
FOCUS: COLLABORATIVE MODELING

074 0 -74 5 9 /18 / $ 3 3 . 0 0 © 2 018 I E E E 	 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE� 25

Collaborative-
Design Conflicts
Costs and Solutions

Jae young Bang, Kakao Corporation

Yuriy Brun, University of Massachusetts Amherst

Nenad Medvidović, University of Southern California

// Collaborative design exposes software

architects to the risk of making conflicting

modeling changes that either can’t be

merged or, when merged, violate consistency

rules, nonfunctional requirements, or other

system constraints. Proactive conflict

detection can alleviate this risk. //

MODERN SOFTWARE SYSTEMS
are often designed collaboratively
by multiple software architects who
make design decisions, document
them in software models, and evolve
the models as a team. This collabora-
tive evolution is a complicated pro-
cess, especially for large teams. To
manage the high complexity, archi-
tects have adapted to using traditional
copy-edit-merge-style version-control
systems (VCSs) that enable parallel

design in individual workspaces, syn-
chronizing their work on demand.

However, architects might intro-
duce two types of design conflicts—
i.e., design changes that either

•	 conflict with each other and pre-
vent merging the models or

•	 allow merging, but in a way
that violates consistency rules,
nonfunctional requirements, or
system constraints.

Unfortunately, VCSs help discover
only the first type, and only when ar-
chitects attempt to synchronize their
models. Discovery of the second type
requires not only a merge but also
that the architects elect to run the
relevant analysis. When a conflict
occurs, resolving it might require
the architects to undo, redo, or even
abandon their design and implemen-
tation work.

Proactive conflict detection (PCD)
can alleviate the risk of design con-
flicts but requires tool support spe-
cific to collaborative design. Prior
research on PCD at the code level1
has shown that continuously making
code-level analysis results available
to developers2 reduces conflict life-
time and improves developers’ abil-
ity to make well-informed decisions.
However, it is challenging to reuse
existing PCD tools in collaborative
design. They are not built to manage
changes to graphical software models
and are often limited to the spe-
cific development environments into
which they are integrated. Moreover,
many model analysis techniques are
computationally intensive, and run-
ning them locally might disrupt the
design activity. These challenges re-
quire a design-specific solution for
collaborative conflict detection.

We present such a solution. Build-
ing on our prior research that pre-
sented the technical aspects and an
extensive evaluation of PCD,3 this
article motivates the need for design
conflict detection, describes its bene-
fits to practitioners, and outlines the
requirements for building detection
tools. We

•	 define and classify design
conflicts,

•	 identify the risks behind design
conflicts and benefits to practi-
tioners from PCD,

26	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: COLLABORATIVE MODELING

•	 discuss the features required for
a collaborative-design environ-
ment aimed at PCD, and

•	 describe FLAME (Framework
for Logging and Analyzing Mod-
eling Events), our collaborative-
design framework that interfaces
with the architects’ modeling
and analysis tools to efficiently
and continuously detect design
conflicts.

Design Conflicts
To characterize design conflicts, we
consider the following real-world
case.3 A team of architects was de-
signing a large system. Although the
team was distributed across three
sites, a core group of senior architects
physically colocated with the prod-
uct manager for initial requirements
analysis and architectural design.
Once satisfied that the remaining
design activities were appropriately
divided, the core group members re-
joined their original subteams. Each
subteam proceeded to refine the de-
sign of its portion of the system,
while, in parallel, development teams
proceeded with implementation.

The architect teams captured the
design using an in-house modeling
tool. All design changes were saved
into a shared VCS repository. The
architects worked on design tasks
alone or in small local groups. De-
sign consistency was encouraged
both locally, through daily status
meetings and regular communica-
tion, and team-wide, through weekly
videoconferences.

Despite the architects’ best ef-
forts, two types of issues arose regu-
larly, requiring significant additional
coordination among the architects
and rework.

First, architects modified the de-
sign in mutually inconsistent ways.

One example involved an architect
making the type of an attribute in
a utility component more general
because many of the components in
his portion of the system needed to
use it. At the same time, a senior ar-
chitect made the attribute type more
specific because a development team
alerted her to a security issue involv-
ing an off-the-shelf library. The ar-
chitects discovered the conflict only
when the VCS reported that it was
unable to merge their changes.

