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D
istributed systems pose unique challenges for 
software developers. Reasoning about concurrent 
activities of system nodes and even understanding 
the system’s communication topology can be 
difficult. A standard approach to gaining insight 

into system activity is to analyze system logs. Unfortunately, 
this can be a tedious and complex process. This article 
looks at several key features and debugging challenges 
that differentiate distributed systems from other kinds of 
software. The article presents several promising tools and 
ongoing research to help resolve these challenges.

DISTRIBUTED-SYSTEM FEATURES AND CHALLENGES
Distributed systems differ from single-machine programs 
in ways that are simultaneously positive in providing 
systems with special capabilities, and negative in presenting 
software-development and operational challenges.

Heterogeneity
A distributed system’s nodes may include mobile phones, 
laptops, server-class machines, and more. This hardware 
and software diversity in node resources and network 
connectivity can make a distributed system more robust, 
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but this heterogeneity forces developers to manage 
compatibility during both development and debugging.

Concurrency
Simultaneous operation by multiple nodes leads to 
concurrency, which can make a distributed system 
outperform a centralized system. However, concurrency 
may introduce race conditions and deadlocks, which are 
notoriously difficult to diagnose and debug. Additionally, 
networks introduce packet delay and loss, exacerbating the 
issues of understanding and debugging concurrency.

Distributed state
Distributing system state across multiple nodes can 
remove a central point of failure and improve scalability, 
but distributed state requires intricate node coordination 
to synchronize state across nodes—for example, nodes 
must ensure their local states are consistent. Potential 
inconsistencies are prevented by distributed algorithms, 
such as those that guarantee a particular flavor of data 
consistency and cache coherence. Developers may find it 
difficult, or even impossible, to reconstruct the global state 
of the system when it is distributed on many nodes. This 
complicates bug diagnosis and validation.

Partial failures
The distribution of state and responsibility allows distributed 
systems to be robust and survive a variety of failures. For 
example, Google’s Spanner system can survive failures of 
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entire data centers.2 Achieving such fault tolerance, however, 
requires developers to reason through complex failure 
modes. For most distributed systems, fault tolerance cannot 
be an afterthought; the systems must be designed to deal 
with failures. Such failure resiliency is complex to design and 
difficult to test.

EXISTING APPROACHES
What follows is an overview of seven approaches designed 
to help software engineers validate and debug distributed 
systems.

Testing
A test suite exercises a specific set of executions to ensure 
that they behave properly. Most testing of distributed 
systems is done using manually written tests, typically 
introduced in response to failures and then minimized.13 
Testing is an effective way to detect errors. However, since 
testing exercises a limited number of executions, it can never 
guarantee to reveal all errors.

Model checking
Model checking is exhaustive testing, typically up to a 
certain bound (number of messages or steps in an execution). 
Symbolic model checking represents and explores possible 
executions mathematically; explicit-state model checking 
is more practical because it actually runs the program, 
controlling its executions rather than attempting to abstract 
it. MoDist performs black-box model checking, permuting 
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message sequences and changing the execution speed 
of a process relative to other processes in the system.17 
MaceMC is a white-box technique that achieves speedups 
by adding programming-language support for model 
checking.6 Common problems of all model-checking tools 
are scalability and environmental modeling, so they rarely 
achieve a guarantee.

Theorem proving
Theorem proving can, in principle, prove a distributed 
system to be free of defects. Amazon uses TLA+ to verify its 
distributed systems.10 Two recent systems can construct a 
verified distributed-system implementation. Verdi uses the 
Coq tool, whose expressive type system makes type checking 
equivalent to theorem proving, thanks to the Curry-Howard 
isomorphism; the Coq specification is then compiled into 
an OCaml implementation of the distributed system.15 In 
contrast, IronFleet uses TLA and Hoare-logic verification to 
similarly produce a verified implementation of a distributed 
system.5 The enormous effort needed to use these tools 
makes them most appropriate for new implementations 
of small, critical cores. Other techniques are needed for 
existing distributed systems.

Record and replay
Record and replay captures a single execution of the system 
so that this execution can be later replayed or analyzed. 
This is especially useful when debugging nondeterministic 
behaviors. A record-and-replay tool such as Friday4 or 
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D3S7 captures all nondeterministic events so that an 
execution can be reproduced exactly. Recording a complex 
execution, however, may be prohibitively expensive and may 
change the behavior of the underlying system.

Tracing
Tracing tracks the flow of data through a system, even 
across applications and protocols such as a database, web 
server, domain-name server, load balancer, or virtual private 
network protocol.12 For example, pivot tracing dynamically 
instruments Java-based systems to collect user-defined 
metrics at different points in the system and collates the 
resulting data to provide an inter-component view of the 
metrics over multiple executions.8 Dapper is a lower-level 
tracing system used at Google to trace infrastructure 
services.14 Tracing is more efficient than record and replay 
because it focuses on a specific subset of the data, but 
it requires instrumenting applications and protocols to 
properly forward, without consuming, the tracing metadata.

