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Abstract

Large networks, such as the Internet, pose an ideal
medium for solving computationally intensive problems,
such as NP-complete problems, yet no well-scaling archi-
tecture for computational Internet-sized systems exists. We
propose a software architectural style for large networks,
based on a formal mathematical study of crystal growth
that will exhibit properties of (1) discreetness (nodes on the
network cannot learn the algorithm or input of the compu-
tation), (2) fault-tolerance (malicious, faulty, and unstable
nodes may not break the computation), and (3) scalability
(communication among the nodes does not increase with
network or problem size).

1 Introduction

The Internet’s growth has created networks with great

computing potential without a clear way to harness that po-

tential to solve memory- and processor time-intensive prob-

lems. Networks, such as the Internet, have the potential to

solve NP-complete problems (and other problems for which

we do not know polynomial time solutions) quickly, but

as their individual nodes may be unreliable or malicious,

users may desire guarantees that their computations are cor-

rect and are kept confidential. Mechanisms for distributing

computation over such large networks are likely to require

a great deal of collaboration, while the large size of the net-

work is likely to require that collaboration to scale well.

The architectural style presented in this paper is partic-

ularly applicable to problems that are computationally in-

tensive and easily parallelizable. Computationally intensive

problems are ones that a single computer is unlikely to solve

quickly, while easily parallelizable problems are ones that

inherently yield a large number of parallel threads. For ex-

ample, all NP-complete problems have both of those prop-

erties [18]. Further, our work is applicable to users that

desire discreetness and have access to large but unreliable

networks. By discreetness, we mean that the user does not

want others to find out the input or the algorithm. By large

but unreliable network, we mean a network, such as the In-

ternet, that is partially or entirely outside of the user’s con-

trol, and perhaps even hostile.

We describe a sample scenario that is at the heart of the

problems we are tackling. An espionage agency is attempt-

ing to break an RSA code sent by an enemy. The agency

wishes to use a large network to factor the enemy’s public

key; however, it cannot allow anyone to know the key’s fac-

tors or even whose key it is factoring. Since the agency has

access to the Internet, an incredibly large network of com-

puters, it should be feasible to factor nondeterministically,

or through brute force. However, the problem is to do so

discreetly, without the nodes on the network learning the

problem or the input.

The above scenario will result in a complex distributed

software system. It has been shown that such systems are

most effectively approached from an architectural perspec-

tive (e.g., [14]). In particular, software architectural styles
present generic design solutions that can be applied to prob-

lems with shared characteristics.

We propose to create a software architectural style that

allows distributing problems over a large network in a

fault-tolerant, discreet, and scalable manner. To that end,

we will rely on the theoretical study of self-assembly and

a formal model of crystal growth, called the tile assem-

ble model [20]. This model is Turing universal, thus it

can compute all the functions that a traditional computer

program can. Systems in this model show remarkable

fault-tolerance, self-regeneration, distribution of informa-

tion, and scalability, and a software architecture that imple-

ments the rules of such systems should inherit these proper-

ties.

The architectural style we present in this paper can



be evaluated theoretically, using mathematical analysis of

the architecture, and empirically, using a system, designed

based on the tile style, that simulates a large network solv-

ing an NP-complete problem. In this paper, we present pre-

liminary mathematical theoretical evaluation.

2 Related Work

We propose an architectural style, called the tile style, for

solving NP-complete problems on large networks. The tile

style is based on a model of self-assembly, thus this section

describes the related work of two previously mostly inde-

pendent areas: software architectures and theoretical study

of self-assembly.

2.1 Software Architectures

Software architecture has been identified as an impor-

tant part of building almost all large systems [14]. A poor

underlying software architecture can be disastrous, while a

good one helps to ensure the system’s key properties, such

as performance, reliability, portability, scalability, and inter-

operability.

Software architecture can be used to “force” a software

system to conform to certain rules, thus resulting in some

desired properties. For example, mandating that two com-

ponents communicate via implicit invocation can result in

systems that are more easily evolvable. However, it is also

possible to provide desired system properties as an emer-

gent behavior of the architecture without forcing restrictions

on the system designer. For example, Mikic-Rakic et al.

have argued that for a system to be self-healing, the sys-

tem must be self-observant and alter its behavior in hostile

environments [13]. However, in our proposed architectural

style, the system exhibits properties of self-healing natu-

rally, without observing or altering its behavior. Similarly,

Devanbu et al. have argued that security, a crucial property

of most modern software systems, may be implemented in

the connectors mediating the interactions among the sys-

tem’s components [11]. Accordingly, our architectural style

allows for security in the connectors; however, discreetness,

one aspect of security, is an emergent property of the style.

