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Abstract

Formalized study of self-assembly has led to the definition of the tile assembly model, Previously I presented ways to
compute arithmetic functions, such as addition and multiplication, in the tile assembly model: a highly distributed parallel model
of computation that may be implemented using molecules or a large computer network such as the Internet. Here, I present
tile assembly model systems that factor numbers nondeterministically using Θ(1) distinct components. The computation takes
advantage of nondeterminism, but theoretically, each of the nondeterministic paths is executed in parallel, yielding the solution in
time linear in the size of the input, with high probability. I describe mechanisms for finding the successful solutions among the
many parallel executions and explore bounds on the probability of such a nondeterministic system succeeding and prove that the
probability can be made arbitrarily close to 1.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Self-assembly is a process that is ubiquitous in nature. Systems form on all scales via self-assembly: atoms
self-assemble to form molecules, molecules to form complexes, and stars and planets to form galaxies. One
manifestation of self-assembly is crystal growth: molecules self-assembling to form crystals. Crystal growth is an
interesting area of research for computer scientists because it has been shown that, in theory, under careful control,
crystals can compute [39]. The field of DNA computation demonstrated that DNA can be used to compute [1],
solving NP-complete problems such as the satisfiability problem [12,11]. This idea of using molecules to compute
nondeterministically is the driving motivation behind my work.

Winfree showed that DNA computation is Turing suniversal [38]. While DNA computation suffers from relatively
high error rates, the study of self-assembly shows how to utilize redundancy to design systems with built-in error
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correction [42,10,21,27,41]. Researchers have used DNA to assemble crystals with patterns of binary counters [8]
and Sierpinski triangles [33], but while those crystals are deterministic, generating nondeterministic crystals may hold
the power to solving complex problems quickly.

Two important questions about self-assembling systems that create shapes or compute functions are: “what is a
minimal tile set that can accomplish this goal?” and “what is the minimum assembly time for this system?” Here, I
study systems that factor numbers and ask these questions, as well as another that is important to nondeterministic
computation: “what is the probability of assembling the crystal that encodes the solution?”

Adleman has emphasized studying the number of steps it takes for an assembly to complete (assuming maximum
parallelism) and the minimal number of tiles necessary to assemble a shape [2]. He answered these questions for
n-long linear polymers [3]. Previously, I have extended these questions to apply to systems that compute functions,
rather than assemble shapes [13], and now I extend them to systems that compute functions nondeterministically.

Adleman proposed studying the complexity of tile systems that can uniquely produce n × n squares. A series of
researchers [34,4,5,23] proceeded to answer the questions: “what is a minimal tile set that can assemble such shapes?”
and “what is the assembly time for these systems?” They showed that, for most n, the minimal tile set that assembles
n × n squares is of size Θ(

log n
log log n ) and the optimal assembly time is Θ(n) [5]. A key issue related to assembling

squares is the assembly of small binary counters, which theoretically can have as few as seven tile types [23].
Soloveichik et al. studied assembling all decidable shapes in the tile assembly model and found that the minimal

set of tiles necessary to uniquely assemble a shape is directly related to the Kolmogorov complexity of that shape.
Interestingly, they found that for the result to hold, scale must not be a factor. That is, the minimal set of tiles they find
builds a given shape (e.g. square, a particular approximation of the map of the world, etc.) on some scale, but not on
all scales. Thus they showed that smaller versions of the same shape might require larger sets of tiles to assemble [36].

I proposed and studied systems that compute the sums and products of two numbers using the tile assembly
model [13]. I found that in the tile assembly model, adding and multiplying can be done using Θ(1) tiles (as few
as eight tiles for addition and as few as 28 tiles for multiplication), and that both computations can be carried out in
time linear in the input size. I also speculated that those systems could be modified to work in sequence with other
systems, in effect chaining computations together. In this paper I use just that technique: I utilize the multiplication
system as a subroutine for the factoring system, exploring nondeterministic computation in the tile assembly model.

Other early attempts at nondeterministic computation include a proposal by Lagoudakis et al. to solve the
satisfiability problem [26]. They informally define a system that nondeterministically computes whether or not an
n-variable boolean formula is satisfiable using Θ(n2) distinct tiles. In contrast, the system I present in this paper for
solving an NP-complete problem uses Θ(1) distinct tiles and assembles in time linear in the input.

While the constructions in this paper are in some ways analogous to traditional computer programs, and their
running times are polynomially related to the running times of Turing machines and nondeterministic Turing
machines, Baryshnikov et al. began the study of fundamental limits on the time required for a self-assembly system
to compute functions [9]. They consider models of molecular self-assembly and apply Markov models to show lower
limits on assembly times.

Researchers have also studied variations of the traditional tile assembly model. Aggarwal et al. and Kao et al.
have shown that changing the temperature of assembly from a constant throughout the assembly process to a discrete
function reduces the minimal tile set that can build an n × n square to a size Θ(1) tile set [7,25].

Barish et al. have demonstrated DNA implementations of tile systems, one that copies an input and another that
counts in binary [8]. Similarly, Rothemund et al. have demonstrated a DNA implementation of a tile system that
computes the xor function, resulting in a Sierpinski triangle [33]. These systems grow crystals using double-crossover
complexes [24] as tiles. The theoretical underpinnings of these systems are closely related to the work presented here
because these systems compute functions.

Rothemund has demonstrated what is currently the state-of-the-art of DNA nanostructure design and
implementation with DNA origami, a concept of folding a single long scaffold strand into an arbitrary shape by using
small helper strands [31,30,32]. Similar concepts may be the key to three-dimensional self-assembly, more powerful
error-correction techniques, and self-assembly using biological molecules.

Cook et al. have explored using the tile assembly model to implement arbitrary circuits [22]. Their model allows for
tiles that contain gates, counters, and even more complex logic components, as opposed to the simple static tiles used
in the traditional tile assembly model and in this paper. While they speculate that the tile assembly model logic may
be used to assemble logic components attached to DNA, my assemblies require no additional logic components and
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encode the computation themselves. It is likely that their approach will require fewer tile types and perhaps assemble
faster, but at the disadvantage of having to not only assemble crystals but also attach components to those crystals and
create connections among those components. Nevertheless, Rothemund’s work with using DNA as a scaffold may be
useful in attaching and assembling such components [32].

Some experimental work [1,11] has shown that it is possible to work with an exponential number of components
and even to solve NP-complete problems. I explore the possibility of nondeterministic computation using the tile
assembly model and prove bounds on the probability of successful computation. The probability of successfully
factoring a number can be made arbitrarily close to 1 by increasing the number of self-assembling components and
seeds in the computation.

A preliminary version of the constructions presented in this paper has appeared in [14], though without the formal
proofs and analysis presented here.

The rest of this paper is structured as follows: Section 1.1 will describe in detail the tile assembly model,
Section 2 will discuss what it means for a tile assembly model system to compute functions deterministically
and nondeterministically, Section 3 will introduce, define, and prove the correctness of two factoring systems, and
Section 4 will summarize the contributions of this work.

1.1. Tile assembly model

The tile assembly model [40,39,34] is a formal model of crystal growth. It was designed to model self-assembly
of molecules such as DNA. It is an extension of a model proposed by Wang [37]. The model was fully defined by
Rothemund and Winfree [34], and the definitions here are similar to those, and identical to the ones in [13], but I
restate them here for completeness and to assist the reader. Intuitively, the model has tiles or squares that stick or do
not stick together based on various binding domains on their four sides. Each tile has a binding domain on its north,
east, south, and west side, and may stick to another tile when the binding domains on the abutting sides of those tiles
match and the total strength of all the binding domains on that tile exceeds the current temperature. The four binding
domains define the type of the tile. While this definition does not allow tiles to rotate, it is essentially equivalent to a
system with rotating tiles.

