Crystal: Precise and Unobtrusive Conflict Warnings

Yuriy Brun™, Reid Holmes*, Michael D. Ernst™, David Notkin™

T Computer Science & Engineering
University of Washington
Seattle, WA, USA

*School of Computer Science
University of Waterloo
Waterloo, ON, Canada

{brun,mernst,notkin}@cs.washington.edu, rtholmes@cs.uwaterloo.ca

Abstract

During collaborative development, individual developers can cre-
ate conflicts in their copies of the code. Such conflicting edits are
frequent in practice, and resolving them can be costly. We present
Crystal, a tool that proactively examines developers’ code and pre-
cisely identifies and reports on textual, compilation, and behavioral
conflicts. When conflicts are present, Crystal enables developers
to resolve them more quickly, and therefore at a lesser cost. When
conflicts are absent, Crystal increases the developers’ confidence
that it is safe to merge their code. Crystal uses an unobtrusive in-
terface to deliver pertinent information about conflicts. It informs
developers about actions that would address the conflicts and about
people with whom they should communicate.

Categories and Subject Descriptors: D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.2.6 [Software Engineering]:
Programming Environments

General Terms: Design, Human Factors

Keywords: collaborative development, collaboration conflicts, de-
veloper awareness, speculative analysis, version control, Crystal

1. Introduction

Developers working collaboratively on a team can find them-
selves in conflicting states with one another. These conflicts gen-
erally manifest themselves in concrete artifacts within the version
control (VC) repository. Such conflicts occur in practice and are
costly [5,7, 8, 10, 11, 12].

This paper describes Crystal, a tool that proactively identifies
conflicts in version-controlled artifacts. Crystal provides develop-
ers with information about the presence and severity of conflicts as
soon as they occur, before the relevant artifacts and changes fade
in their minds. Crystal helps developers make well-informed deci-
sions about how to identify and prioritize their tasks, particularly
VC operations, and about when and with whom to communicate.

Consider an illustrative scenario in which two developers are en-
hancing a single program (Figure 1). On Monday, Melinda and
Bill start working on different program features, periodically check-
pointing their work locally. Melinda takes a week to finish her
changes, test them to her satisfaction, and share them with the mas-
ter code repository. Bill takes two weeks to finish his work, avoid-
ing the distraction of potential conflicts by opting not to incorporate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEC/FSE’11, September 5-9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

master Bill's view:
MelindaQ Bill
M master Melinda
T 1
W
Th master Melinda
Fo—~o [\
M
T (g master Melinda

AN

w
w e
F \’2 master Melinda
v | NI N
T
W

| o

Figure 1: A collaborative development scenario in which Crystal
would have enabled Bill to avoid a costly conflict resolution.

On the left is the revision history for Melinda, Bill, and the mas-
ter repository. Each circle in the history is a code checkpoint. The
filled circle indicates the need for manual resolution of conflicts.

On the right is the view Crystal would provide Bill at various
points in time. (Shown are actual partial screenshots of our tool.
Section 3 describes Crystal’s icons.) In the Crystal screenshots, a
solid icon represents to Bill a relationship that Bill can affect by
performing an action, and a hollow icon represents a relationship
that will persist until someone else addresses it.

work from Melinda and the master repository. When he does incor-
porate Melinda’s work (which she has shared with the master) after
two weeks, he discovers a conflicting interaction between the im-
plementations of the two features. Bill, unable to resolve the con-
flict on his own, meets with Melinda. Melinda, who has shifted her
focus to yet another feature, has to reconstruct her thought process
and assumptions. Their schedules are delayed as they understand
the interaction, resolve the conflicts, and produce versions of the
features that integrate properly.

Suppose, instead, that Bill were using Crystal. Crystal continu-
ously and unobtrusively reports what would happen if he were to
share his work and incorporate that of others. The right side of
Figure 1 shows Bill’s view of Crystal. After his first checkpoint
on Monday, he is ahead of (has done strictly more work than) both
the master repository and Melinda, and he could share (akin to up-
load, and signified by an up arrow) his changes to either one. After
Melinda’s checkpoint on Tuesday, Bill is still ahead of the master
repository, but Melinda’s work would require a merge, which would
proceed cleanly (yellow “merge” icon). Bill’s work on Wednes-

mailto:brun@cs.washington.edu,rtholmes@cs.uwaterloo.ca,mernst@cs.washington.edu,notkin@cs.washington.edu

day conflicts with Melinda’s in a way requiring human intervention
(red “merge” icon). Once Melinda shares her work with the master
repository on Friday, Bill’s relationship with the master changes.

