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Abstract—Formal verification is an effective but extremely
work-intensive method of improving software quality. Verifying
the correctness of software systems often requires significantly
more effort than implementing them in the first place, despite
the existence of proof assistants, such as Coq, aiding the process.
Recent work has aimed to fully automate the synthesis of formal
verification proofs, but little tool support exists for practitioners.
This paper presents PRRRoofster, a web-based tool aimed at assisting
developers with the formal verification process via proof synthesis.
PRRRoofster inputs a Coq theorem specifying a property of a
software system and attempts to automatically synthesize a formal
proof of the correctness of that property. When it is unable to
produce a proof, PRRRoofster outputs the proof-space search tree
its synthesis explored, which can guide the developer to provide a
hint to enable PRRRoofster to synthesize the proof. PRRRoofster runs
online at https://proofster.cs.umass.edu/ and a video demonstrating
PRRRoofster is available at https://youtu.be/xQAi66lRfwI/.

I. INTRODUCTION

Software bugs are so routine that the annual cost of

operational software failures is more than $1.56 trillion [29],

and software engineers spend 35–50% of their time validating

and debugging software [37]. Formal verification is a promising

method for building correct software systems. Proof assistants,

such as Coq [51] and HOL4 [47], inherently support program

verification and have had significant industrial impact. For

example, Airbus France uses the Coq-verified CompCert C

compiler [30] to ensure safety and improve performance of

its aircraft [49], Chrome, Android, and Firefox use verified

cryptographic libraries [11], [25], and Amazon Web Services

applies formal verification to detect misconfigurations that can

compromise cloud security [4].
Unfortunately, formal verification is challenging. Writing

proofs in Coq is a painstaking exercise that requires deep

expertise, as seen in the engineering processes behind several

large proof developments [24], [53]. Even with the help of

an Interactive Theorem Prover, the effort required to write

proofs is often prohibitive. The Coq proof of the C compiler

is more than three times that of the compiler code itself [30].

Meanwhile, it took 11 person-years to write the proofs required

to verify the seL4 microkernel [35], which represents a tiny

fraction of the functionality of a full kernel.
Recent work has aimed to simplify the process of writing

proofs [5], [12], [13], [19], [20], [28], [23], [45], [46], [54].

Some formal verification can even be fully automated via

proof synthesis. For example, CoqHammer [10] uses a set

of precomputed mathematical facts to attempt to “hammer”

out a proof. Meanwhile, ASTactic [54], Proverbot9001 [45],

TacTok [13], Diva [12], and Passport [46] learn a predictive

model from a corpus of existing proofs and use that model

to guide a meta-heuristic search to synthesize a proof from

scratch.
Unfortunately, relatively little tool support exists for practi-

tioners to use these Coq proof-synthesis tools. For example, of

the above-mentioned search-based tools, all but one have neither

been integrated into IDEs nor built as stand-alone, graphical

interfaces, making adoption difficult. Only Tactician [5] has

a usable interface, by way of a plugin for Coq that can be

integrated into Coq IDEs. But even then, the interface does not

expose the features that help the user understand what the tool

is doing under the hood, making debugging and explainability

difficult.
In this paper, we present PRPRRoofster, a new graphical frontend

for search-based proof-synthesis techniques that emphasizes

explainability. Conceptually, PRPPRRoofster can be straightforwardly

extended to work with any proof-synthesis backend tool,

and implements special features to support explainability for

search-based backends. Here, we demonstrate PRPRRoofster with

Proverbot9001 [45] as its backend.
PRPPRRoofster’s main contributions support the developer in two

ways:

1) The developer can enter a theorem describing a software

property they want proven, and PRPRRoofster uses its underly-

ing backend to attempt to generate a proof. If successful,

PRPPPRRoofster displays the Coq proof script, verifying that the
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property is correct. PRPRRoofster uses the Alectryon library to

render literate Coq code [39], which is interactive and easy

to read, even when one does not have immediate access

to a proof assistant to step through the synthesized proof.