Formally, let Σ be a finite alphabet of binding domains such that null ∈ Σ . I will always assume null ∈ Σ
even when I do not specify so explicitly. A tile over a set of binding domains Σ is a 4-tuple 〈σN , σE , σS , σW 〉

∈ Σ 4. A position is an element of Z2. The set of directions D = {N , E, S, W } is a set of four functions from
positions to positions, i.e. Z2 to Z2, such that for all positions (x, y), N (x, y) = (x, y + 1), E(x, y) = (x + 1, y),
S(x, y) = (x, y − 1), W (x, y) = (x − 1, y). The positions (x, y) and (x ′, y′) are neighbors iff ∃d ∈ D such that
d(x, y) = (x ′, y′). For a tile t , for d ∈ D, I will refer to bdd(t) as the binding domain of tile t on d’s side. A special
tile empty = 〈null, null, null, null〉 represents the absence of all other tiles.

A strength function g : Σ × Σ → N, where g is commutative and ∀σ ∈ Σ g(null, σ ) = 0, denotes the strength
of the binding domains. It is common to assume that g(σ, σ ′) = 0 ⇐⇒ σ 6= σ ′. This simplification of the model
implies that the abutting binding domains of two tiles have to match to bind.

Let T be a set of tiles containing the empty tile. A configuration of T is a function A : Z × Z → T . I write
(x, y) ∈ A iff A(x, y) 6= empty. A is finite iff there is only a finite number of distinct positions (x, y) ∈ A.

Finally, a tile system S is a triple 〈T, g, τ 〉, where T is a finite set of tiles containing empty, g is a strength function,
and τ ∈ N is the temperature.

If A is a configuration, then within system S, a tile t can attach to A at position (x, y) and produce a new
configuration A′ iff:

• (x, y) /∈ A, and
•

∑
d∈D g(bdd(t), bdd−1(A(d(x, y)))) ≥ τ , and

• ∀(u, v) ∈ Z2, (u, v) 6= (x, y) ⇒ A′(u, v) = A(u, v), and
• A′(x, y) = t .

That is, a tile can attach to a configuration only in empty positions and only if the total strength of the appropriate
binding domains on the tiles in neighboring positions meets or exceeds the temperature τ . For example, if for all σ ,
g(σ, σ ) = 1 and τ = 2 then a tile t can attach only at positions with matching binding domains on the tiles in at least
two adjacent positions.
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Given a tile system S = 〈T, g, τ 〉, a set of tiles Γ , and a seed configuration S : Z2
→ Γ , if the above conditions

are satisfied, one may attach tiles of T to S. Configurations produced by repeated attachments of tiles from T are said
to be produced by S on S. If this process terminates, then the configuration achieved when no more attachments are
possible is called the final configuration. At certain times, it may be possible for more than one tile to attach at a
given position, or there may be more than one position where a tile can attach. If for all sequences of tile attachments,
all possible final configurations are identical, then S is said to produce a unique final configuration on S.

Note that a system may produce a unique final configuration, even though there exist non-unique sequences of
attachments that continue growing at infinitum. Theoretically, such constructions pose no problem, though they may
present problems to certain implementations of tile systems. In particular, the infinite configurations might consume
all the tiles available for construction. It is possible to limit the definition of a unique final configuration to exclude
systems that produce infinite configurations; however, such a restriction seems somewhat arbitrary and would only
be helpful for some implementations of the tile assembly model. Further, only some systems that assemble infinite
configurations would suffer from those configurations consuming a majority of material. In particular, the factoring
systems presented in this paper allow for the assembly of infinite configurations, but the probability of a configuration
assembling is inversely proportional to its size, so very large configurations are unlikely to form, and a physical
implementation of such a system would use up a small fraction of the material on the large configurations.

I choose not to restrict my definitions here, though an alternate set of definitions that takes the probabilities of
configurations forming into account is possible. The systems presented in this paper would satisfy a stricter definition
that concerned itself with making sure a large portion of the tiles formed small configurations.

Let S = 〈T, g, τ 〉, and let S0 be a seed configuration such that S produces a unique final configuration F on S0.
Let W0 ⊆ 2T ×Z2

be the set of all tile–position pairs 〈t, (x, y)〉 such that t can attach to S0 at (x, y). Let S1 be the
configuration produced by adding all the elements of W0 to S0 in one time step. Define W1, W2, . . . and S2, S3, . . .

similarly. Let n be the smallest natural number such that Sn ≡ F . Then n is the assembly time of S on S0 to produce F .
I allow the codomain of S to be Γ , a set of tiles which may be different from T . The reason is that I will study

systems that compute functions using minimal sets T ; but the seed, which has to code for the input of the function,
may contain more distinct tiles than there are in T . Therefore, I wish to keep the two sets separate. Note that, at any
temperature τ , it takes Θ(n) distinct tiles to assemble an arbitrary n-bit input such that each tile codes for exactly one
of the bits.

Winfree showed that the tile assembly model with τ = 2 is Turing universal [39] by showing that a tile system can
simulate Wang tiles [37], which Robinson showed to be universal [29]. Adleman et al. showed that the tile assembly
model with τ = 1 is Turing universal [6].

2. Computing functions

Let N = Z≥0. Intuitively, in order for a tile system to deterministically compute a function f : N → N, for some
seed that encodes a number a ∈ N, the tile system should produce a unique final configuration which encodes f (a).
To allow configurations to encode numbers, I will designate each tile as a 1- or a 0-tile and define an ordering on the
positions of the tiles. The i th bit of a is 1 iff the tile in the i th position of the seed configuration is a 1-tile (note that
empty will almost always be a 0-tile). I will also require that the seed contains tiles coding for bits of a and no more
than a constant number of extraneous tiles. The final configuration may have more than one possible ordering of the
attachments. Formally, let Γ and T be sets of tiles. Let ∆ be the set of all possible seed configurations S : Z2

→ Γ ,
and let Ξ be the set of all possible finite configurations C : Z2

→ Γ ∪ T . Let v : Γ ∪ T → {0, 1} code each tile as a
1- or a 0-tile and let os, o f : N → Z2 be two injections. Let the seed encoding function es : ∆ → N map a seed S to
a number such that es(S) =

∑
∞

i=0 2iv(S(os(i))) if and only if for no more than a constant number of (x, y) not in the
image of os , (x, y) ∈ S. Let the answer encoding function e f : Ξ → N map a configuration F to a number such that
e f (F) =

∑
∞

i=0 2iv(F(o f (i))).
Let S = 〈T, g, τ 〉 be a tile system. I say that S computes a function f : N → N iff for all a ∈ N there exists a seed

configuration S such that S produces a unique final configuration F on S and es(S) = a and e f (F) = f (a).
I generalize the above definition for a larger set of functions. Let m̂, n̂ ∈ N and f : Nm̂

→ Nn̂ be a function. For
all 0 ≤ m < m̂ and 0 ≤ n < n̂, let osm , o fn : N → Z2 be injections. Let the seed encoding functions esm : ∆ → N
map a seed S to m̂ numbers such that esm (S) =

∑
∞

i=0 2iv(S(osm (i))) iff for no more than a constant number of (x, y)

not in the union of the images of all osm , (x, y) ∈ S. Let the answer encoding functions e fn : Ξ → N each map
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a configuration F to a number such that e fn (F) =
∑

∞

i=0 2iv(F(o fn (i))). Then I say that S computes the function
f iff for all Ea ∈ Nm̂

= 〈a0, a1, . . . , am̂−1〉, there exists a seed configuration S such that S produces a unique final
configuration F on S and esm (S) = am and 〈e f0(F), e f1(F), . . . , e fn̂−1〉 = f (Ea).

