it could take years on
a single computer, or even on small private networks, to
compute the desired structures. The company is unwilling to
use existing approaches [39] to distribute the computation on a
public network because these approaches distribute the amino
acid sequences to all helping nodes.

2. Image recognition is at the heart of many advanced arti-
ficial intelligence and security tasks. Matching faces captured
by a camera to a database of known criminals allows auto-
mated intruder detection and aids security at public locations
such as airports and casinos. However, facial recognition and
image matching problems are NP-complete [35] and many
people may enter the location of interest at once. Further, any
employed solution must execute quickly to deliver results in
real-time, requiring far more resources during peak times than
off-peak times, making this problem ideally suited for cloud
computing. In order to protect the identity and privacy of the
innocent individuals entering the location, the system must
either guarantee that the entire computation takes place on a
completely secure private network, or use a privacy-preserving
technique to distribute the computation on a public network.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

2.2 Research Scope

The goal of this research is to provide an approach for
leveraging distributed, inherently untrustworthy computational
resources into a highly robust distributed software system.
In particular, the resulting software system benefits from the
Internet’s large size while outperforming existing techniques
by tolerating the insecurity and unreliability inherent to the
Internet. The primary contribution of this paper is s7ile: a
software system-construction technique based on a theoretical
model of self-assembly. sTile comprises

« an assembly of a set of tile types that solves a particular
computational problem,

« a software architecture that reifies that assembly,

« a set of algorithms for instantiating and distributing that
architecture on a set of networked nodes, and

« an implementation framework that natively realizes the
architecture and algorithms.

sTile allows building software systems that distribute NP-
complete problems onto large networks while (a) preserving
the privacy of the data, (b) scaling well to leverage the
resources, and (c) tolerating faulty and malicious nodes. In
this paper, we provide a formal theoretical analysis of sTile’s
privacy preservation, efficiency, and scalability. Furthermore,
to illustrate the feasibility of sTile, we also describe a reference
implementation of the sTile framework. Finally, we deploy
this implementation on a wide range of distributed testbeds,
including the globally distributed PlanetLab, to empirically
evaluate sTile.

It is important to note that we have designated several
directions of research as outside of the scope of this paper.
First, we do not consider issues that are common to all
Internet-based systems. For example, the energy consumption
of an Internet-sized computing network is important, but is not
unique to our approach and has been argued non-prohibitive in
volunteer computing literature [3]. Second, we do not focus on
programming models and language-level solutions that can be
envisioned as natural outgrowths of this work. In particular, it
is relevant to discuss a tile-based language that would expand
sTile’s application outside of NP-complete problems, but we
leave this direction as part of our future work. Third, while we
focus on scalability, efficiency, and privacy, there are certainly
other relevant dimensions of Internet-sized computing systems
(e.g., energy efficiency, which has been mentioned above, as
well as fault tolerance, which we have discussed in [17], [18]),
but we consider them outside of this paper’s scope. Where
applicable, we will provide the intuition for sTile’s ability to
compete with existing techniques in these dimensions.

3 STILE

sTile is a technique for designing, implementing, and deploy-
ing software systems that distribute computation onto large, in-
secure, public networks. Figure 1 shows a high-level overview
of sTile. sTile consists of four components: a tile assembly, the
corresponding tile architecture, the associated algorithms, and
the Mahjong implementation framework. For a given problem
P, sTile uses a tile assembly (described in Section 3.1) to
create a tile architecture (described in Section 3.2). sTile uses

sTile
Tile
Tile Algorithms |
Assembly Tile
for P Architecture

Fig. 1. A high-level overview of sTile.

Software System for P:

» privacy preserving

» fault and attack tolerant
» scalable

Mahjong

ion

Problem P Framework

that tile architecture and the tile algorithms (also described in
Section 3.2) to compile a Mahjong-based implementation of
the system (described in Section 3.3), which is the software
system used to distribute the computation solving P onto a
network, in a privacy-preserving manner.

It is important to point out that a software engineer who
wishes to develop and deploy a sTile-based system does not
need to understand the underlying computational model that
we describe in Section 3.1 and use throughout this paper. In
essence, sTile includes a compilation procedure that allows the
engineer to automatically compile a computational problem to
a sTile-based, but otherwise completely conventional-looking,
software system. The underlying tile model is important for
proving many of the properties of system correctness and
privacy preservation, and we describe them all in this paper.
However, from the point of view of the developer, these details
are abstracted away, e.g., much like the assembly language that
executes underneath a program written in C++.

3.1 Computing with Tiles

A key component of sTile is the tile architecture, which is
based on a tile assembly. Tile assemblies are extensively
studied mathematical objects [1], [9], [44], [48], [50]. Our own
prior work has developed the notion of efficient computation
with tile assemblies and constructed efficient assemblies to
add and multiply integers [12], factor integers [13], and
solve NP-complete problems [14], [15]. The tile assembly
model is Turing-universal, so tile assemblies can implement
all algorithms [9], [44].

Tile assemblies are not the focus of this paper: we concen-
trate here on building software systems that solve computa-
tional problems on large networks. To that end, we leverage
existing tile assemblies, such as our previous work on NP-
complete computation. Thus, we will only briefly describe tile
assemblies here, before going into the details of the tile ar-
chitecture and tile algorithms. For completeness, we formally
describe the tile assembly model and the tile assembly we
developed to solve 3-SAT [15] in the Appendix.

A tile assembly is a set of types of tiles, squares with static
labels on their four sides. The tiles are not allowed to rotate but
are allowed to “float” around and attach to one another under
fairly simple rules. For the purposes of this discussion, tiles
may attach when the labels on their respective sides match.
The key to having a tile assembly do something useful is
properly choosing which tile types to include in the assembly.
The set of tile types encodes the “program” the assembly
will “execute.” Again, we do not focus on this process here
(a more complete description of the process of developing
tile assemblies to solve computational problems can be found
in [15]), but one can imagine that design of tile assemblies

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

H H
ol o]

o

H H
oo

o

2

H H
1 2

|
o |

H
o]

H H
ol o]

o

H H
ol o]

o

|

’
H

H
]
3 2

H H
o o]

Fig. 2. An example crystal of a 3-SAT-solving tile assembly. Here, the clear tiles encode the input Boolean formula ¢ = (xp V —xp V
—x0) A (—x2 Vi V —ixg) A (—a VX Vxo). This crystal represents one possible nondeterministic execution that checks whether the
assignment xo = x, = TRUE and x; = FALSE satisfies ¢. Because it does, the v tile attaches in the top left corner. The Appendix
describes the details of the tile assembly model and this 3-SAT-solving tile assembly.

is not unlike the design of cellular automata systems or even
programming in assembly language.

Figure 2 shows one possible example execution (crystal) of
a tile assembly that solves 3-SAT. The Appendix describes
the details of this assembly. The tiles of a tile assembly
create many such crystals, each nondeterministically exploring
whether an assignment satisfies a 3-SAT Boolean formula. If
some crystal, such as the one in Figure 2, finds a satisfying
assignment, the v~ tile attaches in its top left corner, indicating
that a solution has been found. In Section 3.2, we describe
how sTile uses a network of computers to essentially simulate
tile assemblies, resulting in a software system that distributes
computation to solve computationally-intensive problems. In
subsequent sections, we will argue that such systems are
efficient and possess properties that are important to software
systems deployed on large public networks such as the Inter-
net.

3.2 Tile Architecture and Algorithms

A sTile-based system is a software system that uses a network
of computers to solve a computational problem. Intuitively, the
network will simulate a tile assembly: each computer on the
network will pretend to be a tile (many tiles, actually), and
communicate with other computers to self-assemble a solution
to a computational problem. Each computer will deploy tile
components, each representing a tile in a tile assembly, and
facilitate the proper communication channels and algorithms
to allow the tile components to self-assemble. Thus, a tile
architecture is based on a tile assembly; the software system
employing that architecture solves the particular computational
problem the tile assembly solves.

From the software system developer’s point of view, build-
ing a sTile-based system may seem imposing. However, it is
actually simple. In essence, sTile contains the entire processes
and all the necessary tools to abstract the internal tile rep-
resentation away from the developer, so that the developer
never needs to worry about tile assemblies or to understand
how tiles work. The key to this abstraction is compilation. We

now briefly describe the two possible processes a developer
may follow to create a sTile-based system: the first requires a
deep understanding of tile assemblies and the second (the one
sTile employs) requires none.

Since a tile architecture is based on a tile assembly, and
a sTile-based system solves the same computational problem
the underlying tile assembly solves, one way to build a sTile-
based system to solve a particular computational problem P is
to develop a tile assembly P that solves P, then follow the pro-
cedures we describe below to translate IP into an architecture,
and finally implement a software system by employing that
architecture and the appropriate algorithms. This process can
be quite painstaking and requires the design of a tile assembly,
such as the one we describe in the Appendix.

Instead, we recommend an automated compilation proce-
dure that allows the developer to create a sTile-based system
without ever understanding the details of tile assemblies.
Since we have developed several tile assemblies that solve
NP-complete problems [14], [15], and since NP-complete
problems are polynomially related, it is possible to translate all
NP problems to the problems for which we already created tile
assemblies using one of the well-established reductions [46].
This translation becomes a compilation of the problem for
which the developer wishes to build a sTile-based system to a
known tile assembly. This compilation, as virtually all compi-
lations, may result in less efficient systems than the direct
approach of developing a tile assembly for each particular
problem. However, the benefits of automated compilation are
numerous, and include a significant time and cost savings and
a lower likelihood of bugs.

