
acmqueue | march-april 2016 91

distributed systems

D
istributed systems pose unique challenges for
software developers. Reasoning about concurrent
activities of system nodes and even understanding
the system’s communication topology can be
difficult. A standard approach to gaining insight

into system activity is to analyze system logs. Unfortunately,
this can be a tedious and complex process. This article
looks at several key features and debugging challenges
that differentiate distributed systems from other kinds of
software. The article presents several promising tools and
ongoing research to help resolve these challenges.

DISTRIBUTED-SYSTEM FEATURES AND CHALLENGES
Distributed systems differ from single-machine programs
in ways that are simultaneously positive in providing
systems with special capabilities, and negative in presenting
software-development and operational challenges.

Heterogeneity
A distributed system’s nodes may include mobile phones,
laptops, server-class machines, and more. This hardware
and software diversity in node resources and network
connectivity can make a distributed system more robust,

Challenges and
Options for
Validation and
Debugging

IVAN BESCHASTNIKH

PATTY WANG

YURIY BRUN

MICHAEL D. ERNST

1 OF 20 TEXT
ONLY

Debugging
 Distributed
Systems

acmqueue | march-april 2016 92

distributed systems

but this heterogeneity forces developers to manage
compatibility during both development and debugging.

Concurrency
Simultaneous operation by multiple nodes leads to
concurrency, which can make a distributed system
outperform a centralized system. However, concurrency
may introduce race conditions and deadlocks, which are
notoriously difficult to diagnose and debug. Additionally,
networks introduce packet delay and loss, exacerbating the
issues of understanding and debugging concurrency.

Distributed state
Distributing system state across multiple nodes can
remove a central point of failure and improve scalability,
but distributed state requires intricate node coordination
to synchronize state across nodes—for example, nodes
must ensure their local states are consistent. Potential
inconsistencies are prevented by distributed algorithms,
such as those that guarantee a particular flavor of data
consistency and cache coherence. Developers may find it
difficult, or even impossible, to reconstruct the global state
of the system when it is distributed on many nodes. This
complicates bug diagnosis and validation.

Partial failures
The distribution of state and responsibility allows distributed
systems to be robust and survive a variety of failures. For
example, Google’s Spanner system can survive failures of

2 OF 20

acmqueue | march-april 2016 93

distributed systems

entire data centers.2 Achieving such fault tolerance, however,
requires developers to reason through complex failure
modes. For most distributed systems, fault tolerance cannot
be an afterthought; the systems must be designed to deal
with failures. Such failure resiliency is complex to design and
difficult to test.

EXISTING APPROACHES
What follows is an overview of seven approaches designed
to help software engineers validate and debug distributed
systems.

Testing
A test suite exercises a specific set of executions to ensure
that they behave properly. Most testing of distributed
systems is done using manually written tests, typically
introduced in response to failures and then minimized.13
Testing is an effective way to detect errors. However, since
testing exercises a limited number of executions, it can never
guarantee to reveal all errors.

Model checking
Model checking is exhaustive testing, typically up to a
certain bound (number of messages or steps in an execution).
Symbolic model checking represents and explores possible
executions mathematically; explicit-state model checking
is more practical because it actually runs the program,
controlling its executions rather than attempting to abstract
it. MoDist performs black-box model checking, permuting

3 OF 20

For most
distributed
systems,
fault
tolerance

cannot be an
afterthought;
the systems
must be
designed to deal
with failures.

acmqueue | march-april 2016 94

distributed systems

message sequences and changing the execution speed
of a process relative to other processes in the system.17
MaceMC is a white-box technique that achieves speedups
by adding programming-language support for model
checking.6 Common problems of all model-checking tools
are scalability and environmental modeling, so they rarely
achieve a guarantee.

Theorem proving
Theorem proving can, in principle, prove a distributed
system to be free of defects. Amazon uses TLA+ to verify its
distributed systems.10 Two recent systems can construct a
verified distributed-system implementation. Verdi uses the
Coq tool, whose expressive type system makes type checking
equivalent to theorem proving, thanks to the Curry-Howard
isomorphism; the Coq specification is then compiled into
an OCaml implementation of the distributed system.15 In
contrast, IronFleet uses TLA and Hoare-logic verification to
similarly produce a verified implementation of a distributed
system.5 The enormous effort needed to use these tools
makes them most appropriate for new implementations
of small, critical cores. Other techniques are needed for
existing distributed systems.