While there are several definitions of architectural styles

(e.g., [6, 10, 17]), we directly leverage Mikic-Rakic et

al.’s [13] definition, in formulating the tile style. They have

argued that an architectural style can be described along

five dimensions: external structure, topology rules, behav-

ior, interaction, and data flow. External structure describes

the “outside view” of the components in the architectural

style; topology rules describe the allowed paths of inter-

action between those components; behavior describes the

components’ internal function and state; interaction cap-

tures the collaboration between the components; and data
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Figure 1. A sample tile system that adds numbers.

(a) The system has eight computation tiles. (b) A

seed configuration encodes the inputs, 10 = 10102

and 11 = 10112. (c) The gray computation tiles at-

tach to the seed to form the output 21 = 101012.

flow specifies the structure of the data exchanged by the

components. We will follow this scheme in defining our

architectural style.

2.2 Self-Assembly

Adleman proposed solving NP-complete problems us-

ing DNA [1]. Winfree has generalized Adleman’s ideas to

use an exponential number of independent nodes, forming

a formalized mathematical model of self-assembly, the tile

assembly model [20]. The tile assembly model is a model

of crystal growth that has been shown to be Turing univer-

sal [4, 19].

In the tile assembly model, individual components are

square tiles with special labels on their four sides. Tiles can

stick together under certain conditions when their abutting

sides’ labels match. It is possible to encode inputs using

tiles and design sets of tiles that attach to those input tiles

to compute functions [7]. Figure 1 shows a very simple

example of adding the numbers 10 and 11, which we will

explain in Section 3.1. Two physical implementations of the

tile assembly model exist, one that computes the Sierpinski

triangle [15] and another that counts in binary [5]; both use

DNA complexes called double crossover complexes [12] to

implement tiles.

Traditional computational measures, such as program

size and time complexity, are related to tile systems: pro-

gram size is related to the number of different tiles in a

system and time consumption is related to the tile system’s

assembly time [2]. Adleman and others have studied the

number of tiles and time steps it takes to assemble n-long

linear polymers [2], shapes [3, 16], and simulate Turing ma-

chines [4, 19].

When Winfree developed the tile assembly model of

crystal growth, he proposed a mechanism for controlling the



error rates, while preserving many of the aspects of DNA

computation. He observed that errors occur in two situa-

tions: when incorrect tiles attach and when tiles attach in

improper places. He [21] and Goel et al. [9] proposed solu-

tions for dealing with such errors, reducing the probability

of failure. Both techniques are linear-space transformations

of the tiles of a system. That is, given a system with n types

of tiles and a probability of making an error of p, they gen-

erate another system that has kn tile types, but its likelihood

of failure is pk.

Building on the above work, we have extended the notion

of computing functions to the tile assembly model and stud-

ied systems that add and multiply [7]. We found that in the

tile assembly model, adding and multiplying can be done

using Θ(1) tiles (as few as 8 tiles for addition and as few

as 28 tiles for multiplication), and that both computations

can be carried out in time linear in the input size. Here, we

present a tile system that solves a more complex problem,

an NP-complete problem called SubsetSum, which can be

used as a tool to solve all NP-complete problems.

3 The Tile Style Approach

This section describes the tile architectural style by (1)

explaining how tile self-assembly can compute, (2) present-

ing a particular tile system that solves an NP-complete prob-

lem called SubsetSum, (3) explaining the design of a soft-

ware architecture based on a tile system, and finally (4) pre-

senting an example of using the system based on that soft-

ware architecture to solve a specific instance of the Subset-

Sum problem.

In the tile architectural style, each physical node on the

network will represent several tiles in a tile system. Because

of the details of that representation, the systems built based

on such architectures should inherit the properties of the tile

systems: discreetness, fault-tolerance, and scalability.

3.1 Computing with Tiles

It may seem counterintuitive that simple tiles that only

interact with each other locally can compute complex func-

tions, but in fact, these tile systems are as powerful as every

computer [19]. In this section, we show how it is possible

for tile systems to compute.