2.1. Nondeterministic computation

Until now, I have looked only at deterministic computation. In order for a system to compute a function, I
required that the system produces unique final configurations. In some implementations of the tile assembly model
systems, many assemblies happen in parallel. In fact, it is often almost impossible to create only a single assembly,
and thus there is a parallelism that my previous definitions did not take advantage of. Here, I define the notion of
nondeterministic computation in the tile assembly model.

I have defined a tile system to produce a unique final configuration on a seed if for all sequences of tile attachments,
all possible final configurations are identical. If different sequences of tile attachments attach different tiles in the same
position, the system is said to be nondeterministic. Intuitively, a system nondeterministically computes a function iff
at least one of the possible sequences of tile attachments produces a final configuration which codes for the solution.

Since a nondeterministic computation may have unsuccessful sequences of attachments, it is important to
distinguish the successful ones. Further, in many implementations of the tile assembly model that would simulate
all the nondeterministic executions at once, it is useful to be able to identify which executions succeeded and which
failed in a way that allows selecting only the successful ones. For some problems, only an exponentially small fraction
of the assemblies would represent a solution, and finding such an assembly would be difficult. For example, a DNA
based crystal growing system would create millions of crystals, and only a few of them may represent the correct
answer, while all others represent failed computations. Finding a successful computation by sampling the crystals at
random would require time exponential in the input. Thus it would be useful to attach a special identifier tile to the
crystals that succeed so that the crystals may be filtered to find the solution quickly. It may also be possible to attach
the special identifier tile to solid support so that the crystals representing successful computations may be extracted
from the solution. I thus specify one of the tiles of a system as an identifier tile that only attaches to a configuration
that represents a successful sequence of attachments.

Let m̂, n̂ ∈ N and let f : Nm̂
→ Nn̂ be a function. For all 0 ≤ m < m̂ and 0 ≤ n < n̂, let osm ,

o fn : N → Z2 be injections. Let the seed encoding functions esm : ∆ → N map a seed S to m̂ numbers such
that esm (S) =

∑
∞

i=0 2iv(S(osm (i))) iff for no more than a constant number of (x, y) not in the union of the images of
all osm , (x, y) ∈ S. Let the answer encoding functions e fn : Ξ → N each map a configuration F to a number such
that e fn (F) =

∑
∞

i=0 2iv(F(o fn (i))). Let S be a tile system with T as its set of tiles, and let r ∈ T . Then I say that
S nondeterministically computes a function f with identifier tile r iff for all Ea ∈ Nm̂

= 〈a0, a1, . . . , am̂−1〉 there
exists a seed configuration S such that for all final configurations F that S produces on S, r ∈ F(Z2) iff ∀0 ≤ m < m̂,
esm (S) = am and 〈e f0(F), e f1(F), . . . , e fn̂−1(F)〉 = f (Ea).

If for all m̂, n̂ ∈ N, for all 0 ≤ m < m̂ and 0 ≤ n < n̂, the osm and o fn functions are allowed to be arbitrarily
complex, the definition of computation in the tile assembly model is not very interesting because the computational
intelligence of the system could simply be encoded in the osm and o fn functions. For example, suppose h is the halting
characteristic function (for all a ∈ N, h(a) = 1 if the ath Turing machine halts on input a, and 0 otherwise) and os0 is
such that the input a is encoded in some straight line if h(a) = 1 and in some jagged line otherwise. Then it would be
trivial to design a tile system to solve the halting problem. Thus the complexities of the osm and o fn functions need to
be limited.

The problem of limiting the complexities is not a new one. When designing Turing machines, the input must be
encoded on the tape and the theoreticians are faced with the exact same problem: an encoding that is too powerful
could render the Turing machine capable of computing uncomputable functions. The common solution is to come up
with a single straightforward encoding, e.g., for all m ∈ N, converting the input element of Nm into an element of N
via a mapping Nm

→ N and using the intuitive direct binary encoding of that element of N on the Turning machine
tape for all computations [35]. A similar approach is possible in the tile assembly model, requiring all systems to start
with the input encoded the same way. In fact, it has been shown that such a definition conserves Turing universality
of the tile systems [39]. However, the assembly time complexity of such systems may be adversely affected. In my
definitions, I wish to give the system architect freedom in encoding the inputs and outputs for the sake of efficiency
of computation; however, I restrict the osm and o fn functions to be computable in linear time on a Turing machine.
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Thus these functions cannot add too much complexity-reducing power to the systems (the functions themselves cannot
compute anything more complex than what linear-time algorithms can) while allowing the architects the freedom to
place the inputs and outputs where they wish.

I have defined what it means for a tile system to compute a function f , whether it is deterministically or
nondeterministically; however, I have not mentioned what happens if f is not defined on some arguments. Intuitively,
the deterministic system should not produce a unique final configuration, and no nondeterministic assembly should
contain the identifier tile. The above definitions formalize this intuitive idea.

In the remainder of this paper I will examine systems that factor positive integers; that is, systems that
nondeterministically compute, for all ζ ≥ 2, f (ζ ) = 〈α, β〉, such that α, β ≥ 2 and αβ = ζ . To prevent f from
being multivalued, the pair 〈α, β〉 must be unique. For example, one could restrict 〈α, β〉 to the largest possible
alpha, where α ≥ β, though any well defined restriction will work.

I refer to such systems as factoring tile systems.

3. Factoring tile systems

In this section, I will describe two factoring tile systems. To that end, I will introduce three tile systems,
building up factoring functionality one step at a time. I will then combine those systems to create a system that
factors at temperature four, and then discuss simplifying this factoring system to work at temperature three. All the
systems use Θ(1) distinct tiles. The factoring systems, and the proofs of their correctness, are based in part on the
multiplier system (one that deterministically computes f (α, β) = αβ) from [13]. Intuitively, the factoring system will
nondeterministically pick two numbers, multiply them, and then compare the result to the input. If the result and the
input match, the assembly will include an identifier tile.

The factoring tile system will use a set of tiles T4. I will define this set in three disjoint subsets: T4 =

Tfactors ∪ T× ∪ TX. The tiles in Tfactors nondeterministically “guess” two factors; T× is identical to T× defined in [13]
and multiply the two factors; and the tiles in TX ensure the computation is complete and compare the product of the
factors to the input.

Whenever considering a number α ∈ N, I will refer to the size of α, in bits, as nα . I will further refer to the i th bit
of α as αi ; that is, for all i ∈ N, αi ∈ {0, 1} such that

∑
i αi 2i

= α. The least significant bit of α is α0. Finally, I define
λα ∈ N≥1 to be the smallest positive integer such that αλα = 1. For example, let α = 10001012, then nα = 7, and
λα = 2 because the smallest positive power of 2 in 10001012 is 22. Of course, the same definitions extend to β, ζ and
other variables.