Second, architects made local
modifications that, when merged,
violated nonfunctional properties.
One example involved two teams
trying to reduce message latency,
via smart caching and pooling mul-
tiple payloads into a single mes-
sage. Subsequent analysis showed
that, together, these solutions some-
times increased latency and intro-
duced unacceptably high memory
consumption.

The previous two scenarios ex-
emplify the two types of commonly
occurring design conflicts: syn-
chronization and high-order design
conflicts. Synchronization conflicts
(scenario 1) are mutually inconsis-
tent design decisions that cannot be
merged automatically by the VCS.
High-order conflicts (scenario 2) are
decisions that, once merged, violate
one or more system requirements or
constraints. Synchronization con-
flicts, also called context-free con-
flicts,4 are analogous to textual5
and direct6 conflicts at the source
code level. High-order conflicts, also
called context-sensitive conflicts,4
are analogous to higher-order5 and
indirect6 conflicts at the code level.

PCD as a Solution
To ascertain the extent to which de-
sign conflicts are a real-world prob-
lem, we conducted interviews with

20 architects currently working at
mature software companies.7 Those
architects reported that their com-
panies might relocate architects to
minimize the impact of geographic
distribution. Colocation can simplify
communication and integration, re-
ducing conflicts and wasted effort.

One architect stated, “Architects
sometimes need to travel to be co-
located when the complexity of the
current task is very high.” The ar-
chitects especially stressed the need
for frequent communication early
on: “The first one-third of the time
is put into the frequent meetings.”
It was repeatedly stressed that col-
laborative design often causes costly
conflicts: “We often face inconsis-
tencies between components devel-
oped by different engineers. ... Half
of the cases lead to full-scale revert-
ing to earlier stages.”

Furthermore, the architects saw
communication and integration as
activities that must be managed
carefully: “One of the responsibili-
ties of a senior architect is to facili-
tate communication between the
junior architects to establish a com-
mon perspective with minimal ne-
cessity of integration points.” This
motivates the research on continu-
ous PCD. The architects repeatedly
expressed openness to using ad-
vanced technologies during collab-
orative design.

PCD can benefit collaborating
architects. As the interviews sug-
gest, the risk of design conflicts lies
in the significant additional cost in-
curred by repeated design effort,
increased communication, and even
geographic relocation of architects.
Fear of conflicts might also cause an
architect to avoid making new model
changes.5 The adoption of PCD
into the collaborative-design envi-
ronment can alleviate these issues

	 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE � 27

by continuously feeding conflict in-
formation to the architects so that
they can minimize the risk of un-
discovered conflicts and make well-
informed design decisions.

Prior research corroborates this.
Two controlled experiments involv-
ing 90 participants suggest that us-
ing PCD leads to greater architect
efficiency, faster conflict resolution,
and higher-quality designs.3 In the
post-design surveys, the participants
expressed that they preferred using
PCD (with a mean of 6.22 and stan-
dard deviation of 1.25 on a 7-point
Likert scale).

However, implementing PCD in
an existing collaborative-design en-
vironment is not without challenges.
The existing PCD tools for collab-
orative implementation are designed
primarily to handle source code and
cannot be readily applied to soft-
ware models. Tools that are designed
to manage textual changes made to
code are known to not work well
with graphical software models.8,9

Moreover, unlike code-level con-
flict detection, continuous PCD at
the design level might be prohibi-
tively expensive: many model analy-
ses (e.g., discrete-event simulation,10
Markov-chain-based reliability anal-
ysis,11 queueing-network-based per-
formance analysis,12 and symbolic
model checking13) are highly com-
putationally intensive. Continuously
running these analyses might over-
whelm the machine on which the
analyses take place, slowing down
conflict detection as well as other
processes. Slow analyses further ex-
acerbate the problem by inducing
increasing numbers of pending anal-
ysis instances.

Adoption of PCD
A collaborative-design environment
that aims to effectively provide PCD

to software architects must support
three overarching capabilities:

•	 It must continuously share model
changes among the architects.

•	 It must continuously per-
form model merges in the
background.

•	 It must continuously analyze the
design models as they evolve.

An existing, traditional collaborative-
design environment can be trans-
formed into one that provides PCD
by implementing these three capabil-
ities. We elaborate on each of them
next.