Record and replay
Record and replay captures a single execution of the system
so that this execution can be later replayed or analyzed.
This is especially useful when debugging nondeterministic
behaviors. A record-and-replay tool such as Friday4 or

4 OF 20

acmqueue | march-april 2016 95

distributed systems

D3S7 captures all nondeterministic events so that an
execution can be reproduced exactly. Recording a complex
execution, however, may be prohibitively expensive and may
change the behavior of the underlying system.

Tracing
Tracing tracks the flow of data through a system, even
across applications and protocols such as a database, web
server, domain-name server, load balancer, or virtual private
network protocol.12 For example, pivot tracing dynamically
instruments Java-based systems to collect user-defined
metrics at different points in the system and collates the
resulting data to provide an inter-component view of the
metrics over multiple executions.8 Dapper is a lower-level
tracing system used at Google to trace infrastructure
services.14 Tracing is more efficient than record and replay
because it focuses on a specific subset of the data, but
it requires instrumenting applications and protocols to
properly forward, without consuming, the tracing metadata.

Log analysis
Log analysis is an even lighter-weight approach that works
with systems that cannot be modified. It is a common black-
box approach in which a system’s console logs, debug logs,
and other log sources are used to understand the system.
For example, Xu et al. applied machine learning to logs
to detect anomalies in Google infrastructure services.16

Detailed logs from realistic systems contain a great deal
of valuable detail, but they tend to be so large that they

5 OF 20

acmqueue | march-april 2016 96

distributed systems

are overwhelming to programmers, who as a result cannot
directly benefit from them.

Visualization
The complexity of distributed systems has inspired work on
visualization of such systems to make them more transparent
to developers. For example, Theia displays a visual signature
that summarizes various aspects of a Hadoop execution, such
as the execution’s resource utilization.3 These signatures can
be used to spot anomalies and to compare executions. Tools
such as Theia provide high-level summaries of a system’s
behavior. They do not, however, help a developer understand
the underlying communication pattern in the system,
including the distributed ordering of messages.

VISUALIZING DISTRIBUTED-SYSTEM EXECUTIONS
As noted above, the ability to visualize distributed-system
executions can help developers understand and debug
their distributed systems. ShiViz is such a visualization tool,
displaying distributed-system executions as interactive time-
space diagrams that explicitly capture distributed ordering of
messages and events in the system. This diagram reproduces
the events and interactions captured in the execution log,
making the ordering information explicit through a concise
visualization. A developer can expand, collapse, and hide parts
of the diagram, as well as search for particular interaction
patterns. ShiViz is freely available as a browser application;
any developer can visualize a log, without installing software
or sending the log over the network.

6 OF 20

acmqueue | march-april 2016 97

distributed systems

To provide a rich and accurate visualization of a distributed
system’s execution, ShiViz displays the happens-before
relation. Given event e at node n, the happens-before relation
indicates all the events that logically precede e. Other events
might have already occurred at other nodes according to
wall-clock time, but node n cannot tell whether those other
events happened before or after e, and they do not affect the
behavior of e. This partial order can rule out which events
do not cause others, identify concurrent events, and help
developers mentally replay parts of the execution.

Figure 1 illustrates an execution of the two-phase commit
protocol with one transaction manager and two replicas.1

7 OF 20

abort
[1,1,0)

tx aborted
[2,4,1)

replica 1

tx prepare
[0,1,0)

tx abort
[1,4,1)

r1 abort
[1,3,1)

r2 commit
[0,2,1)

tx manager

commit
[0,1,1)

tx aborted
[1,4,2)

replica 2

FIGURE 1: Time-space diagram of an execution with three nodes

1

acmqueue | march-april 2016 98

distributed systems

This time-space diagram is a visualization of the underlying
happens-before partial order, showing an execution with
three nodes. Lines with arrows denote the partial ordering of
events, each of which has an associated vector timestamp in
brackets. (See timestamp sidebar on next page.)

