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Abstract. The tile assembly model, a formal model of crystal growth, is
of special interest to computer scientists and mathematicians because it is
universal [1]. Therefore, tile assembly model systems can compute all the
functions that computers compute. In this paper, I formally define what
it means for a system to compute a function deterministically and present
systems that add and multiply. While the proof that the tile assembly
model is universal [2] implies the construction of such systems, those
systems are in some sense “large” and “slow.” The systems presented
here all use Θ(1) different tiles (8 to add and 28 to multiply) and compute
in time linear in the input size.

1 Introduction

Self-assembly is a process that is ubiquitous in nature. Systems form on all
scales via self-assembly: atoms self-assemble to form molecules, molecules to form
complexes, and stars and planets to form galaxies. One manifestation of self-
assembly is crystal growth: molecules self-assembling to form crystals. Crystal
growth is an interesting area of research for computer scientists because it has
been shown that, in theory, under careful control, crystals can compute [2].

While DNA computation suffers from relatively high error rates, the study
of self-assembly shows how to utilize redundancy to design systems with built-in
error correction [3–5]. Barish et al. have demonstrated a DNA implementation
of tile systems, one that copies an input and another that counts in binary [6].
Similarly, Rothemund et al. have demonstrated a DNA implementation of a tile
system that computes the xor function, resulting in a Sierpinski triangle [7].

1.1 Tile Assembly Model

The tile assembly model [1, 2, 8] is a formal model of crystal growth. It was
designed to model self-assembly of molecules such as DNA. It is an extension of
a model proposed by Wang [9].

The model has square tiles that may stick together based on various binding
domains on their four sides. The four binding domains, elements of a finite



alphabet Σ, define the type of the tile. The strength of the binding domains are
defined by the strength function g. The placement of some tiles on a 2-D grid is
called a configuration, and a tile may attach in empty positions on the grid if the
total strength of all the binding domains on that tile that match its neighbors
exceeds the current temperature (a natural number). Finally, a tile system S is a
triple 〈T, g, τ〉, where T is a finite set of tiles, g is a strength function, and τ ∈ N

is the temperature, where N = Z≥0.
Starting from a seed configuration S, tiles may attach to form new configu-

rations. If that process terminates, the resulting configuration is said to be final.
At some times, it may be possible for more than one tile to attach at a given
position, or there may be more than one position where a tile can attach. If for
all sequences of tile attachments, all possible final configurations are identical,
then S is said to produce a unique final configuration on S. The assembly time of
the system is the minimal number of steps it takes to build a final configuration,
assuming maximum parallelism.

Let f be a function f : N
n → N

m. A tile system S is said to deterministically
compute f if these exists a seed that encodes a ∈ N

n and S produces a unique
final configurations F that encodes f(a).

I refer the reader to [10] for more formal versions of the definitions. In the
remainder of this paper, I will examine adders, systems that compute f(α, β) =
α + β and multipliers, systems that compute f(α, β) = αβ. I require systems to
encode their inputs in binary, and call the set of tiles used to encode the input
Γ .

1.2 Adding

I present a system that uses eight tiles to add numbers. Intuitively, S+8 has eight
tiles with the east, north, and south sides as the input sides and the west side as
the output side, outputting 1 iff the sum of the inputs is at least 2. To encode
the answer, the type of the tile is determined by the sum of the inputs, modulo
2. Figure 1(a) shows the eight tiles for all possible 0 and 1 binding domains for
the three input sides. The 1 or 0 in the middle of each tile is the output bit that
that tile encodes (the tile’s v8 value).

Theorem 1. Let Σ8 = {0, 1}, g8 = 1, τ8 = 3, and T8 be a set of tiles over
Σ8 as described in Figure 1(a). Then S+8 = 〈T8, g8, τ8〉 computes the function
f(α, β) = α + β.

Figure 1(b) shows a sample seed configuration which encodes two numbers
in binary: 1000102 = 34, 110112 = 27. Number 34 is encoded on the top row
and number 27 is encoded on the bottom row. There are 5 tiles in Γ8, the 1 and
0 tiles for each of the two inputs, and the single starter tile on the right side.
Note that at the start, only one tile may attach to this configuration because
τ8 = 3. Figure 1(c) shows the final configuration for the example of 34 + 27,
with the solution encoded on the center row. The row reads 1111012 which is
61 = 34 + 27. Because the sum of two n-bit numbers may be as large as n + 1
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Fig. 1. Tile system S+8 computes the function f(α, β) = α + β. Each of the eight tiles
(a) has 3 input sides (east, north, and south) and 1 output side (west) and is labeled
with a 1 or a 0 to assist the reader with reading the encoding v8. Given a sample input
of β = 1000102 = 34 and α = 110112 = 27 (b), with 34 on top row and 27 on the
bottom row, the system fills the row in the middle with α + β = 1111012 = 61 to
produce the unique final configuration (c). Note that the least significant digit is on
the right. Also note that the inputs are padded with extra 0 tiles in the most significant
bit places because the sum of two n-bit numbers may be as large as n + 1 bits.

bits, each of the two inputs needs to be padded to be n + 1 bits long with extra
0 tiles.