The tile systems I will describe will use four types of tiles to encode the input number the system is factoring. Let
the set of those tiles be Γ4 = {γL = 〈null, null, s, null〉, γ0 = 〈null, null, 0?, null〉, γ1 = 〈null, null, 1?, null〉,
γs = 〈null, null, |o|, s〉}. Fig. 1 shows a graphical representation of Γ4.

3.1. Guessing the factors

I first describe a tile system that, given a seed consisting of just a single tile will nondeterministically pick two
natural binary numbers, α and β, such that α, β ≥ 2, and encode them using tiles. The system will use the set of tiles
Tfactors.

Fig. 2(a) shows the concepts behind the tiles in Tfactors. The concepts include variables a and b. Each variable can
take on as values the elements of the set {0, 1}. Fig. 2(b) shows the 13 actual tile types in Tfactors. The symbols on the
sides of the tiles indicate the binding domains of those sides. The value in the middle of each tile t indicates its v(t)
value (some tiles have no value in the middle because their v value will not be important and can be assumed to be 0).

Lemma 3.1. Let Σfactors = {|, ||, |?|, |o|, 0, 1, 00, 10}. For all σ ∈ {|, ||, |?|, |o|}, let gfactors(σ, σ ) = 4 (for all other
σ ∈ Σfactors, g(σ, σ ) is not important for now). Let τfactors = 4. Let Tfactors be as described in Fig. 2(b). Let
Sfactors = 〈Tfactors, gfactors, τfactors〉. Let Sfactors : Z2

→ {γs} be a seed configuration with a single nonempty tile,
such that S(1, 1) = γs and ∀x, y ∈ Z, (x, y) 6= (1, 1) =⇒ Sfactors(x, y) = empty.

Then for all α, β ≥ 2, z ≥ 0, Sfactors produces a final configuration F on Sfactors such that:

(1) F(1, 1) = γs
(2) F(1, 0) = fbtop
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Fig. 1. There are four tiles in Γ4. The value in the middle of each tile t represents that tile’s v(t) value and each tile’s name is written on its left.

Fig. 2. The concepts behind the tiles in Tfactors include variables a and b (a). Each variable can take on as values the elements of the set {0, 1}.
There are 13 actual tile types in Tfactors (b). The value in the middle of each tile t indicates its v(t) value (some tiles have no value in the middle
because their v value will not be important and can be assumed to be 0) and each tile’s name is written on its left.

(3) ∀i ∈ {1, 2, . . . , nβ − 2}, F(1, −i) = fbβk , where k = nβ − i
(4) F(1, −(nβ − 1)) = fbβ0bot
(5) F(1, −nβ) = fR
(6) F(0, −nβ) = faα0rig
(7) ∀i ∈ {1, 2, . . . , λα − 1}, F(−i, −nβ) = fa0
(8) F(−λα, −nβ) = fa1
(9) ∀i ∈ {λα + 1, λα + 2, . . . , nα − 1}, F(−i, −nβ) = faαi lef

(10) ∀i ∈ {1, 2, . . . , z}, F(−(nα − 1 + i), −nβ) = fa0lef
(11) F(−(nα + z), −nβ) = fL

and for all final configurations F that Sfactors produces on Sfactors, F corresponds to some choice of α, β ≥ 2 and
z ≥ 0.

Intuitively, Sfactors writes out, in order, the bits of α and β, for all α, β ≥ 2, and pads α with z extra 0-tiles, where
z ≥ 0. Fig. 3 shows a sample final configuration that corresponds to β = 103 = 11001112, α = 97 = 11000012, and
z = 7.

Proof. Let α, β ≥ 2, let z ≥ 0. I first show that tiles may attach to Sfactors to produce a final configuration F that
encodes α and β and pads β with z 0-tiles.

(1) F and Sfactors must agree at position (1, 1), so F(1, 1) = γs .
(2) Note that bdS(F(1, 1)) = |o| and the only tile type t with bdN (t) = |o| is fbtop, so F(1, 0) = fbtop.
(3) Note that bdS(F(1, 0)) = ||, and there are four types of tiles t such that bdN (t) = || ( fb0, fb1, fb0bot, and fb1bot),

so only those types of tiles may attach below. Two of those tile types have bdS(t) = || ( fb0 and fb1), so again only
those four tile types may attach below them. Therefore tiles may attach such that for all i ∈ {1, 2, . . . , nβ − 2},
F(1, −i) = fbβk , where k = nβ − i .

(4) Until finally, a tile of type fb0bot or fb1bot attaches so that F(1, −(nβ − 1)) = fbβ0bot.
(5) Note that bdS(F(1, −(nβ − 1))) = |

?
|, and the only tile type t with bdN (t) = |

?
| is fR , so F(1, −nβ) = fR .
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Fig. 3. Sfactors produces a final configuration F on Sfactors such that F encodes two binary numbers. In this example, F encodes 103 = 11001112
and 97 = 11000012. Note that the number encoded in the lower row may have leading zeros; in this case it has seven leading 0-tiles.

(6) Note that bdW (F(1, −nβ)) = |
?
|, and there are two types of tiles t such that bdE (t) = |

?
| ( fa0rig and fa1rig), so

only types of tiles may attach at position (0, −nβ). Thus the correct tile may attach such that F(0, −nβ) = faα0rig.
(7) Note that bdW (F(0, −nβ)) = |o|, and there are two types of tiles t such that bdE (t) = |o| ( fa0 and fa1), and only

one of those two types has bdW (t) = |o| ( fa0). Therefore, for all i ∈ {1, 2, . . . , λα − 1}, fa0 can attach such that
F(−i, −nβ) = fa0.

(8) Until finally, a tile of type fa1 attaches so that F(−λα, −nβ) = fa1.
(9) Note that bdW (F(−λα, −nβ)) = ||, and there are three types of tiles t such that bdE (t) = || ( fa0lef, fa1lef, and fL ).

Two of those tile types have bdW (t) = || ( fa0lef and fa1lef), so again only those three tile types may attach to the
left of them. Therefore, tiles may attach such that for all i ∈ {λα + 1, λα + 2, . . . , nα − 1}, F(−i, −nβ) = faαi lef.

(10) Similarly, to the west of the position (−(nα − 1, −nβ)), fa0lef may attach such that for all i ∈ {1, 2, . . . , z},
F(−(nα − 1 + i), −nβ) = fa0lef.

(11) Until finally, a tile of type fL attaches so that F(−(nα + z), −nβ) = fL .

Let v : Tfactors → {0, 1} be such that v( fb0) = v( fb0bot) = v( fa0lef) = v( fa0) = v( fa0rig) = v( fL) = v(null) = 0
and v( fbtop) = v( fb1) = v( fb1bot) = v( fa1lef) = v( fa1) = v( fa1rig) = 1. For all other t ∈ Tfactors the v(t) value does
not matter and can be assumed to be either 0 or 1.

Note that:

• No more tiles may attach to F .
•

∑
∞

i=0 v(F(1, −(nβ − 1 + i)))2i
= β.

•
∑

∞

i=0 v(F(−i, −nβ))2i
= α.

• For all i ∈ {1, 2, . . . , z}, v(F(−(nα − 1 + i), −nβ)) = 0.

Thus for all choices of α, β ≥ 2, and z ≥ 0, there exists a final configuration F produced by Sfactors on Sfactors that
encodes α and β and pads α with z 0-tiles. Further note that for all final configurations F produced by Sfactors on
Sfactors:

• F cannot encode β < 2 because v(F(1, 0)) = 1 implies that the most significant bit of β is 1 and F(1, −1) cannot
be fR , thus β has at least two bits.