Log analysis
Log analysis is an even lighter-weight approach that works 
with systems that cannot be modified. It is a common black-
box approach in which a system’s console logs, debug logs, 
and other log sources are used to understand the system. 
For example, Xu et al. applied machine learning to logs 
to detect anomalies in Google infrastructure services.16 

Detailed logs from realistic systems contain a great deal 
of valuable detail, but they tend to be so large that they 
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are overwhelming to programmers, who as a result cannot 
directly benefit from them. 

Visualization
The complexity of distributed systems has inspired work on 
visualization of such systems to make them more transparent 
to developers. For example, Theia displays a visual signature 
that summarizes various aspects of a Hadoop execution, such 
as the execution’s resource utilization.3 These signatures can 
be used to spot anomalies and to compare executions. Tools 
such as Theia provide high-level summaries of a system’s 
behavior. They do not, however, help a developer understand 
the underlying communication pattern in the system, 
including the distributed ordering of messages.

VISUALIZING DISTRIBUTED-SYSTEM EXECUTIONS
As noted above, the ability to visualize distributed-system 
executions can help developers understand and debug 
their distributed systems. ShiViz is such a visualization tool, 
displaying distributed-system executions as interactive time-
space diagrams that explicitly capture distributed ordering of 
messages and events in the system. This diagram reproduces 
the events and interactions captured in the execution log, 
making the ordering information explicit through a concise 
visualization. A developer can expand, collapse, and hide parts 
of the diagram, as well as search for particular interaction 
patterns. ShiViz is freely available as a browser application; 
any developer can visualize a log, without installing software 
or sending the log over the network.
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To provide a rich and accurate visualization of a distributed 
system’s execution, ShiViz displays the happens-before 
relation. Given event e at node n, the happens-before relation 
indicates all the events that logically precede e. Other events 
might have already occurred at other nodes according to 
wall-clock time, but node n cannot tell whether those other 
events happened before or after e, and they do not affect the 
behavior of e. This partial order can rule out which events 
do not cause others, identify concurrent events, and help 
developers mentally replay parts of the execution. 

Figure 1 illustrates an execution of the two-phase commit 
protocol with one transaction manager and two replicas.1 
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FIGURE 1: Time-space diagram of an execution with three nodes
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This time-space diagram is a visualization of the underlying 
happens-before partial order, showing an execution with 
three nodes. Lines with arrows denote the partial ordering of 
events, each of which has an associated vector timestamp in 
brackets. (See timestamp sidebar on next page.)

Figure 2 shows a screenshot of ShiViz visualizing 
an execution of a distributed data-store system called 
Voldemort.11 In the middle of the screen is the time-space 
diagram, with time flowing from top to bottom. The colored 
boxes at the top represent nodes, and the vertical lines 
below them are the node timelines. Circles on each node’s 
timeline represent events executed by that node. Edges 
connect events, representing the recorded happens-before 
relation: an event that is higher in the graph happened before 
an event positioned lower in the graph that it is connected 
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FIGURE 2: A ShiViz screenshot

ShiViz display log lines that correspond to the 
currently visible time-space diagram to the right.

Clicking on an 
event displays its 
details in a popup 
and highlights the 
relevant log line in 
the left panel.

Boxes represent nodes in the system; the 
box colors provide a consistent coloring for 
events and log lines associated with a node.

Each circle represents an 
event on a node timeline.

Local events with no 
intermediate communication 
can be collapsed into a 
larger circle labeled with the 
number of collapsed events.

ShiViz supports searching 
the time-space diagram by 
keywords and by structure.

Hovering over an event 
displays its details.

The user can click on a node to hide it and 
its log lines from the visualization. Hidden 
nodes can be restored with a double click.
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to via a downward path. ShiViz augments the time-space 
diagram with operations to help developers explore 
distributed-system executions and corresponding logs. 
Figure 2 details some of these operations. 
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Distributed timestamps
 A typical distributed-system log does not contain enough information
 to regenerate the happens-before relation, and this is one reason that 
distributed-system logs are so hard to interpret. ShiViz relies on logs that have 
been enhanced by another tool, ShiVector, to include vector clock timestamps that 
capture the happens-before relation between events.9 Each node α maintains a 
vector of logical clocks, one clock for each node in the distributed system, including 
itself. α’s ith clock is a lower bound on the current logical time at node i. The node 
α increments the αth component of its vector clock each time it performs a local 
action or sends or receives a message. Each message contains the sending node’s 
current vector clock; upon message receipt, the receiving node updates its vector 
clock to the elementwise maximum of its local and received timestamps.

ShiVector is a lightweight instrumentation tool that augments the information 
already logged by a distributed system with the partial ordering information 
encoded as vector clocks. ShiVector interposes on communication and logging 
channels at each node in the system to add vector clock timestamps to every 
logged event.

ShiViz parses ShiVector-augmented logs to determine, for each event: (1) the 
node that executed the event; (2) the vector timestamp of the event; and (3) the 
event’s description. 