Using existing VC tools, Bill could, at any time, choose to de-
termine his relationship with the master repository (the left part of
each screenshot); however, he is unlikely to do so as he is trying to
avoid distractions. Crystal provides earlier information that enables
more effective behaviors without significant interruption. On Tues-
day, Bill can see that Melinda is working in parallel. On Wednes-
day, upon checkpointing his change, Bill can see that it conflicts
with Melinda’s work. Given that information, Bill may choose to
contact Melinda to discuss the unintended feature interaction.

This scenario sketches how Crystal might encourage Bill and
Melinda to discover and interact about this conflict as much as 1%

weeks before Bill finishes his feature and % week earlier than in the
best case using the VC system (VCS) alone.

In some cases, Crystal may help prevent such conflicts from oc-
curring. Suppose that on Tuesday, Bill noticed that Melinda was
working and asked her to share her work so far. Seeing Melinda’s
changes, Bill might proceed differently on Wednesday. Even if he
does not, resolving the conflict then would be easier, as it would be
small and fresh in both Bill’s and Melinda’s minds.

In addition to textual conflicts identified by the underlying VCS,
Crystal can also proactively discover higher-order conflicts. For
example, suppose Bill’s and Melinda’s code merged cleanly from
the VCS’s point of view, but the merged code failed to compile, or
failed its test suite. Crystal accurately identifies such conflicts and
reports them to the developers as soon as they occur. In the absence
of Crystal, these conflicts are likely to be discovered even later,
sometime after the code is merged, incurring even more effort to
resolve them. Crystal explicitly checks for compilation and testing
conflicts; a future version could perform other kinds of analyses,
e.g., to identify performance degradation.

Crystal is open-source, platform-independent, available for down-
load — http://crystalvc.googlecode.com — and works with
the Mercurial distributed VCS (DVCS). We are extending Crystal
to work with Git. Crystal could be made to work with a centralized
VCS (CVCS) in two ways: (1) Crystal could speculatively merge
branches similarly to the way it currently merges repositories, and
(2) Crystal could speculatively merge changes in the developers’
working copies. In fact, Microsoft, in collaboration with us, is de-
veloping a similar tool for a CVCS.

We have previously evaluated Crystal’s potential for helping de-
velopers by examining 550,000 development versions of nine open-
source systems. We found that both textual and higher-order con-
flicts occur often and last, on average, for 10 days [3]. In this paper,
we focus on how Crystal precisely detects conflicts and effectively
communicates information to the developers.

The rest of this paper is structured as follows. Section 2 dis-
cusses how Crystal precisely detects conflicts. Section 3 describes
how Crystal’s user interface reports conflicts without distracting the
developer. Finally, Section 4 describes how Crystal’s implementa-
tion scales to large projects and efficiently detects conflicts.

2. Early and precise conflict detection

Crystal precisely reports actual conflicts, determining the rela-
tionship between two developers’ states by actually creating the
merged artifact. In other words, to find out what would happen
if Bill and Melinda merged their code, Crystal, in the background,
makes a copy of Bill’s code and incorporates Melinda’s changes.
Similarly, once Crystal creates the merged code artifact, it attempts
to compile and to execute the test suite on that artifact. Again, Crys-
tal only reports a compilation or testing conflict when the build or

when and capable
/\ guidance

. Crystal L@lﬁ

FlI About
master Paul Ringo John
Let it be

lhg commit '\.‘.-

project name relationships

master Jeff Roy Bob Tom

rHandle
v care 1 N 1§ 1 N
"“I"dion: hg fetch

[Consequences: new relationship will be AHEAD
local state

lCommiters: George and Tom

committer, consequences, and easg
guidance (mouseover)

Figure 2: A screenshot of George’s view of Crystal. George is
following two projects under development: “Let it be” and “Handle
with care”. The former has four observed collaborators: George,
Paul, Ringo, and John; the latter has five: George, Jeft, Roy, Bob,
and Tom. Crystal shows George’s local state and his relationships
with the master repository and the other collaborators, as well as
guidance based on that information.

a test actually fails. Because the computation happens in the back-
ground, the developers can continue to work without interruption;
in certain situations, we expect the developers to ignore Crystal,
much as they sometimes ignore project bulletin boards and email.