We will not focus on the well-studied compilation pro-
cess [46] in this paper. We do, however, note three facts: (1)
The time the compilation takes is insignificant, as compared
to actually solving the NP-complete problems, such as 3-SAT.
(2) Even without compilation, our sTile-based systems present
a considerable contribution because solving 3-SAT itself has
important implications for real-world systems [45]. And, (3)
in addition to ease of use, compilation masks the problem
the user is solving; while this is a beneficial side effect of

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Initialization
(Client)

Replication
(All Nodes (All Nodes)
P

>

s

Solution
(Client)

Discovery
(All Nodes)

Fig. 3. Overview of tile architecture node operations.

using sTile, we discuss the much more important privacy-
preservation property in Section 5.

We now describe what a tile architecture looks like and
how it is based on a tile assembly. The components of the
tile architecture are instantiations of the tile types of the
underlying assembly. A sTile-based system employing such
an architecture will have a large number of components; on
the other hand, there is a comparatively smaller number of
different types of components (e.g., 64 types for solving 3-
SAT). Nodes on the network will contain these components,
and components that are adjacent in a crystal can recruit
other components to attach, thus dynamically completing the
architectural configuration [47] corresponding to a tile crystal.
The components recruit other components, by sampling nodes
until they find one whose interfaces match. Note that many
components in the sTile architecture can run on a single
physical node (i.e., machine on a network), as we will further
elaborate below.

In addition to defining the tile types, a tile assembly also
directs sTile how to encode the input to the computation into
the set of components comprising the initial, partial architec-
tural configuration. The input consists of a seed crystal, such
as the clear tiles along the right and bottom edges in Figure 2
(also shown separately in Figure 11a). Figure 3 summarizes
the algorithms a sTile-based system follows to find a solution.
During initialization, the system sets up a single seed crystal
(i.e., partial sTyle architectural configuration) on the network
to encode the input. The seed then replicates to create many
copies, and each of the copies recruits tiles to assemble larger
crystals (i.e., to complete the architectural configuration corre-
sponding to each crystal) and eventually produce the solution.
The solution tile components (e.g., the v' component for the 3-
SAT assembly) then report their state to the user. Note that the
nodes perform these operations autonomously, without central
control, in essence self-assembling the sTile architecture and,
by extension, the computation the architecture is intended to
solve.

We elaborate on these operations next. We also discuss
what happens when sTile is unable to find a solution to a
computational problem (e.g., when no assignment of variables
can satisfy 3-SAT).

3.2.1 Initializing Computation

The client computer initializes the computation by performing
three actions: creating the tile type map, distributing the map
and tile type descriptions, and setting up a seed crystal. As

our analysis in this section will show, the entire initialization
procedure will take on the order of log/N time for a network
of N nodes, and each node will send a small amount of data
proportional to its local neighborhood size.

Creating the Tile Type Map: A tile type map is a mapping
from a large set of numbers (e.g., all 128-bit IP addresses) to
tile types. It determines the type of tile components a computer
with a given unique identifier (e.g., IP or MAC address)
deploys. The tile type map breaks up the set of numbers into
k roughly equal-sized regions, where k is the number of types
of tiles in the tile assembly. For the 3-SAT example from the
Appendix, there are 64 different tile types, so the tile type map
would divide the set of all 128-bit numbers into 64 regions of
size 2'22. The size of the tile type map, which will later be
sent to all the nodes on the network, is small. For an assembly
with k tile types, the map is k£ 128-bit numbers.

For our analysis, we assume that every node on the network
is connected to p other nodes, distributed roughly randomly.
This is a first-order approximation of the Internet, but our
analysis will extend to more accurate models. Every computer
may contact its neighbors directly and may query its neighbors
for their lists of neighbors. A number of our algorithms are
designed specifically to work on such a distributed network, on
which no single node knows a large portion of the network.
On more highly connected networks, our algorithms can be
simplified.

Distributing the Map and Tile Descriptions: The client
node distributes the tile type map and a short description of
one tile type to a node that deploy that type, as determined
by the tile type map. A tile type’s description consists of the
four tile component interfaces, which can be described using
a few bits. The client node contacts at least one node that
deploys each tile type by contacting its neighbors, then their
neighbors, etc. until at least one node of each type knows the
tile type map and its tile type description. The well-known
coupon collector problem [41] indicates that for a system with
k tile types, it will take, with high probability, less than 2klogk
time to “collect” a node of each type.

The nodes that learn their types from the client computer
propagate the information to their neighbors whose IPs map
to the same tile types, and so on, until every computer on the
network learns the type of tile component that computer will
deploy. Thus every computer receives the tile type map and the
description of its own tile type. Each computer might receive
its tile type information and the tile type map several times,
up to as many times as it has neighbors, which on our network
is only p. Each node sends only ®(p) data because roughly
% of a node’s p neighbors will have to be sent the 128k bits,
and (% =0(p)) Because the diameter of a network of N
nodes with randomly distributed connections is @(logN) [41],
the tile type map and the tile types will propagate through the
network in ®(logN) time.

Until now, we have ignored the case of a network with
fewer nodes than the number of types of tiles. If the network
is that small, it is possible to create multiple virtual nodes
on each machine and proceed as before, though a single
physical node will have knowledge of more than one tile type,

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

compromising privacy. In the limit, for a network with a single
node, it has been analytically shown that privacy preservation
is not possible [23]. It is important to note that while the tile
architecture targets large networks, it can be made to work
on small networks, although with weaker privacy guarantees.
However, these small networks are not the central concern of
this work.

Creating a Seed: The client is responsible for creating
the first seed on the network through a fairly straightforward
procedure. For each tile in the seed crystal described by the
underlying tile assembly, the client selects a node that deploys
that tile type (as we describe in Section 3.2.2), and asks that
node to deploy a tile. The client then informs each deployed
tile component who its neighbors on the network are. This
procedure is significantly faster and requires significantly less
network communication than the distribution of the tile type
map.

3.2.2 Discovery

The node discovery algorithm is central to sTile because
initialization, replication, and recruitment all use it. The dis-
covery operation, given a tile type, returns a uniformly-random
IP of some computer deploying tile components of that type,
meaning that if a node performs this operation repeatedly, the
frequencies of the IP addresses it returns asymptotically ap-
proach the uniform distribution. Thus, every suitable computer
has an equal chance of being returned, in the long run. Our
algorithm for discovery will guarantee uniform-randomness,
which in turn will guarantee that all nodes on the network
perform a similar amount of computation. The algorithm will
use a property of random walks to ensure uniform-randomness.

In order to quickly return the IP address of a computer
that deploys tile components of a certain type, each node
will keep a table, called the node table, of three IP addresses
for each component type, as we explain below. For 3-SAT,
the size of this table will be 64 x 3 = 192 IPs. The table
contains only an identifier for each tile type, and not the
details about the interfaces. The preprocessing necessary to
create the node table is simple: first a node fills in the table
with all its neighbors and then gets help from neighbors (by
requesting their neighbor lists). The analysis of this procedure
is identical to the analysis of distributing the tile type map;
this preprocessing procedure will take ®(klogk) time per node
(happening in parallel for each node), for k different tile types.
The amount of data sent by each node is limited to ®(klogk)
packets. For 3-SAT’s k = 64, that is fewer than 300 packets,
which for typical UDP packets amounts to only 15 kilobytes.

After the preprocessing, when queried for the IP of a
computer that deploys tile components of a given type, the
node performs two steps: (1) it selects one of the three
entries in the node table for that tile type, at random, and
(2) it replaces its list of three entries in the table with the
selected node’s corresponding three entries. The reason for the
replacement is that we want the selection of IPs to emulate a
random walk on the node graph [41]. The request packet only
needs to contain the tile type (e.g., a 32-bit number) and the

Fig. 4. A network with six nodes. We assume that every node
in our underlying network has p neighbors (here p = 3).

answer packet must contain three IPs (three 128-bit numbers).
This entire procedure takes ®(1) time.

We now help clarify the preprocessing and discovery op-
erations with the use of an example. Suppose the network in
Figure 4 represents the connectivity of six nodes that all map
to the same tile type. In creating its node table, A first checks
its neighbors B, C, and D, and records them in the three slots
for that tile type. A’s node table (for that tile type) is now
complete, but had A not found three valid nodes to fill its
table, it would expand its neighbor list by querying one of its
neighbors for its neighbors, until it discovered a sufficiently
large portion of the network. B follows the same procedure as
A and creates a node table and records its neighbors A, D, and
F as the three nodes deploying the same tile type. When A
needs a node of that type later (for reasons discussed below), it
selects a random node from its three entries. Suppose it selects
B. A then replaces its node table entries with B’s entries (A,
D, F). Note that it is possible for a node to store itself on its
node table.

Lemma I: On an N-node network, after filling only
O(logN) requests for an IP of a computer that deploys a
certain tile type using the above-outlined procedure, the prob-
ability of each valid IP being returned is uniformly distributed.