3.1.1 Theoretical Underpinnings

Computing can be defined as manipulating data in a con-

trolled manner to produce the results of a series of mathe-

matical functions. While traditional computers use gates to

manipulate data stored in electronic form, other computa-

tional models use other means of controlling the data. Self-

assembly uses square tiles to encode information and com-

pute. What follows is an intuitive description of the formal

definitions of the tile assembly model, which will be nec-

essary in mathematically proving properties of the systems

built based on the tile architectural style. The reader may

bypass this section if she is interested in the results and not

the theoretical arguments.

Intuitively, the model has tiles, or squares, that stick or

do not stick together based on various binding domains on

their four sides. Each tile has a binding domain on its north,

east, south, and west side. The four binding domains, ele-

ments of a finite alphabet Σ, define the type of the tile. The

strength of the binding domains are defined by the strength
function g. The placement of some tiles on a 2-D grid is

called a configuration, and a tile may attach in empty po-

sitions on the grid if the total strength of all the binding

domains on that tile that match its neighbors exceeds the

current temperature (a natural number). Finally, a tile sys-
tem S is a triple 〈T, g, τ〉, where T is a finite set of tiles, g
is a strength function, and τ ∈ N is the temperature, where

N = Z≥0.

Starting from a seed configuration S, tiles may attach

to form new configurations. If that process terminates, the

resulting configuration is said to be final. At some times, it

may be possible for more than one tile to attach at a given

position, or there may be more than one position where a

tile can attach. If for all sequences of tile attachments, all

possible final configurations are identical, then S is said to

produce a unique final configuration on S. The assembly
time of the system is the minimal number of steps it takes to

build a final configuration, assuming maximum parallelism.

Let f be a function f : N
n → N

m. A tile system S is

said to deterministically compute f if these exists a seed that

encodes �a ∈ N
n and S produces a unique final configura-

tions F that encodes f(�a). Similarly, a tile system S is said

to nondeterministically compute f with identifier tile r ∈ T
iff for all �a ∈ N

n, there exists a seed configuration S that

encodes �a and for all final configurations F that S produces

on S, F contains r iff F encodes f(�a) and there exists at

least one final configuration F that encodes f(�a). In other

words, the identifier tile r only attaches to the successful

nondeterministic executions that encode the solution.

We have given informal definitions to assist the reader in

understanding the systems we discuss in this paper; we refer

the reader to [7] for more formal versions of the definitions.

The tiles in Figure 1(a), with all binding domains having

strength 1, and temperature 3, form a tile system that com-

putes the function f(a, b) = a + b. That is, it is an adding

system. Figure 1 shows an example of that tile system com-

puting the sum of 10 = 10102 and 11 = 10112. The system

has eight computational tile types (Figure 1(a)). The center

state variable of each tile in Figure 1(c) represents one bit of

the solution, and the west side represents the next carry bit.

For example, the right-most tile in Figure 1(a) adds two 1
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Figure 2. A tile system that solves SubsetSum consists of four smaller tile systems, designed to work together. (a) The

tiles of a system that subtracts numbers, (b) the tiles of a system that simply copies information upward, (c) the tiles of

a system that nondeterministically picks whether or not to subtract the next number, and (d) the tiles of a system that

makes sure the subtractions completed correctly and the result is 0.

bits and has a 1 incoming carry bit, so it has a state value 1
and an outgoing carry bit 1. Starting from a seed configura-

tion (Figure 1(b)), instances of the gray tile types can attach

if their sides match the neighbors’ sides. The final config-

uration (Figure 1(c)), encodes the answer 21 = 101012 in

the center row. We refer the reader to [7] for the full proof

that this is an adding system.

3.1.2 SubsetSum Tile System

SubsetSum is a well-known NP-complete problem. The

problem consists of determining whether the sum of a sub-

set of numbers adds up to a given target number. The input

to the problem is a a set of natural numbers and a natural

target number, and the output is 1 if the sum of some sub-

set of those numbers is equal to the target number, and 0
otherwise.