We refer to the idea of attempting a set of actions on the devel-
oper’s state in the background and reporting on the outcomes of
those actions as speculative analysis [2].

Awareness tools [1, 6, 9] notify developers when they might have
conflicting changes. This approximation is computed differently
in various tools. Some determine if a co-developer is working
in the same file, some report any change to the repository (e.g.,
FASTDash [1]), others report concurrent changes to the AST (e.g.,
Syde [9], etc. These approaches can lead to the inclusion of false
positives — reporting potential conflicts that do not evolve into ac-
tual conflicts. Furthermore, few current awareness tools try to au-
tomatically detect higher-order merge conflicts; again, Crystal is
precise as it uses the project’s tool chain to dynamically detect con-
flicts by execution of the build system and test suites. We refer the
reader to [3] for a more detailed description of related work.

Crystal can, in rare situations, also report false positives. Check-
pointed changes that are later discarded can cause a teammate to
see a pending conflict that later disappears. This can happen when
a developer checkpoints exploratory code or a partial change.

3. Reporting conflicts

Crystal unobtrusively reports four kinds of information: the de-
veloper’s local state, relationships with other developers or reposi-
tories, the possible actions (which is derived from the local state and
relationship with the master repository, and which we omit from
this paper for brevity), and guidance about those actions. The re-
mainder of this section summarizes Crystal’s interface and the in-
formation it reports; more details on both are available in [3].

3.1 Example Crystal use

Figure 2 shows a screenshot of Crystal’s main window. The win-
dow displays a row of icons for each of a developer’s projects. In
this example, there are two projects: “Let it be” and “Handle with
care”. The former has four collaborators: George (the developer
running Crystal), Paul, Ringo, and John. The latter has five col-

http://crystalvc.googlecode.com

laborators: George, Jeff, Roy, Bob, and Tom. Each developer can
independently choose whether or not to run Crystal.

On the left-most side of each row, underneath the project name,
Crystal displays the local state (Section 3.2). This tells George,
in the native language of the underlying VCS, whether he must
checkpoint changes (hg commit, in Mercurial) or resolve a con-
flict. Then, for each repository (master and other collaborators’,
whether or not they are running Crystal), Crystal displays the rela-
tionship with that repository (Section 3.3). If George has the ability
to affect a relationship now, the icon is solid, which combines the
When and Capable guidance (Section 3.4). If George cannot affect
the relationship, the icon is hollow. If the relationship is of the might
variety — George might or might not have to perform an operation
to affect the relationship — the icon is solid but slightly unsaturated
(see the relationship with Bob in the “Handle with care” project).
These features allow George to quickly scan the Crystal window
and identify the most urgent issues — the solid red icons — fol-
lowed by other, less severe icons. George can also quickly identify
whether there is something he can do now to improve his relation-
ships (in the example, George can perform actions to improve his
relationships in the “Handle with care” project, but not in “Let it
be”), and whether there are unexpected conflicts George may wish
to communicate with others about. Holding the mouse pointer over
an icon displays the action George can perform and the Committer,
Consequences, and Ease guidance (Section 3.4), when appropriate.

3.2 Local states

There are five possible local states for a developer.

uncommitted There are uncommitted changes in the working copy.

in conflict The local repository is in conflict with itself; that is, (in
DVCS terminology) it has two heads that are not automatically
mergeable. This happens, for example, when incorporated and
local changesets conflict.

build failure The repository’s version of the code fails to build.

test failure The repository’s version of the code builds but fails its
test suite.

OK The repository’s version of the code builds and passes its test
suite.

3.3 Repository relationships

We have identified seven relevant relationships that can hold be-
tween two repositories. Figure 3 displays the icons Crystal uses to
denote each relationship.

SAME The repositories have the same changesets.

AHEAD The repository has a superset of the other repository’s
changesets.

BEHIND The inverse of AHEAD.

The remaining four relationships represent repositories that share
an initial sequence of changesets followed by distinct sequences of
changesets.

TEXTUALX: (pronounced “textual conflict”) The distinct change-
sets cannot be automatically merged by the VCS.

BUILDX: The repositories can be automatically merged by the VCS,
but the resulting merged code fails to build.

TESTX: The repositories can be automatically merged by the VCS
and the resulting merged code builds but fails its test suite.

TESTV: The repositories can be automatically merged by the VCS
and the resulting merged code builds and passes its test suite.