Proof: Because the node table keeps independent lists of
three nodes of each type, it is sufficient to prove the lemma
for a single tile component type. Consider the directed graph
G formed by representing every node as a vertex with three
outgoing edges to the vertices representing the nodes on the
node table. Now consider a sequence of nodes derived by
the above-outlined procedure of picking a random node from
the three entries, and replacing those three entries with that
node’s entries. That sequence corresponds to a random walk
on G. From [41], we know that a random walk on G mixes
rapidly, which means that if selecting nodes via this random
walk after ®(logN) steps, the probability of getting the IP of
each node becomes proportional to that node’s in degree. Thus
on a uniform graph, every IP is equally likely to be returned.

|

We have discussed how to convert a random network into
one such that each node has exactly three neighbors. Again
we emphasize that this simplification is made to aid our
analysis. In fact, the random walk theorem from [41] holds
for all graphs with nodes having three or more neighbors, so
this result is directly applicable to all reasonable distributed
networks. For small networks, discovering the entire network
does not pose computational difficulty, and selecting nodes
uniformly-randomly is trivial.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

H

Fig. 5. Tile components that have both an upper and a left
neighbor (highlighted in the diagram) can recruit new compo-
nents to attach to their upper left.

3.2.3 Recruitment

The seed crystal grows into a full assembly by recruiting tile
attachments. In a computational tile assembly (such as the
assembly described in the Appendix that solves 3-SAT), a tile
component that has both an upper and a left neighbor recruits
a new tile to attach to its upper left. Figure 5 indicates several
places in a sample crystal where tile components are ready to
recruit new tiles. A recruiting tile component X (highlighted in
Figure 5), for each tile type, picks a potential attachment node
Y of that type from its node table, as described in Section 3.2.2,
and sends it an attachment request. An attachment request
consists of X’s upper neighbor’s left interface and X’s left
neighbor’s top interface. If those interfaces match Y’s right and
bottom interfaces, respectively, then Y can attach. At that point,
X informs Y of the IPs of its two new neighbors, and those
neighbors of Y’s IP. Note that X can perform this operation
without ever learning its neighbors’ interfaces by using Yao’s
garbled protocol [52], which is crucial for privacy preservation.

Each component’s recruitment is a five-step process: X
asks N (its upper neighbor) to encode its left interface, N
asks W (X’s left neighbor) to encode its top interface, W
responds to X, X sends attachment requests to a set of potential
attachments Y, and those Y's reply to X. We will analyze these
five steps in Section 4.5 when we compute the speed of sTile-
based systems.

In the 3-SAT example from Section 3.1, the successful
crystal recruits 310 tile components (non-clear tiles in
Figure 2). An unsuccessful crystal, which we discuss further
in Section 3.2.5 can recruit fewer, but no more than 310 tiles.

3.2.4 Replication

Whenever network nodes have extra cycles they are not using
for recruitment, they replicate the seed. Each node X uses its
node table, as described in Section 3.2.2, to find another node
Y on the network that deploys the same type components as
itself, and sends it a replication request. A replication request
consists of up to two IP addresses (two 128-bit numbers)
of X’s neighbors. X lets its neighbors know that ¥ is X’s
replica (by sending Y’s IP to X’s neighbors). Those neighbors,
when they replicate using this exact mechanism, will send
their replicas’ IPs to Y. Thus, the entire seed replicates.
Each component’s replication is thus a three-step process:
X sends a replication request to Y, Y replies to X, and X
tells its neighbors about Y. We will analyze these three steps

in Section 4.5 when we compute the speed of sTile tile
architecture.

At the start of the computation, while there are very few
recruiting seeds, the replication will create an exponentially
growing number of identical seeds (the first seed will replicate
to create two, those two will create four, then eight, etc.).
When there are sufficiently many seeds to keep the nodes
occupied recruiting, replication naturally slows down because
recruitment has a higher priority than replication. As some
seeds complete recruitment and free up nodes’ cycles, repli-
cation will once again create more seeds.

The seeds continue to replicate and self-assemble until
one of the assemblies finds the solution, at which time the
client broadcasts a signal to cease computation by sending a
small “STOP” packet to all its neighbors, and they forward
that packet to their neighbors, and so on. Since the diameter
of a large connected network of N nodes with randomly
distributed connections is @(logN) [41], the “STOP” message
will propagate in @(logN) time.

3.2.5 Answering 3-SAT in the Negative

A crystal that finds the truth assignment that satisfies the
Boolean formula reports the success to the client computer.
Since for NP-complete problems the answer is always “yes”
or “no,” the notification is only a few bits. Deciding that
there is no satisfying assignment is more difficult. No crystal
can claim to have found the proof that no such assignment
exists. Rather, the absence of crystals that have found such
an assignment stands to provide some certainty that it does
not exist. Because for an input on n variables there are 2"
possible assignments, if 2" randomly-selected crystals find no
suitable assignment, then the client knows there does not exist
such an assignment with probability at least (1—e™'). After
exploring m x 2" crystals, the probability grows to at least
(1—e™™). Thus as time grows linearly, the probability of
error diminishes exponentially. Given the network size and
bandwidth, it is possible to determine how long one must
wait to get the probability of an error arbitrarily low. For the
assembly execution that solves a 3-variable 3-SAT problem
from Figure 2, the probability of exploring 2° = 8 crystals and
not finding the solution is no more than e~!. After exploring
80 crystals, that probability drops to e~ < 1074, Note that
no crystal can be larger than 310 tiles, so 80 crystals would
require fewer than 25,000 tile components. Because the tile
components are lightweight (each one is far smaller than 1
KB), there is little reason why even a single computer could
not deploy that many components.

3.3 Mahjong Implementation Framework

The final element of sTile is the Mahjong implementation
framework which uses the tile architecture and algorithms to
automatically compose a sTile-based software system.

The Mahjong framework [11] is realized as a Java-based
middleware platform that faithfully implements the tile ar-
chitecture and its algorithms. It takes as input a description

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

of a tile assembly, implements a software system using the
tile architecture based on that assembly and employing the
algorithms described in Section 3.2, and outputs (i.e., deploys)
a complete sTile-based software system. The Mahjong imple-
mentation framework is available for download [11].

In Mahjong’s implementation we leveraged Prism-MW [40],
a middleware platform intended specifically for architecture-
aware implementations in highly-distributed and resource-
constrained environments. Prism-MW provides explicit imple-
mentation-level constructs for declaring components, inter-
faces, interactions, network communication, etc., as well as
the ability to encode architectural constraints as first-class
middleware-level constructs. Each node on a network runs
a Prism-MW Architecture, which forms a “sandbox” within
which all of the Prism-MW (and, in our case, Mahjong) code
deployed on a given node executes. The use of system re-
sources on each participating hardware host is hence restricted
and can be released at any time. The tile components deploy
inside the Architecture objects and perform their functionality
as part of the tile algorithms via their interfaces, which are im-
plemented as Prism-MW Ports. Mahjong takes a user-provided
description of the set of tiles for an NP-complete problem
and the input to the computation (the tiles for solving two
NP-complete problems, SubsetSum and 3-SAT, are included)
and automates the remaining steps of building a sTile-based
system. Mahjong consists of 29 objects and 2,900 lines of Java
code. It has proven to be flexible and robust to variations in
the various networks on which we have deployed it to date:
we have not had to make changes to the source code to adapt
Mahjong to distinct networks and a developer unfamiliar with
the project was able to deploy it without consultation with us.

4 COMPUTATIONAL FEASIBILITY

In order to demonstrate that sTile is a feasible solution
for building software systems that distribute computationally
intensive problems on very large networks, we must show that
(1) such systems’ computational speed is proportional to the
size of the underlying network, (2) such systems are robust
to network delay, and (3) real-world-sized problems can be
solved on real-world-sized networks in reasonable time.

To that end, we have built two Mahjong-based imple-
mentations and a simulator-based Simjong, three software
systems that employ sTile to solve NP-complete problems.
The Mahjong-based implementation distribute computation
onto computers on a physical network. Simjong is a discrete-
event simulator that creates a simulated network of virtual
nodes and distributes computation onto that simulated net-
work while employing accurate models of network message
delays. In addition to empirically illustrating the above three
properties, the Mahjong-based implementations establish the
correctness of our algorithms and demonstrate the distribution
of a sTile-based system onto a physical network. Because
access to Internet-sized networks presents numerous logistical
challenges, (the largest physical distributions we could secure
are 186 collocated nodes and 100 globally distributed nodes,
as part of PlanetLab [43]), Simjong’s goal is to accurately sim-
ulate sTile-based system distributions on very large networks
(e.g., 1,000,000 nodes).

We present the details of the Mahjong-based implemen-
tations and Simjong in Section 4.1 and our experimental
setup in Section 4.2. We then discuss our experiments testing
the scalability, robustness to network delay, and efficiency
in Sections 4.3, 4.4, and 4.5, respectively. Finally, we will
summarize some of the potential threats to the validity of our
evaluation in Section 4.6.

4.1 sTile-based Implementations

The Mahjong-based implementations are instances of the Mah-
jong implementation framework. We have built two Mahjong-
based implementations, one for each of the 3-SAT and
SubsetSum problems. These implementations are available for
download as part of the framework [11].

Simjong [11] is a Java-based discrete-event simulator with
network-delay simulation capabilities. Simjong executes on a
single machine and creates a user-specified number of virtual
hardware Node components, each capable of deploying tiles.
A central Clock component keeps track of virtual time and
allows each Node to execute one instruction per clock cycle.
Whenever a Node’s tile needs to communicate to another
Node’s tile, it sends a message via the Network component that
determines the delay for that message’s delivery. Simjong’s
network model allows for message delivery time to be constant
(e.g., 100ms), chosen at random from some distribution (e.g.,
Gaussian around 100ms with a 20ms standard deviation),
or proportional to the geographic distance between locations
assigned to each virtual node (e.g., 50ms between Amsterdam
and London, and 500ms between New York and Hong Kong).
Simjong’s network model is a simplification of the network
simulator standard ns-2 [27] because it abstracts away the
exact topology of the network, which is not important for our
needs.