Figure 2 shows a screenshot of ShiViz visualizing
an execution of a distributed data-store system called
Voldemort.11 In the middle of the screen is the time-space
diagram, with time flowing from top to bottom. The colored
boxes at the top represent nodes, and the vertical lines
below them are the node timelines. Circles on each node’s
timeline represent events executed by that node. Edges
connect events, representing the recorded happens-before
relation: an event that is higher in the graph happened before
an event positioned lower in the graph that it is connected

8 OF 20

FIGURE 2: A ShiViz screenshot

ShiViz display log lines that correspond to the
currently visible time-space diagram to the right.

Clicking on an
event displays its
details in a popup
and highlights the
relevant log line in
the left panel.

Boxes represent nodes in the system; the
box colors provide a consistent coloring for
events and log lines associated with a node.

Each circle represents an
event on a node timeline.

Local events with no
intermediate communication
can be collapsed into a
larger circle labeled with the
number of collapsed events.

ShiViz supports searching
the time-space diagram by
keywords and by structure.

Hovering over an event
displays its details.

The user can click on a node to hide it and
its log lines from the visualization. Hidden
nodes can be restored with a double click.

2

acmqueue | march-april 2016 99

distributed systems

to via a downward path. ShiViz augments the time-space
diagram with operations to help developers explore
distributed-system executions and corresponding logs.
Figure 2 details some of these operations.

9 OF 20

3
Distributed timestamps
 A typical distributed-system log does not contain enough information
 to regenerate the happens-before relation, and this is one reason that
distributed-system logs are so hard to interpret. ShiViz relies on logs that have
been enhanced by another tool, ShiVector, to include vector clock timestamps that
capture the happens-before relation between events.9 Each node α maintains a
vector of logical clocks, one clock for each node in the distributed system, including
itself. α’s ith clock is a lower bound on the current logical time at node i. The node
α increments the αth component of its vector clock each time it performs a local
action or sends or receives a message. Each message contains the sending node’s
current vector clock; upon message receipt, the receiving node updates its vector
clock to the elementwise maximum of its local and received timestamps.

ShiVector is a lightweight instrumentation tool that augments the information
already logged by a distributed system with the partial ordering information
encoded as vector clocks. ShiVector interposes on communication and logging
channels at each node in the system to add vector clock timestamps to every
logged event.

ShiViz parses ShiVector-augmented logs to determine, for each event: (1) the
node that executed the event; (2) the vector timestamp of the event; and (3) the
event’s description.

ShiViz permits a user to customize the parsing of logs using regular
expressions, which can be used to associate additional information, or fields, with
each event.

acmqueue | march-april 2016 100

distributed systems

UNDERSTANDING DISTRIBUTED-SYSTEM EXECUTIONS
ShiViz helps developers (1) to understand the relative
ordering of events and the likely chains of causality between
events, which is important for debugging concurrent
behavior; (2) to query for certain events and interaction
patterns between hosts; and (3) to identify structural
similarities and differences between pairs and groups
of executions. The time-space diagram representation
supports the first goal by visualizing event ordering and
communication. The next section describes two search
operations that support the second goal, and operations
over multiple executions that correspond to the third goal.

Keyword search and structured search operations
ShiViz implements two kinds of search operations: keyword
and structured. Both types are accessible to the developer
through the top search bar (see figure 2).

Keyword search allows a developer to highlight all events
in the diagram that contain a field matching a query. For
example, searching for send will highlight all events in the
diagram that have a field whose value is send. The results
can be further constrained with field identifiers and regular
expressions. For example, the query node=alice &&
priority=CRITICAL* will highlight only events at the alice
node with a priority field matching the regular expression
CRITICAL*.

In a structured search, a user queries ShiViz for any set
of events related through a particular ordering pattern,
and ShiViz highlights the sections of the diagram (events

10 OF 20

acmqueue | march-april 2016 101

distributed systems

and their interconnections) that match this pattern. ShiViz
includes several predefined patterns:
3 Request-response. A source node sends a request and the

destination node sends back a response.
3 Broadcast. A node sends a message to most other nodes in

the system.
3 Gather. A node receives a message from most other nodes.