Higher-order conflicts, such as BUILDX and TESTX, are not con-
sidered by existing VCSes. Although this paper discusses only

V1Tl A kK

SAME AHEAD BEHIND TEXTUALX BUILDX TESTX TESTV

Figure 3: Crystal associates an icon with each of the seven relation-
ships. The color of each relationship icon represents the severity
of the relationship: relationships that require no merging are green,
that can be merged automatically are yellow, and that require man-
ual merging are red.

these two higher-order relationships, others naturally arise for other
analyses; for example, consider when a test suite passes but a per-
formance analysis or code style checker does not.

3.4 Guidance

Knowing how each action may affect the developer’s state and
relationships can help developers make better-informed decisions.

We classify the guidance information into five types. One type
concerns the relationship: Committer. The other four concern the
possible action: When, Consequences, Capable, and Ease.

Committer: Who made the relevant changes?

For example, two developers may be in the TEXTUALX relation-
ship, but the cause of the conflict could be a change made by a third
developer. This information is important to identify with whom
the developers looking to resolve this conflict should communicate,
which, in turn, decreases the time required to fix technical prob-
lems [4].

When: Can an action that affects the relationship be performed
now, or must it wait until later?

For example, a developer may not be able to affect a TEXTUALX
relationship until the other relevant developer shares his changes
with the master repository.

Consequences: Will an action — perhaps one on a different repos-
itory — affect a relationship?

For example, a developer may be BEHIND because she has not yet
incorporated from or because another developer has not yet shared
with the master. In the former case, an incorporate action would
affect the relationship. In the latter case, it would not.

Capable: Who can perform an action that changes the relationship?
For example, of two developers in TEXTUALX, the one who shares
with the master first can no longer resolve the conflict, whereas the
other developer can.

Ease: Who can most easily resolve a conflict?

Suppose two developers created conflicting changes and one has
shared his with the master. If the other were to incorporate the
changes, she would have to resolve the conflict. What if the first
developer has made a set of follow-up changes that he has not yet
shared? If these changes resolve the conflict, then it is likely better
for the second developer to wait until the first one shares.

3.5 Limiting distractions

We designed Crystal to convey important information without
being overwhelming or distracting. Towards this end, we used the
following principles:

do not asynchronously open windows,

do not require the developer to keep the main window open,
keep the main window compact,

summarize all projects and relationships (allowing for quick
visual identification of those that may require attention), and

e make all relationship, possible action, and guidance informa-
tion available, but hidden until a developer shows specific in-
terest.

Crystal’s icons convey urgency and ability through use of color,
shape, and saturation in fixed locations in the main window, and
mouseover tooltips provide the rest of the information. The system
tray icon summarizes the most urgent state and is available at all
times, including when the main window is closed.

4. Scalability

This section describes how Crystal’s design allows it to scale to
large projects and compute the relevant information efficiently.

4.1 Large projects

Crystal scales to large projects that involve many developers and
repositories. A developer explicitly instructs Crystal (via a GUI or
a configuration file) which repositories to observe. For example,
a developer may be interested in only the relationships with other
developers in his collaborative team and the per-team development
repositories of the other teams.

Crystal can provide information about relationships even with
developers who are not using it, easing adoption by avoiding a re-
quirement that the whole team uses the tool. Each developer can
independently choose whether or not to run Crystal. Advantages
accrue when more members of a team use Crystal, but this is not
necessary.

Crystal allows developers to select a subset of the tests to exe-
cute, to integrate more smoothly into large development projects
with extensive test suites. Naturally, for large projects with build
scripts and test suites that take a long time to execute, Crystal will
experience that latency. However, it would still identify relevant
information sooner than other existing methods.

4.2 Computation efficiency

Crystal provides a developer with information on his develop-
ment state and the relationships between his repository and collab-
orators’ repositories. Thus, Crystal needs access to that developer’s
repository and working copy (if the working copy is inaccessible,
Crystal does not report certain local states, e.g., uncommitted), and
the locations of the other repositories. In some development en-
vironments, access to others’ repositories is trivial. For example,
many corporate development configurations include a common file
system. In other environments, it is possible for developers to have
their local repositories on machines that are often offline. For such
environments, we leverage Dropbox! to enable developers to easily
share their development states by symbolically linking their work-
ing copy to their Dropbox shared folder.