Simjong’s virtual nodes follow the tile algorithms, simulat-
ing a deployment of a sTile-based system on a real distributed
network. While executing, Simjong keeps track of the number
of completed seeds and reports its progress. Thus, it is possible
to use Simjong to estimate the time required for a computation
to complete after executing only a fraction of that computation.
This is an important characteristic that allows us to simulate
very large problems on very large networks in comparatively
short time.

4.2 Experimental Setup

We leveraged three distributed networks for our experimental
evaluation: (1) A private heterogeneous cluster of 11 Pentium
4 1.5GHz nodes with 512MB of RAM, running Windows XP
or 2000. (2) A 186-node subset of USC’s Pentium 4 Xeon
3GHz High Performance Computing and Communications
(HPCC) cluster [33], whose nodes were distributed in several
locations, but all within one city. (3) A 100-node subset of
PlanetLab [43], a globally distributed network of machines of
varying speeds and resources that were often heavily loaded
by several experiments at a time.

The cross-section of data we present in this paper used four
representative instances of NP-complete problems, to which
we will refer by their labels:

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

: 5-number 21-bit SubsetSum problem,
: 11-number 28-bit SubsetSum problem,
: 20-variable 20-clause 3-SAT problem, and

: 33-variable 100-clause 3-SAT problem.
Our experimental goals were to verify sTile’s scalability

with respect to network size and robustness to network de-
lay. Our experiments had three independent variables — the
number of nodes, the network communication speed between

DR R

nodes, and the size of the NP-complete problem — and
one dependent variable — the time the computation took to
complete.

First, to verify the correctness of sTile-based systems,
we used Mahjong-based implementations to solve over one
hundred of SubsetSum and 3-SAT problems, including A, B,
and €. As a rule of thumb, we chose the sizes of problem
instances to each execute in under 4 hours on our 186-
node cluster. We verified that, on each of the above three
networks, the implementations found the correct solution to
each instance, it sent no unexpected communication between
network nodes, and no node produced undesired connections
between tile components. Further, we verified that, when
provided inputs with a negative answer, the implementations
appeared to execute indefinitely, as expected.

We were able to perform experiments with Mahjong-based
implementations on networks of up to 186 nodes and with
Simjong on virtual networks of up to 1,000,000 nodes. The
need for simulation arose from the difficulty of obtaining time
on dedicated machines. Today’s distributed-system testbeds are
(1) much smaller than the networks sTile targets, (2) not aimed
at computationally intensive (as opposed to data-sharing or
threat-prevention) techniques, and (3) under heavy load. For
example, PlanetLab, distributed at 485 locations around the
world, consists of only 1090 nodes! of which almost half
are typically unresponsive; of the responsive nodes, some are
heavily overloaded or exceedingly slow. Because of these well
known issues with PlanetLab [26], we were unable to repeat
our experiments as many times as on the other networks. In
the end, PlanetLab allowed us to demonstrate that sTile-based
systems can be successfully deployed on globally distributed
networks and provided us with useful numerical trends.

4.3 Scalability

To verify that the speed of the computation is proportional
to the number of nodes on the underlying network, for
each of the three networks described above, we deployed
Mahjong-based implementations on the entire network and on
randomly selected halves of the network. We varied the size
of the problem and measured the average time in which the
implementations found the solution over 20 executions (except
on PlanetLab, as we explained above). We then also deployed
Simjong on virtual networks of increasing size from 125,000
to 1,000,000 nodes (with a constant network delay of 100ms
for all packets) and simulated the first 1074% of the seeds to
estimate the time required to complete the entire computation.
This allowed each Simjong execution to complete in about an

1. By comparison, DETER [7] users can gain access to only a subset of
300 closely located physical nodes that rely on a network delay simulator
similar to the one Simjong uses.

Network & Number of | Execution | Speed-up

Problem Nodes Time Ratio
Private Cluster 5| 43.2 sec.

A 10 | 22.9 sec. 1.89
HPCC 93 | 220 min.

¢ 186 | 116 min. 1.90
PlanetLab 50 | 9.2 min.

B 100 | 4.8 min. 1.92
Simjong 125,000 | 8.7 hours

250,000 | 4.5 hours 1.93

D 500,000 | 2.1 hours 2.14

1,000,000 64 min. 1.97

Fig. 6. The effect of doubling the network size on the system’s
execution time. The speed-up ratio is the factor speed improve-
ment over the network of half the size.

hour of actual time, while executing a sufficiently large number
of seeds. Our measurements have shown that, after the first
few thousand seeds, our implementations make fairly constant
progress through the seeds and that extrapolating from the
10~%% fraction is accurate.

We hypothesized that as we double the size of the underly-
ing network, the Mahjong-based implementations and Simjong
would take approximately half as much time to complete.
Figure 6 shows a cross-section of the results of our scalability
experiments, which confirm this hypothesis. For example,
executing ® on a 1,000,000-node virtual network took a factor
of 1.97 less time than on a 500,000-node virtual network. We
speculate that the slight inefficiency on the physical networks
(1.9 instead of 2) comes from the constant underlying-network
bandwidth; by contrast, increasing the size of a global network
is likely to add communication pathways and increase overall
bandwidth. The experimental results provide confirmation that
the speed of a sTile-based system is proportional to the size
of the network, resulting in a desirable scaling trend for large
networks.

4.4 Robustness to Network Delay

To measure the effect of network delay on the speed of
sTile-based systems, we compared the times Mahjong-based
implementations took to solve the same problems on equal-
sized subsets (up to the maximum 11 nodes) of the private
and HPCC clusters and PlanetLab. We then compared the
times Simjong took on five virtual networks of 1,000,000
nodes each, with respective network delays of Oms, 10ms,
100ms, 500ms, drawn from a Gaussian distribution around
100ms with a 20ms standard deviation, and ones proportional
to the geographic distance between randomly assigned world-
wide locations (varying from 20ms for collocated nodes to
500ms for most distant ones). We again simulated the first
107%% of the seeds for the same computation on each of those
networks to estimate the time required to complete the entire
computation.

We hypothesized that the network delay will have virtually
no effect on the time sTile-based systems take to execute.
The intuition behind this hypothesis is that each node in
a sTile-based system handles the deployment of thousands

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Problem Number of Network Execution
Nodes Delay Time
Mahjong-Based Implementations

Private Cluster | 20.1 sec.

A 11 HPCC 19.3 sec.
PlanetLab 18.5 sec.

Private Cluster | 41.6 min.

P 11 HPCC 41.2 min.
PlanetLab 43.9 min.

Simjong

Oms 65 min.

10ms 57 min.

100ms 64 min.

0 1,000,000 500ms 60 min.
Gaussian 68 min.

Distance-based 59 min.

Fig. 7. The effect of network delay on system execution time.

of lightweight tiles and whenever a packet travels between
nodes, nodes handle other tiles rather than waiting idly for the
network communication to arrive.

Figure 7 shows a cross-section of our empirical data on
the physical networks, as well as on virtual networks using
Simjong. We found that the execution times were closely
clustered and saw no pattern to the small variances (e.g., while
the 100ms-network run took more time than the 10ms-network
run, the 500ms-network run took less time than the 100ms-
network run).

The experimental results are consistent with our hypothesis
and provide confirmation that network delay has little to no
effect on the speed of a sTile-based system. This suggests
that sTile-based systems can be successful on vastly differ-
ent networks, from local, highly connected ones to globally
distributed, sparse ones.

4.5 Efficiency

The final claim we address in demonstrating sTile’s feasibility
for industrial systems is that real-world-sized problems can
be solved on real-world-sized networks in reasonable time. In
particular, we posit that sTile-based systems can outperform
existing privacy-preserving methods for solving NP-complete
problems. There are three ways to solve a highly parallelizable
problem while preserving the data privacy: (1) on a large inse-
cure network by using sTile, (2) on a single private computer,
or (3) on a private network of trustworthy computers. We will
first discuss the time needed to solve such a problem using
the three methods in terms of the number of operations and
then discuss the actual time necessary to solve problems.
Suppose a network with N nodes uses a sTile-based system
to solve an n-variable m-clause 3-SAT problem. In expectation,
the system has to explore 2" crystals to reach a solution, and
each crystal contains (3m+n)lgn replicated tiles (clear tiles in
Figure 2) and no more than 3nmlg2n recruited tiles (non-clear
tiles in Figure 2). On average, each node will need to replicate
(3"”%2" tiles and recruit %2" tiles. The replication
procedure requires three distinct operations, as described in

Section 3.2.4, each concluded by sending a single network
packet; let the time for these operations be denoted as 3i.
Similarly, the recruitment procedure requires five operations,
as described in Section 3.2.3, each also concluded by sending
a single network packet; let the time for these operations
be denoted as Su. Thus, the time required by each node is
summarized by Equation (1). This analysis is specific to 3-
SAT, but the running times for other NP-complete problems
will be very similar, since the fastest-growing factor of 2" will
be the same. (Note that our analysis here assumes the naive
algorithm that runs in O (2") time, but can be extended to more
efficient algorithms, such as those used in today’s SAT solvers.
We use the simple algorithms to allow us to fairly compare
sTile-based and traditional systems. However, both types of
systems can employ the more efficient algorithms. We have
already begun work on building tile assemblies, and thus sTile-
based systems, that leverage the complex, faster algorithms
for NP-complete problems [16]. We discuss the reasoning and
implications for our assumption further in Section 4.6.)