• F cannot encode α < 2 because the tile encoding αλα cannot be at position (0, 1) and thus there exists a non-zero
power of two in α.

Thus all final configurations F produced by Sfactors on Sfactors encode some α, β ≥ 2 and pad α with some z ≥ 0
0-tiles. �
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For a single choice of α, β ≥ 2, there are several final configurations that encode α and β. They differ in the choice
of z. I am interested only in two of those final configurations, for z = nβ and for z = nβ − 1, because the product of
α and β is either nα + nβ or nα + nβ − 1 bits long.

Lemma 3.2 (Factors Assembly Time Lemma). For all α, β ≥ 2, the assembly time of the final configuration F
produced by Sfactors on Sfactors that encodes α and β and pads α with nβ or nβ − 1 0-tiles is Θ(nα + nβ).

Proof. For each tile in F to attach, a tile in a specific location must have attached before it (either to the north or to the
east). Thus there is no parallelism in this assembly, and the assembly time equals the total number of tiles that attach,
which is Θ(nα + nβ). �

Lemma 3.3. Let each tile that may attach to a configuration at a certain position attach there with a uniform
probability distribution. For all α, β ≥ 2, let δ = αβ, then the probability of assembling a particular final

configuration encoding α and β and padding α with nδ − nα 0-tiles is at least
(

1
4

)nβ
(

1
3

)nδ

.

Proof. I will calculate the probabilities of each tile attaching in its proper position and then multiply those probabilities
together to get the overall probability of a final configuration.

(1) The seed automatically becomes part of the final configuration with probability p1 = 1.
(2) There is only one tile that may attach in position (1, 0), so it attaches with probability p2 = 1.
(3) For the next nβ − 2 positions, out of four possible tiles that may attach, only one is the correct one, so the

probability that the next nβ − 2 tiles attach correctly is p3 =

(
1
4

)nβ−2
.

(4) The tile representing the last bit of β is also one out of the possible four so the probability of it attaching is p4 =
1
4 .

(5) Only one tile may attach below the 0th bit of β, so its probability of attaching is p5 = 1.
(6) There are two possible tiles that may attach to represent α’s 0th bit, and only one is correct, so the probability of

it attaching is p6 =
1
2 .

(7) The next λα − 1 tiles must be one of two possible tiles, so the probability of all of them attaching correctly is

p7 =

(
1
2

)λα−1
.

(8) The next tile encodes the smallest positive power of 2 in α and is one of two possible tiles, so its probability of
attaching is p8 =

1
2 .

(9) The rest of the bits of α can be encoded using one specific tile from the three possibilities, so the probability of all

of them attaching correctly is p9 =

(
1
3

)nα−λα−1
.

(10) The next nδ − nα tiles, depending on the desired final configuration, must be one of three possible tiles, so the

probability of all of them attaching correctly is p10 =

(
1
3

)nδ−nα

.

(11) Finally, the probability of the last tile attaching is p11 =
1
3 .

The overall probability of a specific final configuration is:

11∏
i=1

pi ≥

(
1
4

)nβ−1 (
1
2

)λα+1 (
1
3

)nα−λα+nδ−nα

≥

(
1
4

)nβ
(

1
3

)nδ

. �

Corollary 3.1. Let each tile that may attach to a configuration at a certain position attach there with a uniform
probability distribution. For all α ≥ β ≥ 2, let δ = αβ, then the probability of assembling a particular final

configuration encoding α and β and padding α with nδ − nα 0-tiles is at least
(

1
6

)nδ

.

Proof. By Lemma 3.3, the probability of assembling a particular final configuration encoding α and β and padding α

with nδ−nα 0-tiles is at least
(

1
4

)nβ
(

1
3

)nδ

. Because α ≥ β, nδ ≥ 2nβ , so
(

1
4

)nβ
(

1
3

)nδ

≥

(
1
2

)nδ
(

1
3

)nδ

=

(
1
6

)nδ

. �
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Fig. 4. The concepts behind the tiles in T× (a) include variables a, b, and c, each of which can take on as values the elements of the set {0, 1}. There
are 28 actual tile types in T× (b). Note that for each tile t , its v(t) value is indicated in the upper half of the middle of the tile.

3.2. Multiplying the factors

I have just described a tile system that nondeterministically assembles the representations of two binary numbers.
I will now add tiles to multiply those numbers.

Fig. 4(a) shows the concepts behind the tiles in T×. The concepts include variables a, b, and c, each of which can
take on as values the elements of the set {0, 1}. Fig. 4(b) shows the 28 actual tile types in T×. These tiles are identical
to the multiplier tiles from [13], thus I will reference Theorem 2.4 from [13]:

Theorem 3.1 (Theorem 2.4 from [13]). Let Σ× = {0, 1, 00, 01, 10, 11, 20, 21}, for all σ ∈ Σ×, g×(σ, σ ) = 1,
τ× = 2, and T× be a set of tiles over Σ× as described in Fig. 4(b). Then S× = 〈T×, g×, τ×〉 computes the function
f (α, β) = αβ.

The reader may refer to [13] for the proof of Theorem 3.1.

Corollary 3.2. For all σ ∈ Σ×, let g′
×(σ, σ ) = 2 and τ ′

× = 4. Then S′
× = 〈T×, g′

×, τ ′
×〉 computes the function

f (α, β) = αβ.

Proof. For all α, β ∈ N, S× computes the function f (α, β) = αβ. Therefore, there exists some seed S0, which
encodes α and β, such that S× produces a unique final configuration F on S0. Further, there exists at least one
sequence of attachments W = 〈〈t0, (x0, y0)〉, 〈t1, (x1, y1)〉, . . . , 〈tk, (xk, yk)〉〉 such that t0 attaches at position (x0, y0)

to S0 to produce S1, t1 attaches at position (x1, y1) to S1 to produce S2, and so on to produce the final configuration
Sk+1 = F . Since for all σ ∈ Σ×, g×(σ, σ ) = 1 and τ× = 2, each tile ti must have at least two non-empty neighbors
to position (xi , yi ) in Si whose appropriate binding domains match ti ’s binding domains.

By the unique final configuration corollary (Corollary 2.1 from [13]), S′
× produces a unique final configuration on

S0. Since for all i , each tile ti has at least two non-empty neighbors to position (xi , yi ) in Si whose appropriate binding
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Fig. 5. A sample seed configuration S× that encodes β = 103 = 11001112 and α = 97 = 11000012 (a). Note that S× is identical to a final
configuration produced by Sfactors on Sfactors. S′

×
produces a final configuration F on S× which encodes the product αβ = 97 · 103 = 9991 =

100111000001112 along the top row (b).

domains match ti ’s binding domains, and for all σ ∈ Σ×, g′
×(σ, σ ) = 2 and τ ′

× = 4, the tile ti can attach to Si to form
Si+1. Thus W is a valid sequence of attachments for S′

× to S0 and S′
× must produce the unique final configuration

Sk+1 = F on S0, and thus compute the function f (α, β) = αβ. �

Intuitively, Corollary 3.2 says that doubling the strength of every binding domain and the temperature does not alter
the logic of assembly of S×. To compute the product of two numbers α and β, S× attaches tiles to a seed configuration
which encodes α and β, to reach a final configuration which encodes αβ. The logic of the system dictates that every
time a tile attaches, its south and east neighbors have already attached, and its west and north neighbors have not
attached [13]. Thus by doubling the strength of every binding domain and the temperature, a tile t can attach at
position (x, y) in S′

× iff t also attached at (x, y) in S×. Thus the final configurations in the two systems will be
identical, and therefore, S′

× computes the function f (α, β) = αβ.
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Fig. 6. The concepts behind the tiles in TX (a) include variables b, c and d, each of which can take on as values the elements of the set {0, 1}. There
are nine actual tile types in TX; each tile’s name is written on its left. The tile with a check mark in the middle will serve as the identifier tile.