Continuous Sharing of
New Model Changes
The key to PCD is to continuously
speculate on and simulate architects’
synchronization actions (commits
and merges), perform design analy-
ses in the background, and have the
analysis results available to the ar-
chitects preferably before the need
for those analyses arises. To imple-
ment this as an automated process,
newly made model changes must be
transferred out of the workspace in
which they are made (the architect’s
local copy of the model) and must be
available for analyses before archi-
tects explicitly initiate the analyses.
This reduces the gap present in tradi-
tional VCSs between the time when
a new conflict is introduced and
when it can be detected.

It is crucial to note that this fea-
ture differs from the shared work-
space that group editors (e.g., Google
Docs; https://docs.google.com) pro-
vide. When using a VCS, architects
initially perform a checkout from a
repository to create local copies of
the model. Those are loosely syn-
chronized individual workspaces in
which architects perform their design

activities in parallel. The architects
later merge their changes back to the
repository.

Unlike a VCS, a group editor im-
mediately merges each new change
as it is made. When a group editor is
used, workspaces are fully synchro-
nized; all copies of the model are
updated together every time an archi-
tect makes a change. However, this
shared workspace might discourage
collaboration because frequent model
changes prevent model analysis com-
pletion. In other words, it is hard to
work when someone else is changing
the model on you all the time.

A VCS with automatic sharing of
changes allows architects to design
in their individual workspaces and
encourages parallel work. It enables
PCD by continuously making new
model changes available for analysis
without forcing those changes on the
architects’ individual views.

Continuous Background Merging
Recall that VCSs discover synchro-
nization conflicts only when archi-
tects explicitly attempt to merge their
changes. In contrast, continuous
background merging performs virtual
merging of new model changes with-
out involving the architects’ views.
The primary purpose of this capabil-
ity is to proactively identify conflicts,
and to do so outside architects’ work-
spaces to prevent disruption of the
architects’ design activities.

A variety of strategies are possible
to determine which changes to merge
and when to merge them. For exam-
ple, an architect might be interested
to know whether his or her design
conflicts with specific colleagues,
whether merging all operations by
all the architects in his or her group
leads to a conflict, or whether merg-
ing formally committed versions
will lead to a conflict. Different

28	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: COLLABORATIVE MODELING

merging strategies aid varying kinds
of collaborative awareness and are
appropriate for possible variations in
collaborative-design scenarios.

Continuous Model Analysis
Continuous analysis of the models
produced by each virtual merge helps
to detect high-order design conflicts.
As we previously mentioned, continu-
ously running model analyses locally
might overwhelm the architect’s ma-
chine, and thus not only disrupt the
architect’s work but also actually de-
lay conflict detection. A collaborative-
design environment that implements
continuous model analysis must
address this issue, potentially by
offloading the burden to remote ma-
chines, parallelizing and distributing
the computation, optimizing the order
in which the analyses take place, etc.

FLAME
As a solution to the challenges inher-
ent in collaborative design, we have
designed and developed FLAME.
FLAME implements the three ca-
pabilities described in the section
“Adoption of PCD.” It uses a novel
event-based VCS and orchestrates
architects’ existing modeling and
analysis tools to perform PCD.

Although the architecture of and
ideas behind FLAME are independent
of the employed architecture modeling
and analysis tools, our implementation
is built on top of the popular Generic
Modeling Environment (GME; http://
www.isis.vanderbilt.edu/Projects
/gme) and uses the XTEAM (Exten-
sible Tool-Chain for Evaluation of
Architectural Models; https://softarch
.usc.edu/,gedwards/xteam.html)
architecture modeling and analysis
framework. FLAME is open source,
and our experimental data are pub-
licly available at http://flamedesign
.org.

FLAME differs from prior tools
in its extensibility and operational
granularity. FLAME is extensible
by providing explicit points through
which it can interact with cus-
tom aspects of the architects’ envi-
ronments, including off-the-shelf
modeling tools, languages, and anal-
yses, such as consistency checkers.
FLAME’s operational granularity
is that of individual modeling op-
erations. FLAME’s internal version
control tracks every operation the
architects enact (e.g., create, update,
or remove modeling elements) and
can detect conflicts after each op-
eration. Whereas traditional version
control approaches rely on coarse-
grained textual differences between
model states, FLAME’s finer granu-
larity enables more precise conflict
detection and allows identifying spe-
cific actions responsible for conflicts.

FLAME tracks and synchronizes
all modeling operations and makes
the resulting synchronized mod-
els available for consistency analy-
ses. This real-time synchronization
enables

•	 continuous analysis execution
even when an architect is the
only one working and

•	 continuous proactive detection
of synchronization and high-
order conflicts.