.(3m+n)lgn 3nmlg?n
2" 1
(31 N + Su N (D)

2"(n+3m)r (2)

Now suppose a user wishes to solve the 3-SAT instance on
a single computer. That computer would need to examine 2"
possible assignments, and check each n-variable assignment
against the m clauses. Equation (2) describes the time this
procedure would take using the most efficient available tech-
nique, assuming r is the amount of time each operation takes
to execute: for each assignment, create a hash set containing
the n literal-selection elements and check for each of the 3m
literals whether the hash set contains that literal. The overhead
of using sTile over a single computer is the ratio of (1) and
(2). Assuming m > n and i = u = r, meaning that it takes
roughly the same amount of time to perform each operation
(e.g., looking up a value in a hash set and releasing a message
on the network), the ratio is no greater than 8nle™n 1y other
words, if the size of the public network exceeds 8nlg?n, a
sTile-based system will execute faster than a single machine.
For the sizes of problems we discuss next, that network size
is several thousand nodes.

Finally, suppose a user wishes to solve the 3-SAT instance
on a private network of M computers. Assuming the best
possible distribution of computation and that the network
communication is nonblocking, the time this system would
require to solve the problem is no less than W In this
case, the overhead of using sTile over a private network is
M. In other words, if the size of the public network
exceeds 8nlg?nM, a sTile-based system will execute faster
than the private network.

We estimated the time a sTile-based system will take to
solve a given problem by two methods: (1) empirically deter-
mining the values of the constants r, i, and u, and (2) running
Simjong. We measured the constants on a 2.4GHz machine
running Windows XP and Sun JDK 6.0 by executing several
million benchmark tests and averaging their running times. We

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

10* millenia [~
10? millenia [

millenium
century

year
month

day

hour

minute

second

10 10° 10° 10 10
Network nodes

Fig. 8. Expected execution times for single-computer (horizontal
lines) and sTile-based (diagonal lines) solutions for 30-, 40-, and
50-variable, 100-clause 3-SAT problems.

Number of Execution Time
Nodes Simjong | Estimate
125,000 8.7 hours | 9.1 hours
250,000 4.5 hours | 4.5 hours
500,000 2.1 hours | 2.3 hours

1,000,000 64 min 68 min.

Fig. 9. Comparison of execution time for solving © as measured
by Simjong and estimated by Equation (1).

found that r =~ 3.6 x 1077 seconds (= 2.8 MHz), i = 2.8 x 1077
seconds (= 3.8 MHz), and u ~ 4.1 x 107 seconds (~ 2.4
MHz). With these measurements and Equations (1) and (2),
we can estimate the speeds of a sTile-based system and a
single computer solving a given NP-complete problem. For
example, solving a 38-variable, 100-clause instance on a single
computer would take 3.3 x 107 seconds = 1 year. However, the
same problem could be solved using sTile on a million-node
network in 1.8 x 10° seconds = 2.1 days.

Figure 8 compares the execution times of sTile and single-
computer solutions. For each of the three depicted 100-clause
3-SAT instances (with 30, 40, and 50 variables), the graph
shows the horizontal line indicating the running time of a
single-computer solution, and the diagonal line indicating
the running time of a sTile-based system implemented in
the Mahjong implementation framework and deployed on
networks of varying sizes. For networks larger than about 4000
nodes, sTile-based solutions outperform their competitors;
for extremely large networks, sTile-based systems are much
faster. For example, solving the 40-variable, 100-clause 3-SAT
problem on a single computer would take 4 years, while doing
so using a sTile-based solution implemented in Mahjong and
deployed on the network the size of SETI@home (1.8 million
nodes [49]) would take 7 days.

To confirm these results, we compared the execution times
measured by Simjong with the estimates from Equation (1) for
. Figure 9 shows the comparison. We have consistently found
that Equation (1) was within 8% of the Simjong-measured
execution times.

4.6 Threats to Validity

In our evaluation, as well as in targeting our technique, we
make several assumptions that may threaten the validity of
our results.

In our comparisons between sTile-based and other ap-
proaches to solving NP-complete problems, we have used
simple underlying algorithms for those problems (e.g., ones
that take @(2") time to solve n-bit-sized problems.) Some
alternative systems that exist today employ much faster al-
gorithms; however, since the tile assembly model is Turing-
universal, there exists tile assemblies that implement these
efficient algorithms and sTile can leverage those assemblies to
create efficient sTile-based systems. In fact, we have already
implemented some such efficient tile assemblies (e.g., one
that solves 3-SAT in O(1.8394") time [16]). In our analysis,
we have made the assumption that our comparisons would
be similar to comparisons between these efficient systems.
In part, this assumption is justified because using the same
efficient algorithm for sTile-based and conventional systems
simply reduces the amount of required computation by the
same factor. There is even some reason to believe that the
analysis of efficient systems would favor sTile-based systems
because in our analysis of the simple algorithm, we accounted
for a number of shortcuts and efficiency “hacks” that apply
to conventional systems, but that are unlikely to apply to
the efficient algorithms. Nonetheless, this assumption poses
a potential threat to the validity of our analysis.

One of the uses of sTile we have suggested involves
distributing the software system onto multiple clouds, ensuring
that no entity controls too large a fraction of the underlying
network. While certainly feasible, such a distribution presents
several challenges we have not described here. Notably, to-
day’s clouds tend to lack interoperability, making it difficult
to deploy a single system on multiple clouds. While we have
addressed part of this issue since Mahjong-based systems
only require the underlying nodes to be able to execute Java
virtual machines, some engineering challenges may remain in
deploying such systems on multiple clouds and allowing for
proper communication between the nodes.

We have taken into account accurate models of how the
underlying network handles message delivery and the involved
delays. However, we have assumed that the volume of network
traffic created by sTile-based systems will not affect message
delivery, in particular, that the volume will not be significantly
larger than typical volumes. Our deployments on physical
networks suggest that this assumption holds for the networks
we have explored; however, it is conceivable that for some
networks, the traffic volume will significantly increase when
executing sTile-based systems and message delivery may
suffer.

5 PRIvVACY PRESERVATION

We have demonstrated our evidence that sTile-based systems
are scalable and efficient enough to be able to solve real-world
problems. We now argue that sTile-based systems exhibit the
very property that motives them: privacy of the data. It is
difficult to prove privacy preservation empirically because any

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

such analysis can only be as strong as the threat model and its
implementation. Instead, in this section, we will analytically
argue that, as long as no adversary controls more than half the
network, the probability of that adversary learning the input
can be made arbitrarily low. This argument provides a strong
guarantee of privacy preservation.

sTile’s privacy preservation comes from each tile being
exposed only to a few intermediate bits of the computation
(see Figure 2) and the tiles’ lack of awareness of their global
position. In order to learn meaningful portions of the data,
an adversary needs to control multiple, adjacent tiles. We
call a distributed software system privacy preserving if, with
high probability, a randomly chosen group of nodes smaller
than half of the network cannot discover the entire input to
the computational problem the system is solving. (We will
also discuss, at the end of this section, the probability of
discovering parts of the input.) We argue that (1) a node
deploying a single tile knows virtually no information about
the input, (2) a node deploying multiple tiles knows virtually
no information about the input, and (3) controlling enough
computers to learn the entire input is prohibitively hard on
large public networks.

1. For a tile assembly, such as the one solving 3-SAT, each
tile type encodes no more than one bit of the input. A special
tile encodes the solution, but has no knowledge of the input.
If a node were to deploy only a single tile, it would only be
able to learn information such as “there is at least one O bit
in the input,” which is less than one bit of information.

2. Each node on the network may deploy several tiles
(all of the same type). However, each tile is only aware of
neighboring tiles and not of it’s global position. Thus, if a
node deploys several non-neighboring tiles, that node cannot
reconstruct any more information than if it only deployed a
single tile. The only way the node may gain more information
is if it deploys neighboring tiles. (We handle this case next.)

3. Suppose an adversary controls a subset of the network
nodes and can see all the information available to each of the
tiles deployed on those nodes. Then the adversary can attempt
to reconstruct the computation input from parts of the crystal
that consist of tiles deployed on compromised nodes. Lemma 2
bounds the probability that an adversary can use this scheme
to learn the input.

Lemma 2: Let ¢ be the fraction of the network that an
adversary has compromised, let s be the number of seeds
deployed during a computation, and let n be the number of bits
(tiles) in an input. Then the probability that the compromised
computers contain an entire input seed to a sTile-based system
is 1—(1—c")’.

Proof: If an adversary controls a ¢ fraction of the network
nodes, then for each tile in a seed, the adversary has a proba-
bility ¢ of controlling it. Thus for a given n-bit seed, distributed
independently on the nodes, the adversary has probability c”
of controlling all the nodes that deploy the tiles in the seed,
and thus the probability that the seed is not entirely controlled
is 1 —c". Since there are s independent seeds deployed,
the probability that none of them are entirely controlled is
(1 —c")*. Finally, the probability that the adversary controls
at least one seed is 1 — (1 —c")’. 0

Let us examine a sample scenario. Suppose we deploy a
sTile-based system on a network of 220 ~ 1,000,000 machines
to solve a 38-variable 100-clause 3-SAT problem. Let us
also suppose a powerful adversary has gained control of
12.5% of that network. In order to solve this problem, the
system will need to deploy no more than 23® seeds, thus the
adversary will be able to reconstruct the seed with probabil-

ity 1 — (1—2_114)238 < 10722, Note that as the input size
increases, this probability further decreases. The probability
decays exponentially for all ¢ < % (that is, as long as the
adversary controls less than one half of the network). In
the above example, control of 25% of the network gives
the adversary a probability of reconstructing the input below
10~ and control of 33% of the network yields a probability
no greater than 107%. An adversary who controls exactly half
the network has a é ~ 37% chance of learning the input, and
one who controls more than half the network is very likely
to be able to learn the input, which is why our technique is
geared towards large public networks.