The logic of the system is identical to a series of 1-bit full adders. Each
solution tile takes in a bit from each of the inputs on the north and south sides
and a carry bit from the previous solution tile on the east side, and outputs the
next carry bit on the west side. Because τ8 = 3, only a tile with three neighbors
may attach at any time, and therefore, no tile may attach until its right neighbor
has. Thus the assembly time for this system is n steps to add two n-bit numbers.
Note that |Γ8| = 5 and |T8| = 8. The complete proof of theorem 1, and of the
assembly time of S+8 can be found in [10].

1.3 Multiplying

While I have only described a single adder system, there are many other such
systems. Some of them add a single bit per row. While not very interesting as
an adder system on its own, such a system will be very helpful in making a
multiplier system. I do not formally define such an adder here, but there are two
instances of such adders in [10]. I now present a multiplier system that performs
part of the computation on each row, and presents the product of two inputs on
the top row of an almost complete rectangle.

Observe that if β =
∑

i βi2i, for βi ∈ {0, 1}, that is, the ith bit of β is βi,
then the product αβ can be written as αβ =

∑
i βiα2i. That is, one can multiply

α by each of the powers of 2 in β, and then add up the products. Multiplying
by 2 in binary is simple — it is a left-shift. A system with tiles that “flow”
the information to the left and display the information received from the right
would perform such a left-shift. What is left is to add the rows representing the
appropriate powers of 2 to construct the product of two numbers. The system
should, therefore, add up to n numbers, one per row. It is feasible to imagine such
a system that on each row adds a new number to a running total, and arrives
at the sum of n numbers on the nth row. Thus I have informally described two
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Fig. 2. Tile system S× computes the function f(α, β) = αβ and uses 28 distinct tile
types (a). Given a sample input of α = 10101112 = 87, and β = 1011012 = 45 (b), with
87 on bottom row and 45 on the right-most column, the system fills the rectangle (c).
The ith row has two pieces of information: on the lower half of each tile is the value of
the appropriate bit of 2iα and on the upper half is the running sum of the products of
α and powers of 2 in β smaller or equals to i. The upper portion of the top row reads
the solution: αβ = 01111010010112 = 3915 = 87 · 45.

sets of tiles: one that performs a left-shift and one that adds a number to the
running total on each row. Combining the functionality of these tiles into one
system produces a multiplier system.

Figure 2(a) shows the tiles of S× and Figures 2(b) and 2(c) show an example
execution of S× on α = 87 and β = 45. The input α is encoded on the bottom row
and the input β is encoded on the right-most column. There are 4 special magenta
tiles which deal with the input and fill in the bottom row of the computation.
These tiles are necessary because the least significant bit of the column input is
20 and thus requires no left-shift. The blue tiles code rows that have a 0 in the
input β. These tiles perform a left-shift, but do not add the current power of
2 to the running sum. The green and yellow tiles fill in the rows that have a 1
in the input β. Yellow tiles indicate the incoming carry bit is 0, and green tiles
indicate that the bit is 1. Each tile, in addition to its binding domains, is labeled
with two pieces of information: the lower half of the tile on the ith row displays
the appropriate bit of 2ia and the upper half of the tile displays the appropriate
bit of the running sum so far. The top half of the top row displays the solution.
In the example, the solution is 01111010010112 = 3915 = αβ.



Theorem 2. Let Σ× = {0, 1, 00, 01, 10, 11, 20, 21}, g× = 1, τ× = 2, and T×
be a set of tiles over Σ× as described in Figure 2(a). Then S× = 〈T×, g×, τ×〉
computes the function f(α, β) = αβ.

There are 6 tiles in Γ×, the 1 and 0 tiles for each of the inputs and special
0 and 1 tiles for the least significant bit of β. Because the product of two n-bit
numbers may be as large as 2n bits, the row input to the multiplier system
needs to be padded with n extra 0 tiles. The column input does not need this
padding. The assembly time for this system is Θ(nα + nβ). Note that |Γ×| = 6
and |T×| = 28. The complete proof of theorem 2, and of the assembly time of
S× can be found in [10].

2 Contributions

The tile assembly model is a formal model of self-assembly and crystal growth.
I explored what it means for a tile assembly system to compute a function
deterministically and designed systems to add and multiply. The adding system
uses 8 and the multiplying system uses 28 computational tiles. Both systems use
Θ(1) input tiles and compute in Θ(n) steps for an n-bit input.
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