Performing continuous model
analysis on a single machine might
delay conflict detection and exacer-
bate the problem a tool is trying to
solve. FLAME distributes the work
to multiple conflict-detection en-
gines; each maintains an internal
copy of the model, follows its own
merging strategy, and generates
model representations for deploy-
ing analysis. The engine executes the
analysis either locally or remotely

using worker nodes (e.g., cloud
instances that provide computa-
tional resources for model analysis).
FLAME offloads multiple analysis
executions to be performed in paral-
lel, one for each version of a model.
A detection engine selects a model
representation, deploys its analysis
onto a worker node, and relays the
result back to the architects.

FLAME can employ a variety of
merging strategies to provide varying
levels of conflict awareness. We devel-
oped two merging strategies: Global
Engine and Head-and-Local Engine.
Global Engine merges all architects’
operations. The result is the most cur-
rent design that gives PCD the most
predictive power, albeit risking de-
tecting false-positive conflicts that
do not materialize because the archi-
tects might revert uncommitted op-
erations. Figure 1 depicts an example
collaborative-design scenario using
FLAME with this strategy.

Head-and-Local Engine merges
an architect’s latest operations with
all the other architects’ committed
operations, reducing false positives
but delaying the detection of some
conflicts. This merging strategy is
implemented by many existing code-
level PCD tools.

FLAME implements a prioritiza-
tion algorithm that selects which rep-
resentations to analyze first in order
to quickly provide information on
newly arising conflicts to architects.
The algorithm takes advantage of
FLAME’s operation-based granular-
ity and processes the chronologically
newest conflict detection instances
first, without any loss of the collab-
oratively generated design informa-
tion. This algorithm bounds the time
required to detect the high-order de-
sign conflicts to twice the running
time of the employed analysis that
finds the conflict.3

	 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE � 29

FIGURE 1. Design model changes made concurrently by multiple architects can be merged together but result in a high-order

conflict. Here, merging A1’s change to pool payloads and A2’s change to add smart caching results in increased latency and high

memory consumption (recall scenario 2 in the section “Design Conflicts”). FLAME (Framework for Logging and Analyzing Modeling

Events) detects this high-order conflict quickly after it is introduced.

30	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: COLLABORATIVE MODELING

The development cost of integrat-
ing FLAME into an existing collabor-
ative software design environment is
relatively minor. One needs to develop
an adaptor for the modeling tool to

•	 capture modeling operations an
architect performs and

•	 apply operations from other ar-
chitects back to the model.

FLAME’s own implementation serves
as a proof of this concept, requiring

6,500 lines of Java and C11 code on
top of GME and XTEAM.3

C onflicts in collaborative
software design are fre-
quent, and the risks they

pose are costly. Research has sug-
gested how software architects
might benefit from PCD to reduce
these conflicts and their risks.3 Al-
though PCD does not directly affect
parts of the development lifecycle

other than design, it can be inte-
grated into any development process
if the process allows design collabo-
ration. Incorporating the results of
this research in industrial practice is
likely to reduce the costs of collab-
orative design.

Further research on improving
collaborative PCD includes improv-
ing the conflict notification inter-
faces to provide better awareness
without distraction, and automati-
cally developing conflict resolutions
and effectively recommending them
to the architects.

Acknowledgments
The US National Science Foundation

partially supported this work under

grants CCF-1453474, CNS-1513055,

CCF-1564162, CCF-1618231, CCF-1629977,

and CCF-1717963.

References
	 1.	Y. Brun et al., “Proactive Detection

of Collaboration Conflicts,” Proc.

19th ACM SIGSOFT Symp. and

13th European Conf. Foundations of

Software Eng. (ESEC/FSE 11), 2011,

pp. 168–178.

	 2.	K. Muşlu et al., “Reducing Feedback

Delay of Software Development Tools

via Continuous Analyses,” IEEE

Trans. Software Eng., vol. 41, no. 8,

2015, pp. 745–763.

	 3.	J. Bang, Y. Brun, and N. Medvidović,

“Continuous Analysis of Collabora-

tive Design,” Proc. 2017 IEEE Int’l

Conf. Software Architecture (ICSA

17), 2017, pp. 97–106.

	 4.	B. Westfechtel, “Merging of EMF Mod-

els,” Int’l J. Software and Systems Mod-

eling, vol. 13, no. 2, 2014, pp. 757–788.