A user can also compose a custom pattern consisting
of nodes, node events, and connections between events
representing a partial order. Figure 3 shows such a custom
pattern, depicting three nodes communicating in a ring:
node 1 communicates only with node 2; node 2 with node 3;
and node 3 with node 1. Drawing this pattern allows the
user to search for all instances of this three-node ring
communication in the execution. ShiViz automatically
translates the drawn pattern into a textual representation
(see search bar at the top), and it is possible to edit,

FIGURE 3: Structured search feature

3

11 OF 20

acmqueue | march-april 2016 102

distributed systems

copy, and paste the textual representation directly. The
structured search feature allows users to express custom
communication patterns between events and to query
an execution for instances of the specified pattern. The
presence or absence of queried subgraphs at particular
points in an execution can help users detect anomalous
behavior, aiding them in their debugging efforts.

Comparing executions
ShiViz can help users understand multiple executions of a
system. When ShiViz parses multiple executions, the user
can choose between viewing executions individually or
pairwise.

In the pairwise view, a user can compare the two
executions further by highlighting their differences. When
enabled, the nodes are compared by name. For nodes present
in both executions, ShiViz compares their events one by one
by comparing the corresponding event descriptions. Nodes
or events in one execution that do not appear in the other are
redrawn as rhombuses.

Figure 4 illustrates this pairwise comparison on a log of
the two-phase commit protocol. The two selected events
in the figure explain the difference between these two
executions: the two-phase commit successfully commits a
transaction in the left execution, but aborts a transaction in
the right execution.

The explicit highlighting of differences provides users
with fast detection of anomalous events or points where

12 OF 20

acmqueue | march-april 2016 103

distributed systems

the two executions diverge. The search features described
earlier can be applied in the pairwise view to help developers
detect specific unifying or distinguishing features across
traces, allowing them to design and test their systems more
effectively.

Clustering executions
To help manage many executions, ShiViz supports grouping
executions into clusters. A user can cluster by the number
of nodes or by comparison to a base execution, using as
a distance metric the differencing mechanism described
earlier. Cluster results are presented as distinct groups of
listed execution names.

Execution clusters aid in the inspection and comparison
of multiple executions by providing an overview of all

FIGURE 4: Two two-phase commit protocol executions4
13 OF 20

acmqueue | march-april 2016 104

distributed systems

executions at once. Users can quickly scan through cluster
results to see how executions are alike or different, based
on the groups into which they are sorted. Clustering also
helps users pinpoint executions of interest by allowing
them to inspect a subset of executions matching a desired
measure. This subset can be further narrowed by performing
a keyword search or a structured search on top of the
clustering results. Execution names among clusters are
highlighted if their corresponding graphs contain instances
matching the user’s search query.

ShiViz helps developers visualize the event order,
search for communication patterns, and identify potential
event causality. This can help developers reason about the
concurrency of events in an execution’s distributed system
state, and distributed failure modes, as well as formulate
hypotheses about system behavior and verify them via
execution visualizations. Meanwhile, the generality of
logging makes ShiVector and ShiViz broadly applicable to
systems deployed on a wide range of devices.

ShiViz has some limitations. ShiViz surfaces low-level
ordering information, which makes it a poor choice for
understanding high-level system behavior. The ShiViz
visualization is based on logical and not realtime ordering,
and cannot be used to study certain performance
characteristics. The ShiViz tool is implemented as a client-
side-only browser application, making it portable and
appropriate for analyzing sensitive log data. This design
choice, however, also limits its scalability.

ShiViz is an open-source tool with an online deployment

14 OF 20

acmqueue | march-april 2016 105

distributed systems

(http://bestchai.bitbucket.org/shiviz/). Watch a video
demonstrating key ShiViz features at http://bestchai.
bitbucket.org/shiviz-demo/.

Acknowledgments
We thank Perry Liu and Albert Xing, who helped develop
ShiViz; Jenny Abrahamson, who developed the initial
ShiVector and ShiViz prototypes; and Donald Acton and Colin
Scott, who helped evaluate ShiViz. This work is supported by
NSERC USRA, the NSERC Discovery grant, and the National
Science Foundation under grants CCF-1453474 and CNS-
1513055. This material is based on research sponsored by
DARPA under agreement number FA8750-12-2-0107. The
U.S. government is authorized to reproduce and distribute
reprints for governmental purposes, notwithstanding any
copyright notices thereon.