Fig. 5(a) shows a sample seed configuration S× which encodes β = 103 = 11001112 and α = 97 = 11000012.
Fig. 5(b) shows the final configuration F that S′

× produces of S×. Along the top row of F , the binary number
100111000001112 = 9991 encodes the product αβ = 97 · 103 = 9991. It is not a coincidence that S× looks exactly
like a final configuration that Sfactors produces on Sfactors.

Lemma 3.4. Let α, β ≥ 2, let S× be the final configuration produced by Sfactors on Sfactors that encodes α and β and
has nβ padding 0-tiles. Let F be the unique final configuration that S′

× produces on S×. Let v : T× → {0, 1} be
defined as in Fig. 5. Then F encodes the binary number δ = αβ =

∑
∞

i=0 v(F(−i, 0))2i . That is, the i th bit of δ is
v(F(−i, 0)). Further, if αβ has only nα + nβ − 1 bits, then it is sufficient to pad Sfactors with nβ − 1 0-tiles.

The lemma follows directly from the proof of Corollary 3.2 and Theorem 3.1. S× forms the sides of a rectangle that
has the same binding domains internal to the rectangle as the seed that S× uses in [13]. S′

× produces, on S× the final
configuration F , which encodes the product of the inputs on precisely the 0th row, with the i th bit of the product being
v(F(0, −i)). Note that the product of two binary numbers α and β will always have either nα + nβ or nα + nβ − 1
bits.

Lemma 3.5 (Multiplication Assembly Time Lemma). For all α, β ≥ 2, the assembly time for S× on a seed encoding
α and β and padding α with nβ or nβ − 1 0-tiles is Θ(nα + nβ).

This lemma follows directly from the assembly time corollary (Corollary 2.2 from [13]).

3.3. Checking the product

I have described two systems: one to produce two random numbers and another to multiply them. I now present
one more system with two jobs: to make sure the multiplication is complete and to compare an input to the result of
the multiplication.

Fig. 6(a) shows the concepts behind the tiles in TX. The concepts include variables b, c and d, each of which can
take on as values the elements of the set {0, 1}. Fig. 6(b) shows the nine actual tile types in TX. The tile with a check
mark in the middle will serve as the identifier tile.

Lemma 3.6. Let ΣX = {|, 0, 1, 00, 01, 10, 11, 0?, 1?, s}. For all σ ∈ {0?, 1?, s}, let gX(σ, σ ) = 1 and for all
σ ′

∈ {|, 0, 1, 00, 01, 10, 11}, let gX(σ ′, σ ′) = 2. Let τX = 4. Let TX be as described in Fig. 6(b). For all α, β, ζ ≥ 2,
let δ = αβ, let S× be the final configuration produced by Sfactors on Sfactors that encodes α and β and has nδ − nα

padding 0-tiles. Let F× be the unique final configuration that S′
× produces on S×. Let SX be such that:
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• ∀x, y ∈ Z, F×(x, y) 6= empty =⇒ SX(x, y) = F×(x, y).
• SX(−nζ , 2) = γL .
• ∀i ∈ {0, 1, . . . , nζ − 1}, SX(−i, 2) = γζi .

Let SX = 〈TX, gX, τX〉. Then SX produces a unique final configuration FX on SX and αβ = ζ iff FX(−nζ , 1) = X.

Proof. First, observe that if the X tile is ever to attach, it must attach in position (−nζ , 1) because the sum of the
g values of the binding domains of X is exactly 4, so it must match its neighbors on all sides with non-null binding
domains to attach at temperature 4, and because the only tile with a south binding domain s, matching X’s north
binding domain, is γL , and it can only occur in the seed, and only in position (−nζ , 2).

Consider FX. Working backwards, for a X tile to attach at position (−nζ , 1), the tile directly south, at position
(−nζ , 0) must have a north binding domain |. Therefore, that tile is one of the following four tiles: {L0, L1, L00, L10}.
For any one of those four tiles to attach, its east neighbor’s west binding domain must be 0, 1, 00 or 10, meaning two
things: the first bit of the binding domain cannot be 2, which implies that the carry bit of the tile to the east is 0, and
the second bit of the binding domain cannot be 1, which implies that shifted α has not run past the west bound of
the computation. Together, those two properties ensure that the multiplication is proceeding correctly. In turn, the tile
directly south of that position, at position (−nζ , −1), by the same reasoning, must be one of those four tiles and the
tile to its east has the two above properties. And so on, all the tiles in the column −nζ must be one of those four tiles,
until the position (−nζ , −nβ), where the tile must be fL (by the definition, SX(−nδ, −nβ) = fL ). Therefore, the X
tile may attach only if nδ = nζ and every row of the multiplication has a 0 carry bit and has not overshifted α.

Working backwards again, for a X tile to attach at position (−nζ , 1) in FX, the tile directly east must have a
west binding domain s, and thus must be one of the following four tiles: {X00, X01, X10, X11}. For each of those
tiles, the first digit of its north binding domain matches the second digit of its south binding domain. Therefore,
v(FX(−(nζ − 1), 0)) must equal v(FX(−(nζ − 1), 2)). The same argument holds for the tile to the east of that tile,
and so on until position (1, 1), where FX(1, 1) = γs . By Lemma 3.4, if δ = αβ, then ∀i ∈ N, v(SX(−i, 0)) = δi .
Therefore, a X tile may attach at position (−nζ , 1) to FX if and only if γ = αβ. �

Fig. 7(a) shows a sample seed SX for β = 103 = 11001112, α = 97 = 11000012, and ζ = 9991 =

100111000001112. Fig. 7(b) shows the final configuration FX that SX produces on SX. Because ζ = αβ, FX contains
the tile X.

Lemma 3.7 (Checking Assembly Time Lemma). For all α, β, ζ ≥ 2, if ζ = αβ then the assembly time of the final
configuration F produced by SX on SX that encodes α, β, and ζ and pads α with nβ or nβ − 1 0-tiles is Θ(nζ ).

Proof. Each tile in the 0th row of F that attaches requires one other specific tile to attach first. The same is true
for column nζ . Thus there is no parallelism in each of those two assembling processes, and the assembly time
for each process equals the total number of tiles that attach in that process, thus the overall assembly time is
Θ(max(nζ , nβ)) = Θ(nζ ). �

3.4. Factoring at temperature four

I have defined three different systems that perform the necessary pieces of factoring a number. I now put them
together into a single system S4 and argue that S4 is a factoring system.

Theorem 3.2 (Temperature Four Factoring Theorem). Let Σ4 = Σfactors ∪ Σ× ∪ ΣX. Let T4 = Tfactors ∪ T× ∪ TX.
Let g4 be such that g4 agrees with gfactors, g′

×, and gX on their respective domains (note that for all elements of the
domains of more than one of those functions, those functions agree). Let τ4 = 4. Then the system S4 = 〈T4, g4, τ4〉 is
a factoring tile system.