The developer can explore the context throughout the

proof to better understand why the property is verifiably

correct.

2) If the synthesis is unsuccessful, PRPRRoofster uses the D3.js

library [6] to allow the developer to interactively explore

the search tree it used in trying to synthesize a proof, and

understand the relevant context. The developer can then

identify the most promising search-path, augment it, and

have PRPPRRoofster attempt to synthesize a proof again, using

that information.

A live PRPPRRoofster deployment is available at https://proofster.

cs.umass.edu/.

II. PRRROOFSTER

PRPPRRoofster is a frontend tool that interfaces with Coq-

based proof synthesis tools. Section II-A discusses how

proof engineers interactively write proofs in Coq and how

machine-learning-guided proof synthesis tools automatically

generate proofs. Section II-B then describes the PRPRRoofster

implementation and Section II-C illustrates, with examples,

how a proof engineer can use PRPPRRoofster to construct proofs.

A. Proofs and proof synthesis in Coq

When using the Coq proof assistant, a developer begins by

specifying a theorem to prove. This theorem is a type definition

in Coq’s internal language, Gallina. A proof of that theorem is

a term of that type. However, writing that proof term directly

is difficult, and so Coq provides an interactive environment for

reasoning through a proof at a higher level, via a proof script.
The developer can use Coq’s Ltac language to construct a

proof script, a sequence of tactics which Coq uses to guide its

internal search for a Gallina-based proof term. The theorem

prover is called interactive, because the developer can specify

a tactic to try, have the theorem prover execute the tactic to

update the proof state (the set of goals that need to be proven,

and the known facts), and use that proof state to decide on the

next tactic. This interactive process continues until no goals

remain, meaning the theorem is proven.

The burden is on the developer to come up with the sequence

of tactics. To ease this burden, recent work has created

search-based, machine-learning-guided proof-synthesis tools

that perform automatic proof-script generation. Most of these

tools train a predictive model on a corpus of human-written

proof scripts. This model uses a partially written proof script

and the theorem being proven to predict a ranked list of the

most likely next tactics that should come in the proof script.

The tools differ in how they model the proof scripts when

making predictions. For example, ASTactic considers only

the current proof state (and ignores the current, partial proof

script) [54]. TacTok is a collection of two models — Tac and

Tok — both of which encode both the proof state and the partial

proof script. Tac works at the tactic granularity, whereas Tok

works at the token granularity; the two prove complementary

sets of theorems [13]. These tools model abstract syntax

trees using TreeLSTM [50] and proof-script sequences using

bidirectional LSTM [38], whereas Proverbot9001, which also

models proof state and partial proof script, uses a sequence

model [45]. Passport further enhances the model by encoding

identifier information for the names of theorems, datatypes,

functions, type constructors, and local variables [46]. GamePad,

meanwhile, uses its own RNN-based tree encoder and targets

only synthetic lemmas [23]. Finally, Diva observes that the

variability inherent in machine learning — small perturbations

in the learning process, such as hyperparameters, the order in

which the training data is seen, and the encoded richness of the

training data — leads to diversity in the sets of theorems the

learned models can prove. Using the theorem prover’s unique

ability to serve as an oracle for correctness, Diva uses this

diversity to significantly increase its proving power [12].

Armed with a predictive model, these search-based tools

search through the space of possible proof scripts. They use the

model to predict the likely next proof steps, and the theorem

prover to compute the new proof states or errors resulting from

these steps. They prune search paths unlikely to be successful

or that repeat an already explored state; Proverbot9001, in

particular, also prunes states that would explore a subgoal for

which a solution was already found. This search through the

space of proof scripts represents a set of potential partial proof

scripts that aim to make progress toward the goal of proving

the theorem. We call the set of explored search paths, together,

the search tree.