One possible challenge to privacy preservation on large pub-
lic networks is botnets. However, no single botnet comes close
to controlling a significant fraction, (say, more than ﬁ), of
the Internet [24]. As the Internet grows, for any fixed-size
botnet, the probability that botnet can affect a sTile-based
system drops exponentially.

We have shown the analysis of the number on nodes
necessary to compromise the entire input. The same analysis
and exponential probability drop-off applies to reconstructing
fractional parts (e.g., one half or one third) of the input. It
is somewhat simpler to reconstruct small (e.g., two- or three-
bit) fragments of the input, but the information contained in
those fragments is greatly limited, can be minimized by using
efficient encodings of the data, and for such small fragments,
cannot be used to reconstruct larger fragments [21].

Each tile component in the 3-SAT system handles at most
a single bit of the input. Theoretically, this is sufficient for
solving NP-complete problems; however, practically, handling
more than a single bit of data at a time would amortize some
of the overhead. Thus each tile component can be made to
represent several bits. This transformation would result in a
trade-off between privacy preservation and efficiency, as faster
computation would reveal larger segments of the input to each
node.

6 RELATED WORK

In this section, we describe related work in the areas distribut-
ing computation onto untrusted hosts and privacy-preserving
computation.

6.1 Getting Help with Computation

The growth of the Internet has made it possible to use public
computers to distribute computation to willing hosts. Software
designed to solve computationally intensive problems has
emerged to take advantage of this phenomenon, enticing users
to devote their computers’ idle cycles to some academically or
otherwise worthy cause. This notion focuses the underpinning
of computational grids [28]. Among systems that concentrate

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

on distributed computation are BOINC systems [3] (such as
SETI@home [36] and Folding@home [39]), MapReduce [25],
and the organic grid [22]. A unique approach — Foldlt —
uses the competitive human nature to solve the protein-folding
problem [4]. FoldIt asks humans, as part of a game, to try to
arrange a protein’s amino acids to minimize the free energy.
The hope is that humans will be more efficient than the brute
force approaches and that a large number of users will help
find the optimal solution. These systems try to solve exactly
the highly parallelizable problems toward which our work is
geared, but unlike sTile, they do not preserve privacy.

Cloud computing is a relatively new phenomenon that
allows outsourcing computation. Corporations such as Google,
Yahoo!, and Amazon have the computational resources to
distribute these computations onto thousands of privately-
owned, networked, fairly reliable machines. Clouds leverage
technologies such as MapReduce [25] to handle the data and
computation distribution. Today, a MapReduce system running
on a 10,000-core cluster produces data used in every Yahoo!
web search query [5]; as many as a thousand MapReduce jobs
are executed on Google’s and Amazon’s clusters daily [2],
[25]; and Facebook uses a MapReduce system to process
more than 15 terabytes of new data every day [53]. While
commercially viable, clouds rely on legal contracts to ensure
privacy. For example, if a pharmaceutical company outsources
a protein-folding problem to Google, that company must share
the valuable amino acid sequence with Google and is protected
from Google misusing the sequence or making that data
public by a contract. Our approach allows the pharmaceutical
company to distribute its problem, in principle, on several
clouds without having to disclose the private data, while
providing guarantees that the operators of these clouds, as well
as potential attackers, cannot compromise that data.

Some research, rather than leveraging large networks, has
attempted to accelerate NP-complete computation by develop-
ing faster algorithms for single machines and small clusters.
This work ranges from developing efficient exponential-time
algorithms [37], [51], to using runtime information to dynami-
cally improve the speed of SAT solvers [6], to leveraging local
message-passing protocols such as MPI and OpenMP to use
small clusters to linearly accelerate the computation of special-
ized problems [42]. This work is not in competition with our
technique, but is rather complementary. The tile architecture
is based on a Turing-universal computational model [9], [44]
and can implement each of these advanced algorithms on large
distributed networks, leveraging both their efficiency and the
tile architecture’s privacy preservation, scalability, and fault
tolerance. In fact, we have already built tile assemblies that
implement fast 3-SAT algorithms that can be leveraged directly
by sTile [16]. At times, in this paper, we compared simple
algorithms that solve NP-complete problems implemented
using the tile architecture versus using conventional methods.
The same comparisons can be made for complex, efficient,
state-of-the-art algorithms.

The majority of research on strategies for getting compu-
tational help without disclosing the input of the computation
has focused on asking a single other computer for help. Yet, in
classical (as opposed to quantum) computing, it is not possible

to get help from a single entity in solving an NP-complete
problem without disclosing most of the information about the
input and the problem one is trying to solve [23]. Our approach
avoids this shortcoming by distributing such a request over
many machines without disclosing the entire problem to any
small-enough subset of them.

6.2 Secure Computation

Gentry has theorized about using a fully homomorphic encryp-
tion scheme to encrypt a circuit describing a problem and then
executing the encrypted circuit on a separate agent without
disclosing the private data [29]. While theoretically exciting,
practically, this approach cannot be used today because of
the exponential amount of computation required to encrypt
and decrypt. In a popular article, Gentry himself estimates
that using his technique to perform a Google search, while
keeping the query private, would require one trillion times as
much computation as is needed today [31]. Gentry’s technique
is theoretically more powerful than ours because it keeps the
data private from the entire network (as opposed to subsets
of the network). However, as we demonstrated in Section 4,
unlike homomorphic encryption, sTile is efficient enough to
be used today.

The field of secure multi-party computation explores
whether multiple computers, each of whom knows part of
an input, can compute a function of that entire input without
sharing their parts with others. sTile is a solution to a related,
but fundamentally different problem: can computers be used to
help compute a function if no sizable group of those computers
knows the input to the computation? The seminal work in
the area of secure multi-party computation introduced Yao’s
garbled circuit protocol that allows n nodes, each with access
to a single input, to compute a function of the n inputs while
disclosing only the value of the function to each node [52].
Zero-knowledge compilers bridge that work closer to our
approach by making Yao’s protocol secure even if the parties
cannot be trusted [30]. Secure multi-party computation applies
to functions on large distributed private data sets, while our
work applies to functions on fairly small data sets, but ones
that require exponential time or space to compute. Our work
does, at times, leverage some of the work in secure multi-party
computation, as we described in Section 3.2.3.

7 CONTRIBUTIONS

We have developed a new technique, called sTile, for de-
signing, developing, and implementing software systems that
distribute computation onto large, insecure, public networks.
sTile provides the opportunity to design software systems
aimed at large distributed networks without having to worry
about distribution, privacy preservation, fault and adversary
tolerance, and scalability, as those properties are inherent to
sTile. We presented a rigorous theoretical analysis of sTile and
formally proved that the resulting systems are efficient and
scalable and preserve privacy as long as no adversary controls
half of the public network.

We adapted an off-the-shelf middleware platform to create
Mahjong, an implementation framework, and two reference

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Mahjong-based implementations. We deployed these imple-
mentations on several networks, including the globally dis-
tributed PlanetLab [43] and simulated Mahjong-based execu-
tions on networks of up to 1,000,000 nodes to empirically
verify (1) the correctness of sTile algorithms, (2) that the speed
of sTile computation is proportional to the number of nodes,
(3) that network delay has little to no effect on the speed of
the computation, and (4) that our mathematical analysis of
the time needed to solve large problems on large networks
is accurate. For networks larger than about 4000 nodes, sTile
outperforms optimized solutions that assume privately-owned,
secure hardware?

With sTile, we have explored the fundamental cost of
achieving privacy through data distribution and bound how
much less efficient a privacy-preserving system is than a non-
private one. While that cost is significant, we found that
sTile-based systems execute orders of magnitude faster than
homomorphic encryption systems, the alternative promising
approach to preserving privacy. Further, we believe that our
prototype system can be made more efficient and the bound
can be tightened.

REFERENCES

[1]1 L. Adleman et al., “On the decidability of self-assembly of infinite
ribbons,” in FOCS, 2002, pp. 530-537.

[2] “Amazon elastic MapReduce,” http://aws.amazon.com/elasticmapreduce,
2009.

[3] D. P. Anderson, “BOINC: A system for public-resource computing and
storage,” in the 5th IEEE/ACM Intl. Workshop on Grid Computing, 2004,
pp. 4-10.

[4] D. Baker, “Foldit,” http://fold.it, 2009.

[5] E. Baldeschwieler, “Yahoo! launches world’s largest hadoop pro-
duction application,” http://developer.yahoo.net/blogs/hadoop/2008/02/
yahoo-worlds-largest-production-hadoop.html, 2008.

[6] A. Balint et al., “A novel approach to combine a SLS- and a DPLL-
solver for the satisfiability problem,” in SAT, 2009, pp. 284-297.

[7]1 T. Benzel et al., “Design, deployment, and use of the DETER testbed,”
in the DETER Community Workshop on Cyber Security Experimentation
and Test, 2007, pp. 1-8.