If a tile system is the combination of three distinct tile systems, the behavior of the large system need not be the
combined behavior of the three smaller systems — the tiles from different systems can interfere with each other.
However, I have designed Sfactors, S′

×, and SX to work together, without interfering. For the most part, each system
uses a disjoint set of binding domains, sharing binding domains only where tiles from the different systems are
designed to interact. As a result, tiles from each system have a particular set of positions where they can attach: tiles
from Tfactors can only attach in column 1 and row −nβ , tiles from T× can only attach in the rectangle defined by the
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Fig. 7. A sample seed configuration SX that encodes β = 103 = 11001112, α = 97 = 11000012, and ζ = 9991 = 100111000001112 (a). SX
produces a final configuration F on SX, which includes a X tile iff ζ = αβ (b).

rows 0 and −(nβ − 1) and columns 0 and −(nζ − 1), and tiles from TX can only attach in column −nζ and row 1,
thus the tiles do not interfere with each other.

Proof of Theorem 3.2. For all ζ ≥ 2, Let S4 be such that

• S4(1, 1) = γs .
• S4(−nζ , 2) = γL .
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Fig. 8. S4 factors a number ζ encoded in the seed configuration, e.g. ζ = 9991 = 100111000001112 (a). In one sequence of possible attachments,
encodings of two randomly selected numbers α and β attach nondeterministically to the seed such that α, β ≥ 2, e.g. α = 97 = 11000012,
β = 103 = 11001112 (b). S4 then deterministically multiplies α and β to encode δ = αβ (c), and then ensures the multiplication is complete and
compares δ to ζ to check if they are equal. If they are equal, a special X tile attaches to signify that the factors have been found (d).

• ∀i ∈ N such that 0 ≤ i < nζ , S4(−i, 2) = γζi

For all binary numbers α, β ≥ 2, and for all z ≥ 0, tiles from T4 will attach to S4 as follows: the tiles from Tfactors
nondeterministically attach to encode two binary numbers: α in column 1 and β in row −nβ , padding α with z 0-
tiles, as described in Lemma 3.1. By Lemma 3.4 the tiles from T× attach, in the rectangle defined by the rows 0 and
−(nβ −1) and columns 0 and −(nα + z −1), to encode δ = αβ in the top row. Finally, tiles from TX attach, in column
−nζ and row 1, such that, by Lemma 3.6 the X tile only attaches if δ = ζ and z = nζ − nα ∈ {nβ , nβ − 1}. Let
the identifier tile be X. Thus only if there exists a choice of α, β ≥ 2 such that αβ = ζ will the identifier tile attach.
Further, if the identifier tile does attach to a configuration F4, then F4 encodes α and β as defined in Lemma 3.1.
Therefore, S4 nondeterministically and identifiably computes the function f (ζ ) = 〈α, β〉. �

Fig. 8(a) shows the seed configuration S4 for ζ = 9991 = 11000001112. Fig. 8(b)–(d) show one possible progression
of tiles attaching to produce a final configuration that S4 produces on S4.

While it is possible for tiles to attach in exactly the order shown in Fig. 8, other orders of attachments are also
possible. For example, some tiles in T× may attach before some other tiles in Tfactors do, but they do not interfere with
each other because they attach in disjoint sets of positions. Fig. 9 shows an alternative possible progression of tiles
attaching to the seed configuration to produce a final configuration that S4 produces on S4.

I have shown the details of the final configuration that finds factors α and β of ζ . It is also interesting to observe
what happens when the configuration encodes an α and β whose product does not equal ζ or when α is padded with
the wrong number of 0-tiles. Fig. 10(a) demonstrates an attempted assembly on choices of α = 91 = 10110112 and
β = 84 = 10101002. The multiplication finds the product αβ = 7644 = 11101110111002 and because 7644 6= ζ ,
the tiles along row 1 do not attach and thus the X tile cannot attach. Fig. 10(b) encodes the correct choices of α and β;
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Fig. 9. S4 factors a number ζ encoded in the seed configuration, e.g. ζ = 9991 = 100111000001112 (a). In a sequence of possible attachments
alternate to that in Fig. 8, some tiles from all three sets Tfactors, T×, and TX attach without waiting for all the attachments from the others sets to
complete (b) and (c). Each set’s tiles have designated areas of attachment and cannot attach outside of those areas, so they do not interfere with
each other. Finally, for each choice of α, β ≥ 2 and z ≥ 0, all sequences of attachments result in the unique final configuration for those α, β, and
z, containing a special X tile iff αβ = ζ and z = nζ − nα (d).

however, it does not pad the α with enough 0-tiles. The multiplication cannot complete, and the tiles along the west
column do not attach and thus the X tile cannot attach.

I now examine the assembly time of S4 and the fraction of nondeterministic assemblies that will produce the factors
(or the probability of finding the factors).

Lemma 3.8 (Factoring Assembly Time Lemma). For all α, β, ζ ≥ 2 such that αβ = ζ , the assembly time for S4 to
produce a final configuration F that encodes α and β is Θ(nζ ).

Proof. By the factors assembly time lemma (Lemma 3.2), the encoding of α and β will take Θ(nα + nβ) = Θ(nζ )

steps. By the multiplication assembly time lemma (Lemma 3.5), multiplying α and β will take Θ(nα + nβ) = Θ(nζ )

steps. By the checking assembly time lemma (Lemma 3.7), checking if αβ = ζ will take Θ(nζ ) steps. When working
together, these systems do not affect each other’s speed (though they may work in parallel), so the assembly time for
S4 to produce a final configuration F that encodes α and β is Θ(nζ ). �

Lemma 3.9 (Probability of Assembly Lemma). For all ζ ≥ 2, given the seed S4 encoding ζ , assuming each tile
that may attach to a configuration at a certain position attaches there with a uniform probability distribution, the

probability that a single nondeterministic execution of S4 finds α, β ≥ 2 such that αβ = ζ is at least
(

1
6

)nζ

.

Proof. In the worst case, a composite number ζ has only two prime factors (counting multiplicity). Either of the
two factors could be α and the other β, but assume α ≥ β (by forcing the larger factor to be α, I underestimate
the probability). By Corollary 3.1, the probability p of assembling a particular configuration encoding α and β and

padding α with nζ − nα 0-tiles is at least
(

1
6

)nζ

, as long as ζ = αβ. �
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Fig. 10. If αβ 6= ζ or the number of 0-tiles padding α is incorrect, the X tile cannot attach. In (a), the product of 91 = 10110112 and 84 = 10101002
does not equal 9988 = 100111000001002, so the tiles along the 0th row do not attach. In (b), α is padded with too few 0-tiles and the tiles in the
west column do not attach. Note that both these configurations are final configurations.

The implication of the probability of assembly lemma (Lemma 3.9) is that a parallel implementation of S4, such
as a DNA implementation like those in [8,33], with 6nζ seeds has at least a 1 −

1
e ≥ 0.5 chance of finding ζ ’s factors

and one with 100(6nζ ) seeds has at least a 1 −

(
1
e

)100
chance.