To limit the computation necessary to extract the relationships
between repositories, Crystal follows the following algorithm. First,
Crystal checks the history of the two repositories to identify the
changesets each contains, and only re-computes the relationship if
at least one history has changed. If the sets of changesets are the
same, then the relationship is SAME. If one repository contains
strictly more (respectively fewer) changesets, it is AHEAD (respec-
tively BEHIND). If both repositories contain changesets the other
does not (and Crystal has not previously computed their relation-
ship), Crystal makes a local clone of one repository and uses the
VCS to attempt to incorporate the changesets from the other repos-
itory. If the VCS reports a problem with incorporation, the rela-
tionship is TEXTUALX. If the integration succeeds, Crystal runs
the build script. If that script fails, the relationship is BUILDX. Fi-
nally, if the build script succeeds, Crystal runs the test suite and
determines whether the relationship is TESTX or TESTV .

Cloning repositories, especially remote ones, can be costly. To
address this issue (and to enable faster start-up times), Crystal keeps

"http://www.dropbox.com

a cached clone of each project, bringing it up to date before updat-
ing the relevant relationship. This has significantly increased Crys-
tal’s performance in all common cases. In the rare and discouraged
situation of changing existing VC history (e.g., rebasing), the cache
may contain changesets that no longer exist in a repository. This
can cause problems and require the developer to clear the cache.

5. Contributions

We have described Crystal, a tool that proactively detects and
reports on collaboration conflicts. Crystal identifies conflicts pre-
cisely and reports them unobtrusively. Developers quickly learn if
there are actions they should perform and with whom they should
communicate. As a result, they can limit the severity of, or even
prevent, costly conflicts.

Acknowledgments

The Crystal beta users provided valuable feedback. This material is
based upon work supported by the National Science Foundation un-
der Grants CNS-0937060 to the Computing Research Association
for the CIFellows Project and CCF-0963757, by a National Sci-
ence and Engineering Research Council Postdoctoral Fellowship,
and by Microsoft Research through a Software Engineering Inno-
vation Foundation grant.

References

[1] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson.
FASTDash: A visual dashboard for fostering awareness in soft-
ware teams. In CHI, pages 1313-1322, San Jose, CA, USA,
Apr. 2007.

[2] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Speculative
analysis: Exploring future states of software. In FOSER, pages
59-63, Santa Fe, NM, USA, Nov. 2010.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive de-
tection of collaboration conflicts. In ESEC FSE, Szeged, Hun-
gary, Sep. 2011.

[4] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Car-
ley. Identification of coordination requirements: Implications
for the design of collaboration and awareness tools. In CSCW,
pages 353-362, Banff, AB, Canada, Nov. 2006.

[5] C.R. B. de Souza, D. Redmiles, and P. Dourish. “Breaking the
code”, Moving between private and public work in collabora-
tive software development. In GROUP, pages 105-114, Sanibel
Island, FL, USA, Nov. 2003.

[6] P. Dewan and R. Hegde. Semi-synchronous conflict detection
and resolution in asynchronous software development. In EC-
SCW, pages 159-178, Limerick, Ireland, Sep. 2007.

[7] J. Estublier and S. Garcia. Process model and awareness in
SCM. In SCM, pages 59-74, Oxford, England, UK, Sep. 2005.

[8] R. E. Grinter. Using a configuration management tool to coor-
dinate software development. In CoOCS, pages 168-177, Mil-
pitas, CA, USA, Aug. 1995.

[9] L. Hattori and M. Lanza. Syde: A tool for collaborative soft-
ware development. In /CSE Tool Demo, pages 235-238, Cape
Town, South Africa, May 2010.

[10] S. Horwitz, J. Prins, and T. Reps. Integrating noninterfering
versions of programs. ACM TOPLAS, 11:345-387, July 1989.

[11] D.E.Perry, H. P. Siy, and L. G. Votta. Parallel changes in large-
scale software development: an observational case study. ACM
TOSEM, 10:308-337, July 2001.

[12] T. Zimmermann. Mining workspace updates in CVS. In MSR,
Minneapolis, MN, USA, May 2007.

http://www.dropbox.com

	1 Introduction
	2 Early and precise conflict detection
	3 Reporting conflicts
	3.1 Example Crystal use
	3.2 Local states
	3.3 Repository relationships
	3.4 Guidance
	3.5 Limiting distractions

	4 Scalability
	4.1 Large projects
	4.2 Computation efficiency

	5 Contributions