	 5.	Y. Brun et al., “Early Detection of

Collaboration Conflicts and Risks,”

IEEE Trans. Software Eng., vol. 39,

no. 10, 2013, pp. 1358–1375.

	 6.	A. Sarma, D.F. Redmiles, and A. van

der Hoek, “Palantír: Early Detection

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JAE YOUNG BANG is a software engineer and researcher at

Kakao. His research interests include reliability and security in

distributed software systems and collaborative software de-

velopment. Bang received a PhD in computer science from the

University of Southern California. Contact him at jae.bang@

kakaocorp.com; http://ronia.net.

YURIY BRUN is an associate professor in the College of

Information and Computer Sciences at the University of

Massachusetts Amherst. His research interests include software

engineering, software fairness and bias, and self-adaptive

systems. Brun received a PhD in computer science from the

University of Southern California. Brun has received the US

National Science Foundation CAREER Award and the IEEE

Technical Committee on Scalable Computing Young Achiever in

Scalable Computing Award. He’s a senior member of ACM and

IEEE. Contact him at brun@cs.umass.edu.

NENAD MEDVIDOVIĆ is a professor in the University of

Southern California’s Computer Science Department and Infor-

matics Program. His research interests include architecture-

based software development. Medvidović received a PhD from

the Department of Information and Computer Science at the

University of California, Irvine. He has been the chair of the

ACM Special Interest Group on Software Engineering and is

editor in chief of IEEE Transactions on Software Engineering.

He’s an ACM Distinguished Scientist and IEEE Fellow. Contact

him at neno@usc.edu.

	 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE � 31

of Development Conflicts Arising

from Parallel Code Changes,” IEEE

Trans. Software Eng., vol. 38, no. 4,

2012, pp. 889–908.

	 7.	J. Bang et al., “How Software Ar-

chitects Collaborate: Insights from

Collaborative Software Design in

Practice,” Proc. 6th Int’l Workshop

Cooperative and Human Aspects of

Software Eng. (CHASE 13), 2013,

pp. 41–48.

	 8.	T.N. Nguyen et al., “An Infrastruc-

ture for Development of Object-

Oriented, Multi-level Configuration

Management Services,” Proc. 27th

Int’l Conf. Software Eng. (ICSE 05),

2005, pp. 215–224.

	 9.	A. Mehra, J. Grundy, and J. Hosking,

“A Generic Approach to Supporting

Diagram Differencing and Merging

for Collaborative Design,” Proc. 20th

IEEE/ACM Int’l Conf. Automated

Software Eng. (ASE 05), 2005, pp.

204–213.

	10.	T. Schriber and D. Brunner, “Inside

Discrete-Event Simulation Software:

How It Works and Why It Matters,”

Proc. Winter Simulation Conf. 2014,

2014, pp. 132–146.

	11.	J.A. Whittaker and M. Thomason,

“A Markov Chain Model for Statisti-

cal Software Testing,” IEEE Trans.

Software Eng., vol. 20, no. 10, 1994,

pp. 812–824.

	12.	Balsamo et al., “Model-Based Per-

formance Prediction in Software De-

velopment: A Survey,” IEEE Trans.

Software Eng., vol. 30, no. 5, 2004,

pp. 295–310.

	13.	M. Chechik et al., “Multi-valued

Symbolic Model-Checking,” ACM

Trans. Software Eng. and Meth-

odology, vol. 12, no. 4, 2003, pp.

371–408.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

The #1 AI Magazine
www.computer.org/intelligent IE

EE

Cutting Edgestay
on the

P U T T I N G A I I N T O P R A C T I C E

IE
E

E

January/fEbruary 2016

Also in this issue:
 aI’s 10 to Watch 56
 real-Time Taxi Dispatching 68
 from flu Trends to Cybersecurity 84

www.computer.org/intelligent

IEEE
Ja

n
u

a
ry/FEBru

a
ry 2016

O
n

lin
e B

eh
A

v
iO

r
A

l A
n

A
ly

sis
VO

Lu
M

E 31 n
u

M
BEr 1

IS-31-01-C1 Cover-1 January 11, 2016 6:06 PM

IEEE Intelligent Systems provides

peer-reviewed, cutting-edge

articles on the theory and

applications of systems that

perceive, reason, learn, and

act intelligently.

of Artificial Intelligence