References
1. Bernstein, P., Hadzilacos, V., Goodman, N. 1986. Distributed

recovery. In Concurrency Control and Recovery in
Database Systems, Chapter 7. Addison-Wesley; http://
research.microsoft.com/en-us/people/philbe/chapter7.pdf.

2. Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C.,
Furman, J. J., Ghemawat, S., Gubarev, A., Heiser, C.,
Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E., Li, H.,
Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan, S., Rao,
R., Rolig, L., Saito, Y., Szymaniak, M., Taylor, C., Wang, R.,
Woodford, D. 2012. Spanner: Google’s globally distributed
database. 10th Usenix Symposium on Operating Systems

15 OF 20

acmqueue | march-april 2016 106

distributed systems

Design and Implementation; https://www.usenix.org/
conference/osdi12/technical-sessions/presentation/
corbett.

3. Garduno, E., Kavulya, S. P., Tan, J., Gandhi, R., Narasimhan,
P. 2012. Theia: visual signatures for problem diagnosis
in large Hadoop clusters. Proceedings of the 26th
International Conference on Large Installation System
Administration:
33-42; https://users.ece.cmu.edu/~spertet/papers/
hadoopvis-lisa12-cameraready-v3.pdf.

4. Geels, D., Altekar, G., Maniatis, P., Roscoe, T., Stoica,
I. 2007. Friday: global comprehension for distributed
replay. Proceedings of the Fourth Usenix Conference on
Networked Systems Design and Implementation; https://
www.usenix.org/legacy/event/nsdi07/tech/full_papers/
geels/geels.pdf.

5. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J. R., Parno,
B., Roberts, M. L., Setty, S., Zill, B. 2015. IronFleet: proving
practical distributed systems correct. Proceedings of the
25th Symposium on Operating Systems Principles; http://
sigops.org/sosp/sosp15/current/2015-Monterey/250-
hawblitzel-online.pdf.

6. Killian, C., Anderson, J. W., Jhala, R., Vahdat, A. 2007.
Life, death, and the critical transition: finding liveness
bugs in systems code. Proceedings of the Fourth
Usenix Conference on Networked Systems Design and
Implementation; https://www.usenix.org/legacy/event/
nsdi07/tech/killian/killian.pdf.

7. Liu, X., Guo, Z., Wang, X., Chen, F., Lian, X., Tang, J., Wu,

16 OF 20

acmqueue | march-april 2016 107

distributed systems

M., Kaashoek, M. F., Zhang, Z. 2008. D3S: debugging
deployed distributed systems. Proceedings of the Fifth
Usenix Symposium on Networked Systems Design and
Implementation: 423-437; http://static.usenix.org/event/
nsdi08/tech/full_papers/liu_xuezheng/liu_xuezheng.pdf.

8. Mace, J., Roelke, R., Fonseca, R. 2015. Pivot tracing:
dynamic causal monitoring for distributed systems.
Proceedings of the 25th Symposium on Operating Systems
Principles: 378-393; http://sigops.org/sosp/sosp15/
current/2015-Monterey/122-mace-online.pdf.

9. Mattern, F. 1989. Virtual time and global states of
distributed systems. Proceedings of the International
Workshop on Parallel and Distributed Algorithms;
http://homes.cs.washington.edu/~arvind/cs425/doc/
mattern89virtual.pdf.

10. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker,
M., Deardeuff, M. 2015. How Amazon Web Services uses
formal methods. Communications of the ACM 58(4): 66-
73; http://cacm.acm.org/magazines/2015/4/184701-how-
amazon-web-services-uses-formal-methods/fulltext.

11. Project Voldemort; http://www.project-voldemort.com/
voldemort/.

12. Sambasivan, R. R., Fonseca, R., Shafer, I., Ganger, G. 2014.
So, you want to trace your distributed system? Key design
insights from years of practical experience. Parallel Data
Laboratory, Carnegie Mellon University; http://www.pdl.
cmu.edu/PDL-FTP/SelfStar/CMU-PDL-14-102.pdf.