The nature of NP-complete problems is that if one can

solve one such problem quickly, then one can solve all such

problems quickly. For example, if one finds a polynomial

time algorithm to solve SubsetSum, one can now solve the

traveling salesman, 3-SAT, and all other NP problems in

polynomial time. Thus, it is sufficient to design a system

that uses a large distributed network to discreetly solve one

NP-complete problem, e.g., SumbsetSum. We present a tile

system that solves SubsetSum. Winfree has shown a way

to translate an arbitrary computer program into a tile sys-

tem [19]; however, that translation can be inefficient. The

system we describe here for solving SubsetSum is the re-

sult of our engineering and design efforts to create a system

that computes quickly and uses a small set of tile types, a

process similar to writing a computer program.

The SubsetSum tile system is really a combination of

four tile systems, designed to work together. Figures 2(a-d)

show the tiles of systems that subtracts numbers, copies a

number (subtract 0), nondeterministically picks whether or

not to subtract the next number, and checks if all the sub-

tractions completed correctly and if the final result is 0, re-

spectively. The system nondeterministically picks a subset

of the input numbers to subtract from the target number, and

if the result equals 0, attaches a special � tile.

Figure 3 shows a sample execution of the tile system that

solves SubsetSum. The example asks the question whether

or not the sum of some subset of the set {11, 25, 37, 39}
equals 75. Because 75 = 11+25+39, one nondeterministic

execution of the tile system finds the proper selection of

numbers and attaches the special � tile. If there were no

subset of numbers whose sum equaled 75, no such tile could

attach. We refer the reader to [8] for the full proof that this

system solves the SubsetSum problem.

3.2 Tile Architectural Style

A tile style architecture is based on a tile system. The

components of the architecture are instantiations of the tile

types. While a system based on such an architecture will

have a large number of components, there is a compar-

atively smaller number of different types of components

(e.g., 8 types for adding and 49 types for solving Subset-

Sum). Nodes on the network represent these components,

and components that are adjacent in an assembly (such as

those in Figure 1(b)), can recruit other components to at-

tach, by sampling nodes until they find one whose side la-

bels, or interfaces, match. Note that many components (i.e.

tiles) can run on a single physical node.

In addition to defining the tile types, a tile system also

directs the architecture how to encode the input to the com-

putation. The input consists of a seed, a small connected

collection of tiles, such as the clear tiles along the right and

bottom edges in Figure 3. The seed replicates on the net-

work, as described in section 3.2.1, to create many copies.

Each component’s externally visible structure is a state
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Figure 3. An example execution of the tile system

that solves SubsetSum. The clear tiles encode the in-

put: a set of numbers: {11 = 10112, 25 = 110012,

37 = 1001012, 39 = 1001112} along the right col-

umn, and a target number 75 = 10010112 along the

bottom row. Because 75 = 11 + 25 + 39, one non-

deterministic execution of the tile system finds the

proper selection of numbers and attaches the special

� tile. If there were no subset of numbers whose sum

equaled 75, no such tile could attach.

variable (shown in the center of each tile) and four inter-
faces, i.e. side variables (shown on the sides of each tile).

The topology is a 2-D grid of components that allows neigh-

bors on the grid to interact. The components exhibit two be-
haviors: cooperating with neighbors to recruit suitable new

components to attach, as described in Section 3.2.2, and re-

porting the solution to the user. Recruitment is the princi-

pal functionality performed by a given tile. The interaction
consists of exchanging data about a component’s sides in

order to recruit. The data flow is limited to the components’

state variable and sides, allowing components to tell their

neighbors their state and their side labels, but no other in-

formation.

3.2.1 Replication

The tile system from Section 3.1.2 that solves SubsetSum

has 49 distinct computational tile types and 7 seed tile types.

At the start of the computation, each node on the network

is assigned to represent a particular type of a computation

tile and a particular type of a seed tile. The simplest process

that accomplishes this is each node randomly deciding to

represent a particular tile type from a list of all types of

tiles. We should note that there are simple mechanisms for

assigning nodes to tile types without sharing the complete

list of tiles with any one node. We do not go into the details

of those mechanisms in this paper, and just allow the nodes

to select a type from the list.

The client sets up a single seed on the network, as de-

scribed in Section 3.3. Each tile knows of its neighbors.

The seed tiles then replicate twice, to create two additional

copies of the seed on the network. To do so, each tile finds

another tile on the network of the same type as itself, and

designates it to represent part of the seed. It also coordi-

nates with its neighbors to inform the new copy of its new

neighbors. After creating two copies of the seed, the tiles

begin the recruitment process. The newly created seeds will

also each replicate twice, thus creating a number of seeds

exponential in time. The seeds continue to replicate and

self-assemble until one of the assemblies finds the solution,

at which time the client broadcasts a signal to cease compu-

tation, and the replication and recruitment stop.