[8] B. Berger and T. Leighton, “Protein folding in the hydrophobic-
hydrophilic (HP) is NP-complete,” in RECOMB, 1998, pp. 30-39.

[9]1 R. Berger, The undecidability of the domino problem, ser. Memoirs

Series. American Mathematical Society, 1966, no. 66.

F. Berman et al., “Adaptive computing on the grid using AppLeS,”

TPDS, vol. 14, no. 4, pp. 369-382, 2003.

Y. Brun, “Mahjong tile style implementation,”

washington.edu/homes/brun/Mahjong.

——, “Arithmetic computation in the tile assembly model: Addition and

multiplication,” Theoretical Computer Science, vol. 378, no. 1, pp. 17—

31, 2007.

, “Nondeterministic polynomial time factoring in the tile assembly

model,” Theoretical Computer Science, vol. 395, no. 1, pp. 3-23, 2008.

——, “Solving NP-complete problems in the tile assembly model,”

Theoretical Computer Science, vol. 395, no. 1, pp. 31-46, 2008.

——, “Solving satisfiability in the tile assembly model with a constant-

size tileset,” Journal of Algorithms, vol. 63, no. 4, pp. 151-166, 2008.

——, “Improving efficiency of 3-SAT-solving tile systems,” in DNA,

2010, pp. 70-81.

Y. Brun, G. Edwards, J. young Bang, and N. Medvidovic, “Smart

redundancy for distributed computation,” in /ICDCS, 2011.

Y. Brun and N. Medvidovic, “Fault and adversary tolerance as an

emergent property of distributed systems’ software architectures,” in the

2nd Intl. Workshop on Engineering Fault Tolerant Systems, 2007, pp.

38-43.

R. Buyya et al., “Neuroscience instrumentation and distributed analysis

of brain activity data: a case for eScience on global grids,” Concurrency

and Computation: Practice and Experience, vol. 17, no. 15, pp. 1783—

1798, 2005.

[10]
[11] http://www.cs.

[12]

[13]

[14]
[15]
[16]
(17]

(18]

[19]

[20]
[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]

[29]
[30]
(31]
[32]
[33]

(34]

(35]
[36]
[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]
[46]

(471
[48]
[49]
[50]

(51]

[52]

(53]

M. Campbell et al., “Deep blue,” Artificial Intelligence, vol. 134, no.
1-2, pp. 57-83, 2002.

M. Chaisson et al., “Fragment assembly with short reads,” Bioinformat-
ics, vol. 20, no. 13, pp. 2067-2074, 2004.

A. J. Chakravarti and G. Baumgartner, “The organic grid: Self-
organizing computation on a peer-to-peer network,” in JCAC, 2004, pp.
96-103.

A. M. Childs, “Secure assisted quantum computation,” Quantum Infor-
mation and Computation, vol. 5, no. 456, 2005.

D. Dagon et al., “A taxonomy of botnet structures,” in the 23rd Computer
Security Applications Conference, 2007, pp. 325-339.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in OSDI, 2004.

J. Duerig et al., “Flexlab: A realistic, controlled, and friendly environ-
ment for evaluating networked systems,” in the 5th Workshop on Hot
Topics in Networks, 2006, pp. 103—108.

S. Floyd and V. Paxson, “Difficulties in simulating the Internet,” Trans-
actions on Networking, vol. 9, no. 4, pp. 392-403, 2001.

1. Foster et al., “The anatomy of the grid: Enabling scalable virtual orga-
nizations,” Intl. Journal of High Performance Computing Applications,
vol. 15, no. 3, pp. 200-222, 2001.

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
STOC, 2009, pp. 169-178.

0. Goldreich et al., “Proofs that yield nothing but their validity or all
languages in NP have zero-knowledge proof systems,” Journal of the
ACM, vol. 38, no. 3, pp. 690-728, 1991.

A. Greenberg, “IBM’s blindfolded calculator,” Forbes Magazine, 2009.
A. S. Grimshaw ef al., “The Legion vision of a worldwide virtual
computer,” Comm. of the ACM, vol. 40, no. 1, pp. 3945, 1997.

“High performance computing and communications,” http://www.usc.
edu/hpcce.

Javelin Strategy & Research, “2010 identity fraud survey report,” http:
/Iwww.marketresearch.com/product/display.asp?productid=2592343,
2010.

D. Keysers and W. Unge, “Elastic image matching is NP-complete,”
Pattern Recognition Letters, vol. 24, pp. 445-453, 2003.

E. Korpela et al., “SETI@home — massively distributed computing for
SETL” IEEE MultiMedia, vol. 3, no. 1, pp. 78-83, 1996.

O. Kullmann, “New methods for 3-SAT decisions and worst-case
analysis,” Theoretical Computer Science, vol. 223, pp. 1-72, 1999.

M. Lamanna, “The LHC computing grid project at CERN,” Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 534, no. 1-2,
pp. 1-6, 2004.

S. M. Larson et al., Folding@Home and Genome@Home: Using
Distributed Computing to Tackle Previously Intractable Problems in
Computational Biology, 2002.

S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A style-aware archi-
tectural middleware for resource-constrained, distributed systems,” TSE,
vol. 31, no. 3, pp. 256272, 2005.

R. Motwani and P. Raghavan, Randomized Algorithms.
University Press, 1995.

A. Nakano et al., “Scalable atomistic simulation algorithms for materials
research,” Scientific Programming, vol. 10, no. 4, pp. 263-270, 2002.
L. Peterson et al., “A blueprint for introducing disruptive technology
into the Internet,” Computer Communication Review, vol. 33, no. 1, pp.
59-64, 2003.

R. M. Robinson, “Undecidability and nonperiodicity for tilings of the
plane,” Inventiones Mathematicae, vol. 12, no. 3, pp. 177-209, 1971.
S. M. Rubin, Computer Aids for VLSI Design. Addison-Wesley, 1994.
M. Sipser, Introduction to the Theory of Computation. PWS Publishing
Company, 1997.

R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. John Wiley & Sons, 2009.

H. Wang, “Proving theorems by pattern recognition,” II. Bell System
Technical Journal, vol. 40, pp. 1-42, 1961.

Wikipedia, “SETI@home,” http://en.wikipedia.org/wiki/SETI@home,
2008.

E. Winfree, “Simulations of computing by self-assembly of DNA,”
California Institute of Technology, Tech. Rep. CS-TR:1998:22, 1998.
G. J. Woeginger, “Exact algorithms for NP-hard problems: a survey,”
Combinatorial Optimization - Eureka, You Shrink!, vol. 2570/2003, pp.
185-207, 2003.

A. C.-C. Yao, “How to generate and exchange secrets,” in FOCS, 1986,
pp.- 162-167.

M. Zaharia et al., “Job scheduling for multi-user MapReduce clusters,”
UC Berkeley EECS Department, Tech. Rep. UCB/EECS-2009-55, 2009.

Cambridge

http://aws.amazon.com/elasticmapreduce
http://fold.it
http://developer.yahoo.net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html
http://developer.yahoo.net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html
http://www.cs.washington.edu/homes/brun/Mahjong
http://www.cs.washington.edu/homes/brun/Mahjong
http://www.usc.edu/hpcc
http://www.usc.edu/hpcc
http://www.marketresearch.com/product/display.asp?productid=2592343
http://www.marketresearch.com/product/display.asp?productid=2592343
http://en.wikipedia.org/wiki/SETI@home

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

APPENDIX
TILE ASSEMBLY MODEL

In this Appendix, we formally describe the tile assembly
model and the tile assembly we developed to solve 3-SAT [15].

THEORETICAL UNDERPINNINGS

The tile assembly model has tiles, or squares, that stick or do
not stick together based on various interfaces on their four
sides. Each tile has an interface on its top, right, bottom, and
left side, and each distinct interface has an integer strength
associated with it. The four interfaces, elements of a finite
alphabet, define the type of the tile. The placement of a set
of tiles on a 2-D grid is called a crystal; a tile may attach
in empty positions on the crystal if the total strength of all
the interfaces on that tile that match its neighbors exceeds
the current temperature. Starting from a seed crystal, tiles
may attach to form new crystals. Sometimes, several tiles
may satisfy the conditions necessary to attach at a position, in
which case the attachment is nondeterministic. A tile assembly
S computes a function f: N" — N if there exists a mapping
i from N" to crystals and a mapping o from crystals to
N such that for all inputs & € N", i(Q) is a seed crystal
such that S attaches tiles to produce a terminal crystal F
and o(F) = f(0). In other words, if there exists a way to
encode inputs as crystals and the system attaches tiles to
produce crystals that encode the output. For those systems
that allow nondeterministic attachments, the terminal crystal
F that encodes the output must contain a special identifier tile
that we will denote as the v tile.

3-SAT TILE ASSEMBLY

3-SAT is a well-known NP-complete problem. The problem
consists of determining whether a Boolean formula in conjunc-
tive normal form (3-CNF) is satisfiable by a truth assignment.
The input to the problem is the Boolean formula and the output
is 1 if the formula is satisfiable and O otherwise.

Due to the nature of NP-complete problems, the ability
to solve one such problem quickly implies the ability to
solve all such problems quickly. For example, if one finds
a polynomial-time algorithm to solve 3-SAT, one can then
solve the traveling salesman, protein folding, and all other NP
problems in polynomial time. Thus, it is sufficient to design
a system that uses a large distributed network to solve one
NP-complete problem, e.g., 3-SAT, while preserving privacy.
We present a tile assembly that solves 3-SAT.