B. The PRRRRP oofster implementation

PRPPRRoofster is implemented as a Flask app and uses Beauti-

fulSoup to create the results page with the synthesized proof

and the search graph. PRPPRRoofster allows the developer to enter

a theorem into a text box (or select one from several examples,

as a demonstration). PRPRRoofster then passes the developer-

specified theorem to its proof-synthesis backend and retrieves

the search tree, and, if the backend is successful, the synthesized

proof. PRPPRRoofster then uses Alectryon to render the proof as an

interactive, literate Coq object. Hovering over a tactic displays

the context and goals at that stage of the proof.

PRPPRRoofster uses the the D3.js library display the search tree

and allow the developer to interact with it. Subtrees can be

collapsed and expanded to see the tactics tried by the proof

synthesis model. This information can also be helpful to

developers to provide hints to PRPPRRoofster in the case where

PRPPRRoofster fails to prove the theorem initially.

PRPPRRoofster is deployed on AWS and is publicly available

at https://proofster.cs.umass.edu/. PRPPRRoofster is open-source,

and is publicly available at https://github.com/UCSD-PL/

proverbot9001/tree/demowebtool.

Next, we illustrate PRPPRRoofster’s two use cases using examples.

C. Using PRRRRP oofster

Supposed a developer has written a function, max_elem_list,

that takes a list of natural numbers and returns its largest
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Fig. 1. A PRPPRRoofster screenshot of the developer asking to prove the theorem
every_elem_le_max about the function max_elem_list.

Fig. 2. When PRPPRRoofster executes the query from Figure 1, it produces a
complete proof for the theorem every_elem_le_max. Hovering over a tactic
in the proof shows the proof state at that point in the proof, which allows the
developer to explore and understand how the proof verifies the property.

element. The developer would like to verify this function’s

correctness by formally proving the property that each element

of the list is less than or equal to the result of executing

max_elem_list on that list.

The developer decides to use PRPPPRRoofster to prove the above

property, in Coq. She heads over to https://proofster.cs.umass.

edu/ and enters some basic imports, the definition of the

max_elem_list function, and the theorem every_elem_le_max. She

does not enter the proof of the theorem, but only starts it with

Proof. and Admitted. to tell PRPRRoofster to generate a proof for

that theorem. (PRPRRoofster will replace Admitted. with the proof.)

Figure 1 shows a PRPPRRoofster screenshot with the developer’s

inputs. Clicking “Proofster it!” tells PRPRRoofster to run its

backend to attempt to generate a proof. It succeeds, and

PRPPRRoofster displays the full proof (partial screenshot in Figure 2).

The backend will not always be able to produce a proof fully

Fig. 3. A PRPRRoofster screenshot of the developer asking to prove the theorem
list_forall2.

Fig. 4. When PRPPRRoofster executes the query from Figure 3, it is not able to
generate a complete proof, but displays its search tree, instead. (Image has
been rotated for space.)

automatically. Suppose the developer wants to verify another

property. Given two lists, let proposition P be a proposition on

two elements, and let theorem list_forall2 say that proposition

P holds for every pair formed by zipping the two lists together.

Suppose the developer wants to then prove another property,

captured by theorem list_forall2_app, which states that for

all lists a1, a2, b1, b2, if list_forall2 holds for a1, b1 and

for a1, b1, then it also holds for the pair of lists formed by

appending a1 and a2, and appending b1 and b2.

Figure 3 shows the query the developers submits to PRPRRoofster

to prove this theorem. However, PRPPRRoofster’s backend fails to

automatically synthesize a proof for this theorem. Instead of

a proof, PRPRRoofster displays the search tree for the developer

to investigate (Figure 4). She sees that PRPPRRoofster tried a few

forms of induction on the input lists and gets an idea: perhaps

inducting over terms of the relation between lists list_forall2

a1 b1, rather than over the lists directly, will result in a more

informative inductive hypothesis. The developer returns to

the query page and suggests a hint for PRPPRRoofster: induction

1, which inducts over the first unnamed hypothesis (here,
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Fig. 5. The succesful result of running the query in Figure 3, modified by
adding induction 1 before Admitted.

the term of type list_forall2 a1 b1), something PRPRRoofster had

failed to try. She then admits the rest and queries PRPPPRRoofster.