13. Scott, C., Wundsam, A., Raghavan, B., Panda, A., Or, A., Lai,
J., Huang, E., Liu, Z., El-Hassany, A., Whitlock, S., Acharya,

17 OF 20

acmqueue | march-april 2016 108

distributed systems

H. B., Zarifis, K., Shenker, S. 2014. Troubleshooting blackbox
SDN control software with minimal causal sequences.
Proceedings of the ACM Conference on SIGCOMM: 395-
406; https://www.eecs.berkeley.edu/~apanda/papers/sts.
pdf.

14. Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson,
P., Plakal, M., Beaver, D., Jaspan, S., Shanbhag, C. 2010.
Dapper, a large-scale distributed systems tracing
infrastructure. Research at Google; http://research.
google.com/pubs/pub36356.html.

15. Wilcox, J. R., Woos, D., Panchekha, P., Tatlock, Z., Wang,
X., Ernst, M. D., Anderson, T. 2015. Verdi: a framework
for implementing and formally verifying distributed
systems. Proceedings of the 36th SIGPLAN Conference
on Programming Language Design and Implementation:
357-368; https://homes.cs.washington.edu/~ztatlock/pubs/
verdi-wilcox-pldi15.pdf.

16. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M. 2010.
Experience mining Google’s production console logs.
Proceedings of the Workshop on Managing Systems via
Log Analysis and Machine Learning Techniques; http://iiis.
tsinghua.edu.cn/~weixu/files/slaml10.pdf.

17. Yang, J., Chen, T., Wu, M., Xu, Z., Liu, X., Lin, H., Yang, M.,
Long, F., Zhang, L., Zhou, L. 2009. MoDist: transparent
model checking of unmodified distributed systems.
Proceedings of the Sixth Usenix Symposium on Networked
Systems Design and Implementation: 213-228; https://
www.usenix.org/legacy/event/nsdi09/tech/full_papers/
yang/yang_html/.

18 OF 20

acmqueue | march-april 2016 109

distributed systems

LOVE IT, HATE IT? LET US KNOW feedback@queue.acm.org

Ivan Beschastnikh works on improving the design, implemen-
tation, and operation of complex systems. He is an assistant
professor in the department of computer science at the
University of British Columbia, where he leads a team of
students on projects that span distributed systems, software
engineering, security, and networks, with a particular focus
on program analysis. More information is available at his
homepage: http://www.cs.ubc.ca/~bestchai/.

Patty Wang earned her bachelor’s degree in computer sci-
ence and mathematics from the University of British Co-
lumbia. She has explored approaches to helping developers
understand and compare multiple distributed executions,
focusing on summarizing similarities and differences across
traces.

Yuriy Brun works on automating system building and creat-
ing self-adaptive systems. He is an assistant professor at the
University of Massachusetts, Amherst. He received his PhD
from the University of Southern California in 2008, and then
spent three years as a postdoctoral fellow at the University
of Washington. He has been recognized with a CAREER award
from the National Science Foundation, a Microsoft Research
SEIF (Software Engineering Innovation Foundation) award, a
Google Faculty Research award, and an IEEE TCSC (Technical
Committee on Scalable Computing) Young Achiever in Scal-
able Computing award. More information is available at his
homepage: http://people.cs.umass.edu/~brun/.

19 OF 20

acmqueue | march-april 2016 110

distributed systems

Michael D. Ernst researches ways to make software more
reliable, more secure, and easier (and more fun!) to produce.
His primary technical interests are in software engineer-
ing, programming languages, type theory, security, program
analysis, bug prediction, testing, and verification. Ernst is an
ACM Fellow and received the inaugural John Backus Award,
the NSF CAREER Award, 10 best-paper awards, and other
honors. More information is available at his homepage:
http://homes.cs.washington.edu/~mernst/.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

20 OF 20

Applicative 2016 will bring together practitioners
and researchers to share the latest emerging

technologies and trends in software development,
presented in two tracks:

Applicative 2016
New York City | June 1 - 2, 2016

Application Development
reactive programming, micro-services, single-page

application frameworks, and other approaches

Systems Software
for systems-level practitioners involved in the
design, implementation and support of novel

technologies and low-level software

applicative.acm.org
CONTENTS2