The lemma provides a lower bound on the probability of a successful assembly achievable by a distribution of
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Fig. 11. In order to factor at temperature three, some of the tiles from T4 had to be modified with new binding domains. The new tiles form the set
T3.

tile attachment probabilities. I can derive an upper bound on that probability, for large ζ , by arguing that as α and β

become large, the dominant majority of the tiles in Tfactors that must attach to encode α are fa0le f and fa1le f and to
encode β are fb0 and fb1. Because the distribution of 0 and 1 bits in a random number is even, and at least one of α

and β must become large as ζ becomes large, for all probability distributions of tile attachments, the probability that

a single nondeterministic execution of S4 finds α, β ≥ 2 such that αβ = ζ is at most
(

1
2

)nζ

.

Note that T4 contains 50 distinct tiles.

3.5. Factoring at temperature three

I have described how S4 factors at temperature four. It was simpler to explain how S4 works at temperature four,
mostly because I could double the strength of every binding domain and the temperature of S× from [13]; however,
it is actually possible to use roughly the same tiles to compute at temperature three, by altering the glue strength
function. The key observation is that no tile needs all four of its neighbors in a configuration in order to attach. The
most a tile needs is three, e.g. the X tile.

I will need to differentiate some of the east–west binding domains from their previously identical north–south
binding domain counterparts. That is, suppose that some of the binding domains of the tiles in T4 were prefixed by
v (for vertical) or h (for horizontal). Formally, let Σ3 = {|o|, ||, |

?
|, |, s, v0, v1, v00, v01, v10, v11, 0?, 1?, h0, h1,

h00, h01, h10, h11, h20, h21}. The strengths of the binding domains need to be defined such that each tile attaches
only under the same conditions under which it attached in S4. The tiles in Tfactors must attach with only one neighbor
present, so for all σ ∈ {|o|, ||, |?|}, let g3(σ, σ ) = 3. The tiles in T× must attach when two of their neighbors, the south
and the east neighbors, are present so for all σ ∈ {h0, h1, h00, h01, h10, h11, h20, h21}, let g3(σ, σ ) = 2 and for
all σ ′

∈ {v0, v1, v00, v01, v10, v11}, let g3(σ
′, σ ′) = 1. (Note that the alternative – making the horizontal binding

domains have strength 1 and vertical strength 2 – would work for the tiles in T×, but would not work for the tiles in
TX.) The tiles L0, L1, L00, and L10 must attach when two of their neighbors are present, and since their east binding
domains have already been defined to be of strength 2, let g3(|, |) = 1. Finally, the other tiles in TX only attach when
three of their neighbors are present, and all their binding domains so far have been defined to be of strength 1, so for
all σ ∈ {0?, 1?, s}, let g3(σ, σ ) = 1. Fig. 11 shows the tiles with the new binding domains labeled.

Theorem 3.3 (Temperature Three Factoring Theorem). Let T3 be as defined in Fig. 11. Let τ3 = 3. Then 〈T3, g3, τ3〉

is a factoring tile system.

Proof. Let α, β, ζ ≥ 2, and let S30 be the seed that encodes ζ as in Theorem 3.2. Then ζ = αβ iff S4 produces some
final configuration F on S30 that encodes α and β and contains the identifier tile X and all final configurations that
contain X encode factors of ζ .
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Let W be a sequence of attachments in S4 that produces F on S30. W = 〈〈t0, (x0, y0)〉, 〈t1, (x1, y1)〉, . . . , 〈tk,
(xk, yk)〉〉 such that t0 attaches at position (x0, y0) to S30 to produce S31, t1 attaches at position (x1, y1) to S31 to
produce S32, and so on to produce the final configuration S3k+1 = F .

Remember that g3 is designed such that every tile in T3 attaches in S3, under and only under the same conditions as
its counterpart tile in T4 attached in S4. Thus the sequence of attachments W is also a valid sequence of attachments
for S3. Therefore, on seed S30, encoding ζ , for all final configurations F produced by S3 on S30, F contains X iff F
encodes α and β such that ζ = αβ. �

Lemma 3.10. For all α, β, ζ ≥ 2 such that αβ = ζ , the assembly time for S4 to produce a final configuration F that
encodes α and β is Θ(nζ ).

Lemma 3.11. For all ζ ≥ 2, given the seed S encoding ζ , assuming uniform distributions of all tiles, the probability

that a single nondeterministic execution of S3 finds α, β ≥ 2 such that αβ = ζ is at least
(

1
6

)nζ

.

Lemmas 3.10 and 3.11 follow directly from the factoring assembly time lemma (Lemma 3.8) and the probability
of assembly lemma (Lemma 3.9), respectively, and the fact that S3 follows the exact same logic as S4.

As with S4, S3 uses 50 tile types.

4. Contributions

The tile assembly model is a formal model of self-assembly and crystal growth. In [13], I explored what it means
for a system to compute a function via deterministic assembly and identified two important quantities: the number of
tile types and the assembly speed of the computation. Here, I have extended the definition of a tile system computing a
function to include nondeterministic computation, adopted the two measures to these new computations, and identified
a third important measure: the probability of a nondeterministic assembly identifying the solution. I explored these
measures for systems that factor numbers, that is, nondeterministically compute the function f (ζ ) = 〈α, β〉, such
that α, β, ζ ≥ 2 and αβ = ζ . I defined factoring tile systems at temperatures four and three that use Θ(1) input
tile types, Θ(1) computing tile types, and assemble in Θ(nζ ) steps with probability of each assembly finding the

solution at least
(

1
6

)nζ

. Thus a parallel implementation of S4, such as a DNA implementation like those in [8,33],

with 6nζ seeds has at least a 1 −
1
e chance of finding ζ ’s factors, and one with 100(6nζ ) seeds has at least a 1 −

(
1
e

)100

chance. Experiments in DNA self-assembly commonly contain on the order of 1017
≈ 622 assemblies [17,20,28,24].

However, those experiments in no way required a high concentration of assemblies and no specific attempts to achieve
a maximum concentration were made. In fact, experiments such as these commonly try to limit the number of parallel
assemblies, as all the assemblies are identical and creating many of them is simply a waste of material. Thus it is
likely that orders of magnitude larger volumes of solutions orders of magnitude more concentrated than those can be
achieved.

The theoretical analysis of systems that can assemble shapes or compute simpler functions [34,4,5,23,13] has led
to experimental manifestations of such systems using DNA tiles [8,33]. The field of DNA computation demonstrated
that DNA can be used to compute [1], solving NP-complete problems such as the satisfiability problem [12,11]. Most
DNA computation suffers from high error-rates; while DNA can solve a 20 variable 3-SAT problem, it seems unlikely
that the same approach would solve a much larger problem [11] because of the additive nature of error rates. Self-
assembly has yielded results in error-correction [42,10,21,27,41] that may be used to decrease the error rates. Most
experimental results in DNA computation have not appealed to the advantages of crystal growth; however, these early
works on the fundamentals of self-assembly and the physical experimental evidence of actual DNA crystals suggest a
bright future for DNA computation.

Outside of molecular computation, early investigations into programming large distributed computer networks by
representing each computer as a tile in a tile assembly model system have revealed promising possibilities. For ex-
ample, an implementation of a tile assembly model system on an Internet-sized network can control error-rates while
inheriting three properties of self-assembly systems: fault tolerance in the presence of malicious computers, scalability
due to the local communication of tiles that is not achieved in other large distributed network systems, and privacy due
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to the fact that no tile knows a large portion of the input or the problem being solved. Early investigations into program-
ming large distributed computer networks using the tile assembly model have revealed promising possibilities, thus,
generalizing the tile assembly model as a potentially powerful tool in software architecture research [15,18,19,16].
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