Note that we do not know of algorithms to solve NP-

complete problems that do not require an exponential num-

ber of parallel executions, thus every fixed-size network can

be overwhelmed by a large enough input. A goal of this

architectural style is to distribute the computation across

many physical nodes to execute in parallel, but for a given

network size and input size, one can set bounds on the num-

ber of components deployed on each physical node to pre-

vent overloading those nodes (each node can determine its

own resources and stop accepting recruitment and replica-

tion requests if it is overwhelmed). We are in the process of



Figure 4. Tiles that have a north and west neighbor

(red tiles) can recruit new tiles to attach to their north-

west. The arrows indicate where the new recruited

tiles would attach.
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Figure 5. A schematic of a system implementing a

tile style architecture.

investigating the practical implications of this observation

on actual networks.

3.2.2 Recruitment

In a temperature 2 system (such as the system described in

Section 3.1.2 that solves SubsetSum), a tile that has north

and west neighbors recruits a new tile to attach to its north-

west. Figure 4 indicates several places in a sample assem-

bly where tiles are ready to recruit new tiles. The arrows

indicate where the new recruited tiles would attach. A re-

cruiting tile (a red tile in Figure 4) asks its north and west

neighbors for their west and north side labels, respectively,

and then finds another node on the network whose side la-

bels match and informs the new node of its new south and

east neighbors.

3.3 Using the Tile Style

A user who wishes to solve a computationally intensive

and easily parallelizable problem, e.g. an NP problem, and

has access to a large unreliable network, may use the tile

architectural style to design a system to solve her problem.

Figure 5 shows a high-level schematic of the interaction be-

tween the user’s computer and the network.

The user has two options: use the tile style to design

her own architecture based on the tile system that solves

her particular problem, as we describe in [7], or reduce

her problem to SubsetSum, using a standard polynomial

time reduction [18], and use the SubsetSum tile system.

Whichever tile system the user chooses will serve as the

template for the architecture, with the system’s tiles defin-

ing the types of components. Part of a tile system is the

description of seeds that encode inputs (e.g., Figure 1(b)

shows the seed for adding 10 and 11, and the clear tiles in

Figure 3 are the seed for that SubsetSum computation). The

user sets up a seed to encode her input and assigns comput-

ers on the network to represent the seed tiles. Once the ini-

tialization is complete, starting with the seed tiles, adjacent

components deploy on other network nodes to represent fit-

ting components and eventually produce the solution. The

solution tiles (the � tile for the SubsetSum system) then

report their state to the user.

3.4 Answering SubsetSum in the Negative

We have described how an assembly that finds the proper

subset of numbers that adds up to the target number reports

the success to the client computer. However, deciding that

no subset of the given numbers adds up to the target num-

ber is more difficult. No assembly can ever claim to have

found the proof that no such subset exists. Rather, the ab-

sence of assemblies that have found such a subset stands to

provide some certainty that no such subset exists. Because,

for an input of size n, there are 2n possible subsets, if 2n

assemblies find no suitable subset, then the client knows

there does not exist such a subset with probability at least(
1 − e−1

)
. After exploring 2 × 2n assemblies (this takes

twice as long as exploring 2n assemblies), the probability

grows to at least
(
1 − e−2

)
. After m × 2n assemblies,

the probability is at least (1 − e−m). Thus as time grows

linearly, the probability of error diminishes exponentially.

Given the network size and bandwidth, it is possible to de-

termine how long one must wait to get the probability of

an error arbitrarily low. Further, if desired, it is possible to

design a scalable reporting mechanism for counting exactly

how many assemblies have attempted the computation and

bound the probability more exactly.

3.5 Efficiency of the Tile Style

The tile style is particularly aimed at large networks.