ShiViz permits a user to customize the parsing of logs using regular 
expressions, which can be used to  associate additional information, or fields, with 
each event.
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UNDERSTANDING DISTRIBUTED-SYSTEM EXECUTIONS
ShiViz helps developers (1) to understand the relative 
ordering of events and the likely chains of causality between 
events, which is important for debugging concurrent 
behavior; (2) to query for certain events and interaction 
patterns between hosts; and (3) to identify structural 
similarities and differences between pairs and groups 
of executions. The time-space diagram representation 
supports the first goal by visualizing event ordering and 
communication. The next section describes two search 
operations that support the second goal, and operations 
over multiple executions that correspond to the third goal.

Keyword search and structured search operations
ShiViz implements two kinds of search operations: keyword 
and structured. Both types are accessible to the developer 
through the top search bar (see figure 2). 

Keyword search allows a developer to highlight all events 
in the diagram that contain a field matching a query. For 
example, searching for send will highlight all events in the 
diagram that have a field whose value is send. The results 
can be further constrained with field identifiers and regular 
expressions. For example, the query node=alice && 
priority=CRITICAL* will highlight only events at the alice 
node with a priority field matching the regular expression 
CRITICAL*.

In a structured search, a user queries ShiViz for any set 
of events related through a particular ordering pattern, 
and ShiViz highlights the sections of the diagram (events 
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and their interconnections) that match this pattern. ShiViz 
includes several predefined patterns: 
3  Request-response. A source node sends a request and the 

destination node sends back a response.
3  Broadcast. A node sends a message to most other nodes in 

the system.
3 Gather. A node receives a message from most other nodes. 

A user can also compose a custom pattern consisting 
of nodes, node events, and connections between events 
representing a partial order. Figure 3 shows such a custom 
pattern, depicting three nodes communicating in a ring: 
node 1 communicates only with node 2; node 2 with node 3; 
and node 3 with node 1. Drawing this pattern allows the 
user to search for all instances of this three-node ring 
communication in the execution. ShiViz automatically 
translates the drawn pattern into a textual representation 
(see search bar at the top), and it is possible to edit, 

FIGURE 3: Structured search feature

3
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copy, and paste the textual representation directly. The 
structured search feature allows users to express custom 
communication patterns between events and to query 
an execution for instances of the specified pattern. The 
presence or absence of queried subgraphs at particular 
points in an execution can help users detect anomalous 
behavior, aiding them in their debugging efforts.

Comparing executions
ShiViz can help users understand multiple executions of a 
system. When ShiViz parses multiple executions, the user 
can choose between viewing executions individually or 
pairwise. 

In the pairwise view, a user can compare the two 
executions further by highlighting their differences. When 
enabled, the nodes are compared by name. For nodes present 
in both executions, ShiViz compares their events one by one 
by comparing the corresponding event descriptions. Nodes 
or events in one execution that do not appear in the other are 
redrawn as rhombuses. 

Figure 4 illustrates this pairwise comparison on a log of 
the two-phase commit protocol. The two selected events 
in the figure explain the difference between these two 
executions: the two-phase commit successfully commits a 
transaction in the left execution, but aborts a transaction in 
the right execution.

The explicit highlighting of differences provides users 
with fast detection of anomalous events or points where 
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the two executions diverge. The search features described 
earlier can be applied in the pairwise view to help developers 
detect specific unifying or distinguishing features across 
traces, allowing them to design and test their systems more 
effectively.

Clustering executions
To help manage many executions, ShiViz supports grouping 
executions into clusters. A user can cluster by the number 
of nodes or by comparison to a base execution, using as 
a distance metric the differencing mechanism described 
earlier. Cluster results are presented as distinct groups of 
listed execution names.

Execution clusters aid in the inspection and comparison 
of multiple executions by providing an overview of all 

FIGURE 4: Two two-phase commit protocol executions4
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executions at once. Users can quickly scan through cluster 
results to see how executions are alike or different, based 
on the groups into which they are sorted. Clustering also 
helps users pinpoint executions of interest by allowing 
them to inspect a subset of executions matching a desired 
measure. This subset can be further narrowed by performing 
a keyword search or a structured search on top of the 
clustering results. Execution names among clusters are 
highlighted if their corresponding graphs contain instances 
matching the user’s search query.

ShiViz helps developers visualize the event order, 
search for communication patterns, and identify potential 
event causality. This can help developers reason about the 
concurrency of events in an execution’s distributed system 
state, and distributed failure modes, as well as formulate 
hypotheses about system behavior and verify them via 
execution visualizations. Meanwhile, the generality of 
logging makes ShiVector and ShiViz broadly applicable to 
systems deployed on a wide range of devices.

ShiViz has some limitations.  ShiViz surfaces low-level 
ordering information, which makes it a poor choice for 
understanding high-level system behavior. The ShiViz 
visualization is based on logical and not realtime ordering, 
and cannot be used to study certain performance 
characteristics. The ShiViz tool is implemented as a client-
side-only browser application, making it portable and 
appropriate for analyzing sensitive log data. This design 
choice, however, also limits its scalability.

ShiViz is an open-source tool with an online deployment 
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(http://bestchai.bitbucket.org/shiviz/). Watch a video 
demonstrating key ShiViz features at http://bestchai.
bitbucket.org/shiviz-demo/.
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