Developing a tile assembly is a process similar to pro-
gramming or specifying an algorithm. On the surface, tile
assemblies are low-level programs, such as instances of Turing
machines or cellular automata. However, it is possible to use
high-level paradigms, such as encapsulation, abstraction, and
recursion to engineer tile assemblies. For example, we have
previously designed a multiplication tile assembly [12] that
we later use as a subroutine in other assemblies [13].

Figure 10 shows the 64 possible types of tiles of the 3-
SAT-solving assembly. The tiles “communicate” via their side
interfaces. Some interfaces contain a 0 or a 1, communicating

OK-

m
2
&
=
o

TOK—‘ rOK—‘ FOK—‘ W | Vi] Vi V) ¥ V) ,W
o e Lo i O O O

O—‘ FOK—‘ OK—‘

S G 36 e OE e

oty <Rt R N

Tl Tl B B 1, J1, 7T, T, T

F”ﬂ N | fﬂ .

o
X

=
T
=
L/\
rA

7

-OK:

|
o

X
(|
ﬁ“ﬁ
L

-OK:-

Ay
(“
&

12
|
13 =
-
o
rL
T
| &
i

. [- T A S R N
Il ,Dﬁﬁﬂﬁ -:[[o
Tod Lod T8 10 50 10 10 oL T
D mun S| i B D g [‘T [‘T
e N ' h I0E e e o L

Fig. 10. A tile assembly that solves 3-SAT consists of 64 tile

types.

a single bit to their neighbors. Other interfaces include special
symbols such as v and —v indicating that a variable is being
addressed, * meaning that a comparison should take place,
? meaning the given tile attaches nondeterministically, and |
and || indicating the correctness of the computation up to this
point. The assembly nondeterministically selects a variable
truth assignment and checks if that assignment satisfies the
formula. If and only if it does, a special v tile attaches to the
assembly.

Every 3-SAT input Boolean formula can be encoded as a
sequence of tiles. Such a formula consists of a conjunction of
clauses, each of which, in turn, consists of a disjunction of
literals. Each literal, either a Boolean variable or its negation,
can be encoded with a binary representation of the variable’s
index and a single bit indicating negation. For example, the
literal x; can be encoded as three tiles, with labels 1, 0, and
v, and the literal —x3 can be encoded as three tiles with labels
1, 1, and —v. We insert a special c tile between the clauses.

Figure 11 shows the progress of the growth of a sample
crystal of the tile assembly that solves 3-SAT. The example
asks the question whether ¢ = (x2 V —x1 V —xp) A (—xp V -y V
—x0) A (—x2 VX1 Vo) is satisfiable.

Figure 11a shows the starting seed crystal of the compu-
tation. Note that this seed encodes ¢. For example, the three
leftmost tiles of the bottom row encode the literals 10v = xp,
01-v = —x1, and 00—v = —xp, which represent the first clause
of ¢. The rightmost column encodes the fact that ¢ contains
three variables 10? = xp, 01? = x1, and 00? = xg.

Figure 11b shows the first three tiles (instances of tile types
from Figure 10) that attach to the seed. These tiles will make
the nondeterministic decision on whether to try xo = TRUE or
xo = FALSE. Note that these tiles’ left interfaces encode 00v,
indicating that the assembly has nondeterministically chosen
xo = TRUE (00—v would have indicated xo = FALSE).

Having selected the assignment for xp, the assembly com-
pares the rightmost literal in ¢ to that assignment. Figure 11c
shows that comparison. The top left corner tile with a top
interface containing a * indicates that the literal and the
assignment match (they are both 00v = xg). If the assignment
and literal did not match, the top left corner’s top interface
would contain no *. Figure 11d shows the comparison of the
xo assignment to the rest of ¢. Since the unnegated literal xo
does not appear anywhere else in ¢, the rest of the top-row
tiles do not contain a * in their top interfaces.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

(@) o
}7
I I
= =
| H
s
. I I
— 5 I
HEEEEEEEEEEEEEEEEEEEEE . _
& a
() (TTTTTT T T I T T I T T I T T I T I TI T TITITT I F;
h
(©) —
CTT T T T T T I T T T T T T T T T T T T T]
(d) v —0 A——O— v —O——* 0 1
o 1——0 01 0 1——
(e) 1T T T 1T T T T 1 I I I I T T T 1T 1T 11 I 1
- K —1—k vy T A——0— vl OK——1. 0—— A
= a1A I i K——1 I I +—0- I d17;0 "‘ ‘0K771 I ‘077 I I ‘177 I i
K1 o 1——o— 8-Vl oK1 0t 1——
1; I +—0- <1770 I 1 -0——(1——(
B DU ‘1C} 1 UO 01 OO 1 1O 1 B I C}1 B 1
I d0a1A I ADA HWaDJ I HWJ i I i I ‘1‘ i i
i, 1 o1 i [o i 1——o g .1 o< 1——
= 1! 0——1- +—0- 1—1—0- -0——1- -0——(1——(

Fig. 11. An example progression of the growth of a crystal of the 3-SAT-solving tile assembly. The crystal seed (a) consists of the
clear seed tiles, encoding the input ¢ = (xp V =x1 V =xp) A (—xp V —x1 V —ixg) A (—x2 V xp V xg). Specially designed tiles attach to
nondeterministically select a variable assignment for x((b); compare that assignment to, first, a single literal in ¢ (c); and then, the
rest of the literals in ¢ (d); and, finally, repeat those steps for variables x; and x, and ensure that each clause is satisfied at least
once by the particular selected variable assignment (e). Because ¢ is satisfied when xo = xo = TRUE and x| = FALSE, represented
by the tiles in the second from the right column in (e), the v tile attaches in the top left corner.

In Figure 1le, the assembly repeats the above steps to
nondeterministically select assignments for x; and x, and
compares each of those to the literals in ¢. Whenever a match
occurs, tiles with OK top interfaces propagate that information
up, to the top row. Finally, a series of gray tiles attach in the top
row to check whether each clause has at least one literal match
the assignment. If it does, the special v tile can attach in the
top left corner of the crystal. If some clause were not satisfied,
no such tile could attach. The fact that Figure 1le contains
the v tile indicates that the nondeterministically chosen truth
assignment (xo,x1,x2) = (TRUE,FALSE,TRUE) satisfies 0.

We refer the reader to [15] for the formal proof that
this assembly solves 3-SAT. As we explain in Section 3, a
single tile assembly, such as the 3-SAT-solving one we have
described here, is sufficient to develop sTile-based systems.
However, as part of our work on sTile, we have also provided a
tile assembly solution for SubsetSum, another well-known NP-

complete problem [14]. This second assembly illustrates the
flexibility of our work and provides some insight into possible
sTile efficiency improvements.

The tile assembly we have described here follows the
algorithm that runs in O(2") time. It is possible to leverage
more efficient algorithms that solve NP-complete problems to
develop efficient tile assemblies. We have already designed
one such assembly that solves 3-SAT in O(1.8394") time,
but do not describe it here because of its complexity [16]. It
is important, however, to make clear that tile assemblies can
implement the same algorithms used on today’s fastest systems
that solve NP-complete problems, such as SAT solvers.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Yuriy Brun is an NSF CRA postdoctoral Computing
Innovation Fellow at the University of Washington. He
received his Ph.D. degree in 2008 from the University
of Southern California, as a USC Viterbi School of
Engineering Fellow, and his M.Eng. degree in 2003
from the Massachusetts Institute of Technology. His
doctoral research was a finalist in the ACM Doctoral
(Dissertation Competition in 2008. Brun’s research
interests are in the area of engineering self-adaptive
e systems, and, in particular, using mechanisms from
nature to create engineering paradigms for robust-
ness, fault and malice tolerance, scalability, and security. He does (1) theoretical
work on design and complexity analysis of biologically inspired algorithms and
(2) software engineering work on implementing these algorithms for Internet-
sized distributed systems, grids, and clouds. He is a member of the ACM and
the ACM SIGSOFT.

Nenad Medvidovic received the Ph.D. degree in
1999 from the University of California, Irvine. Cur-
rently, he is a professor in the Computer Science
Department at the University of Southern California.
He is a recipient of the US National Science Foun-
dation CAREER award. His research interests are in
the area of architecture-based software development.
His work focuses on software architecture modeling
and analysis; middleware facilities for architectural
implementation; product-line architectures; architec-
tural styles; and architecture-level support for software

development in distributed, mobile, resource constrained, and embedded com-
puting environments. He is a member of the ACM, ACM SIGSOFT, and IEEE.

	1 Introduction
	2 Target Problems and Research Scope
	2.1 Target Problems
	2.2 Research Scope

	3 sTile
	3.1 Computing with Tiles
	3.2 Tile Architecture and Algorithms
	3.2.1 Initializing Computation
	3.2.2 Discovery
	3.2.3 Recruitment
	3.2.4 Replication
	3.2.5 Answering 3-SAT in the Negative

	3.3 Mahjong Implementation Framework

	4 Computational Feasibility
	4.1 sTile-based Implementations
	4.2 Experimental Setup
	4.3 Scalability
	4.4 Robustness to Network Delay
	4.5 Efficiency
	4.6 Threats to Validity

	5 Privacy Preservation
	6 Related Work
	6.1 Getting Help with Computation
	6.2 Secure Computation

	7 Contributions
	References
	Appendix: Tile Assembly Model
	Biographies
	Yuriy Brun
	Nenad Medvidovic