Armed with this hint, PRPRRoofster synthesizes the correct proof

(Figure 5).

D. Evaluation Plan

We plan to evaluate PRPPRRoofster by soliciting feedback from

developers, and by using it in a proof engineering graduate

class. PRPRRoofster’s backends have been thoroughly evaluated

on a benchmark of 68K Coq theorems from 122 open-source

projects. ASTactic can fully automatically prove 12.3% of

the theorems [54], Passport 12.7% [46], TacTok 12.9 [13],

Proverbot9001 [45] 19.2%, and Diva 21.7% [12]. Together

with CoqHammer, these tools can prove more than 33% of the

theorems.

III. RELATED WORK

The PRPPRRoofster web interface provides an environment to

interactively explore both the synthesized proof, and the

synthesis search process. It uses the Alectryon [39] library to

render literate Coq code, which is interactive and easy to read,

even when one does not have immediate access to a proof

assistant to step through the synthesized proof. jsCoq [15]

and PeaCoq [44] also allow you to interact with formal proofs

via web interfaces, but neither synthesize proofs. Tactician

tactic-learning Coq plugin can be accessed through a web

demonstration of two examples using jsCoq [5]. Section 7.1

of “QED at Large” [42] provides a thorough survey of user

interfaces for formal proofs.

Automatically synthesizing proofs from scratch is a promis-

ing direction in easing formal verification [5], [10], [13], [12],

[23], [26], [45], [46], [54]. For the Coq proof assistant,

these methods have been able to prove as many as 1
3 of the

theorems [12] in a large benchmark of correctness properties

of software systems [54]. However, these efforts have not yet

directly addressed usability and adoption, which is PRPPRRoofster’s

goal. Such tools could potentially prove mathematical the-

orems [27] or nonfunctional software properties, such as

privacy [9]. For software properties such as fairness [3], [7], [8],

[14], [22] and safety [52], complementary approaches provide

high-confidence, probabilistic guarantees based on statistical

tests and confidence bounds [2], [16], [21], [31], [52].

Proof repair is an important open problem in formal

verification [41], [43], which PRPPRRoofster may aid by allowing the

user to provide hints based on information gained from failed

proof-synthesis attempts. This problem is related to automated

program repair, which aims to patch defects in systems [18],

e.g., using tests and bug reports [33], [17] or inferred constraints

on program behavior [1]. In automated program repair, a

major challenge is that the tests used to validate the generated

patches only partially describe the expected system behavior,

and thus the patches can overfit to those tests, failing to

correctly repair the program while appearing to do so [34],

[48], [40]. Among other methods, extracting test oracles from

natural language specifications [32] or using bug reports to

help localize defects [33] can help.

IV. CONTRIBUTIONS AND FUTURE WORK

We have presented PRPPRRoofster, a web-based tool aimed at

assisting developers with the formal verification process via

proof synthesis. PRPRRoofster uses a proof synthesis backend to

attempt to automatically generate Coq proofs for user-supplied

theorems. The user can use PRPPRRoofster to explore the proof

state at various stages of the synthesized proof, as well as

the search tree generated during synthesis. When PRPRRoofster

fails to produce a proof, the user can provide hints as partial

proofs, helping PRPRRoofster try again. While our implementation

currently works with a specific backend [45], its design is

general and aims to work with any Coq proof-synthesis tool,

e.g., Diva [12], among others. But reifying that ability is left

to future work. Similarly, PRPRRoofster works specifically with

proofs for the Coq proof assistant, but, in theory, can be made

to work with proof-synthesis tools for other proof assistants,

e.g., Thor [26] for the Isabelle/HOL proof assistant [36], among

others. Finally, while PRPRRoofster’s web-based interface makes it

accessible to a broad set of users, we are currently building a

version as a Coq plugin, that would integrate it into the IDEs

more commonly used by proof engineers.
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