When a client wishes to solve a highly parallelizable prob-

lem and needs discreetness, she may choose to do so simply

on her own single computer, perhaps on a small private net-

work of trustworthy computers, or using the tile style on

a large insecure network. The disadvantage of computing

on a network is that communication between components

can be as much as 1000 times slower over a network than

it is between components on a single computer. The com-



putation is further slowed down by the fact that tiles may

have to perform more basic operations than a program that

is not restricted by the components of the tile style (e.g.,

the example in Figure 3 uses 242 tiles, whereas a simpler

program could just add the three 6-bit numbers using eigh-

teen bit operations). The slowdown due to the use of tiles

and use of a network is linear in the input size, although the

constant factor may be large (in the above example, as large

as 1000 × 242
18 ≈ 13000). The upside is that the tile style

distributes the work over the network, and allows computa-

tion to happen in parallel. Thus the network simply needs

to be large enough to sufficiently amortize the cost of using

the tile style (for the above example, the network needs at

least 13000 nodes).

4 Evaluation

In this section, we present our preliminary theoretical

analysis of discreetness, fault-tolerance, and scalability of

the tile style based systems.

4.1 Discreetness

We call a distributed system discreet if, with high prob-

ability, for all time, for all nodes on the network, each node

cannot figure out the input to the algorithm it is executing.

The tile system from Section 3.1.2 that solves Subset-

Sum has 49 distinct computational tile types and 7 seed tile

types. Each tile type encodes no more than two bits of the

input (one bit of the target number and one bit of one of the

sum numbers). The � tile encodes the solution, but has no

knowledge of the input.

If every tile in the assembly were represented by a differ-

ent node on the network, it would be trivial to argue that the

computation were discreet; however, since a single node on

the network may represent several tiles, the argument has

to take into account the fact that the node is not aware of

its location in the assembly, and thus it does not know the

location of the bits of input.

Therefore, every node on the network may be aware of

either some bits of the input or the solution, but not both.

Further, of the bits the node knows, it does not know their

position, thus the information available to any one node is

highly limited, resulting in a discreet system.

4.2 Fault-Tolerance

We call a distributed system fault-tolerant if, given a

fraction of the network nodes failing or acting in a ma-

licious fashion, the probability of successful computation

can still be bounded arbitrarily close to 1 without paying a

major (exponential) cost in speed. Note that usually, fault-

tolerance is defined only in terms of faulty nodes; however,

the tile style allows our definition to be even stronger, dis-

allowing either faulty or malicious nodes from breaking the

computation.

While the system from Section 3.1.2 that solves Subset-

Sum does not have the fault-tolerance properties we desire,

we rely on related work in fault-tolerance of tile systems to

show that we could design a fault-tolerant sibling of that tile

system. Winfree et al. [21] and Goel et al. [9] have shown

that given a tile system and a certain fraction of malicious

tiles, one can linearly slow down the system by increasing

the number of tiles (e.g., break each tile into a 2 × 2 grid

and represent it with four tiles), and bring the probability of

error exponentially close to 0. For example, increasing the

number of tiles and the computation speed by O(n) would

bring the previous error probability of e to eO(n).

4.3 Scalability

We call a distributed system scalable if the rate of com-

munication per node does not grow with the input size.

Every tile in the assembly requires a constant amount of

communication to attach to the assembly. Once attached, it

can only participate in the recruiting of two other tiles, thus

the communication associated with each tile is bounded.

Because there is only a constant number of types of tiles (49
for SubsetSum), the number of nodes each component has

to sample to recruit the appropriate component is bounded

by a constant, with high probability. For example, for the

tile system described in Section 3.1.2 that solves Subset-

Sum, a tile has to sample 49 other nodes to have at least

an 1− e−1 probability of finding a fitting component. Sam-

pling 49×k = 98 nodes brings the probability of success to

1−e−k. Thus with high probability, no node representing a

component will need more than a constant amount of com-

munication originating from it in order to recruit another

component to attach.

5 Contributions

We have developed an architectural style for discreet,

fault-tolerant, and scalable computation on a large network

and have argued how to design systems based on this archi-

tectural style for every computational problem solvable on

a computer. We have further presented an architecture that

solves SubsetSum, an NP-complete problem. Because of

the nature of NP-complete problems, this architecture can

be used to solve all NP problems, such as the traveling sales-

man problem, a variety of scheduling problems, resource al-

location problems, and boolean formula satisfiability prob-

lems such as 3-SAT.

The architectural style is based heavily on the theoreti-

cal study of self-assembly, and systems built based on the

style inherit the discreetness, fault-tolerance, and scalability



of tile systems. We have argued that the system designed

based on the tile style and that solves SubsetSum, is dis-

creet, fault-tolerant, and scalable, and further that these are

provable properties of the system, which is a desirable qual-

ity of software architectures.
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