
SOSRepair: Expressive Semantic Search
for Real-World Program Repair

Afsoon Afzal , Manish Motwani , Kathryn T. Stolee ,Member, IEEE,

Yuriy Brun , Senior Member, IEEE, and Claire Le Goues ,Member, IEEE

Abstract—Automated program repair holds the potential to significantly reduce softwaremaintenance effort and cost. However, recent

studies have shown that it often produces low-quality patches that repair some but break other functionality. We hypothesize that

producing patches by replacing likely faulty regions of code with semantically-similar code fragments, and doing so at a higher level of

granularity than prior approaches can better capture abstraction and the intended specification, and can improve repair quality. We

create SOSRepair, an automated program repair technique that uses semantic code search to replace candidate buggy code regions

with behaviorally-similar (but not identical) codewritten by humans. SOSRepair is the first such technique to scale to real-world defects

in real-world systems. On a subset of theManyBugs benchmark of such defects, SOSRepair produces patches for 22 (34%) of

the 65 defects, including 3, 5, and 6 defects for which previous state-of-the-art techniques Angelix, Prophet, andGenProg do not,

respectively. On these 22 defects, SOSRepair producesmore patches (9, 41%) that pass all independent tests than the prior techniques.

We demonstrate a relationship between patch granularity and the ability to produce patches that pass all independent tests.We then

show that fault localization precision is a key factor in SOSRepair’s success. Manually improving fault localization allows SOSRepair to

patch 23 (35%) defects, of which 16 (70%) pass all independent tests.We conclude that (1) higher-granularity, semantic-based patches

can improve patch quality, (2) semantic search is promising for producing high-quality real-world defect repairs, (3) research in fault

localization can significantly improve the quality of program repair techniques, and (4) semi-automated approaches in which developers

suggest fix locationsmay produce high-quality patches.

Index Terms—Automated program repair, semantic code search, patch quality, program repair quality, SOSRepair

Ç

1 INTRODUCTION

AUTOMATED program repair techniques (e.g., [8], [15],
[16], [19], [20], [39], [44], [45], [46], [49], [55], [58],

[59], [64], [79], [91], [94], [97], [110], [112]) aim to auto-
matically produce software patches that fix defects. For
example, Facebook uses two automated program repair
tools, SapFix and Getafix, in their production pipeline to
suggest bug fixes [60], [83]. The goal of automated pro-
gram repair techniques is to take a program and a suite
of tests, some of which that program passes and some of
which it fails, and to produce a patch that makes the pro-
gram pass all the tests in that suite. Unfortunately, these
patches can repair some functionality encoded by the
tests, while simultaneously breaking other, undertested
functionality [85]. Thus, quality of the resulting patches
is a critical concern. Recent results suggest that patch
overfitting—patches that pass a particular set of test

cases supplied to the program repair tool but fail to gen-
eralize to the desired specification—is common [47], [57],
[76], [85]. The central goal of this work is to improve the
ability of automated program repair to produce high-
quality patches on real-world defects.

We hypothesize that producing patches by (1) replacing
likely faulty regions of code with semantically-similar code
fragments, and (2) doing so at a higher level of granularity
than prior approaches can improve repair quality. There are
two underlying reasons for this hypothesis:

1) The observation that human-written code is highly
redundant [4], [13], [14], [25], [61], suggesting that,
for many buggy code regions intended to implement
some functionality, there exist other code fragments
that seek to implement the same functionality, and at
least one does so correctly.

2) Replacing code at a high level of granularity (e.g.,
blocks of 3–7 consecutive lines of code) corresponds
to changes at a higher level of abstraction, and is
thus more likely to produce patches that correctly
capture the implied, unwritten specifications under-
lying desired behavior than low-level changes to
tokens or individual lines of code.

For example, suppose a programhas a bug in a loop that is
intended to sort an array. First, consider another, semanti-
cally similar loop, from either the same project, or some other
software project. The second loop is semantically similar to
the buggy loop because, like the buggy loop, it sorts some

� A. Afzal and C. Le Goues are with the School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 15213USA.
E-mail: {afsoona, clegoues}@cs.cmu.edu.

� M.Motwani and Y. Brun are with the College of Information and Computer
Sciences, University of Massachusetts Amherst, Amherst, MA 01003-9264
USA. E-mail: {mmotwani, brun}@cs.umass.edu.

� K. T. Stolee is with the Department of Computer Science, North Carolina
StateUniversity, Raleigh, NC 27695-8206USA. E-mail: ktstolee@ncsu.edu.

Manuscript received 21 Dec. 2018; revised 21 June 2019; accepted 13 Aug.
2019. Date of publication 1 Oct. 2019; date of current version 15 Oct. 2021.
(Corresponding author: Afsoon Afzal.)
Recommended for acceptance by E. Bodden.
Digital Object Identifier no. 10.1109/TSE.2019.2944914

2162 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

0098-5589 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1942-6573
https://orcid.org/0000-0003-1942-6573
https://orcid.org/0000-0003-1942-6573
https://orcid.org/0000-0003-1942-6573
https://orcid.org/0000-0003-1942-6573
https://orcid.org/0000-0001-5129-3980
https://orcid.org/0000-0001-5129-3980
https://orcid.org/0000-0001-5129-3980
https://orcid.org/0000-0001-5129-3980
https://orcid.org/0000-0001-5129-3980
https://orcid.org/0000-0003-0584-7094
https://orcid.org/0000-0003-0584-7094
https://orcid.org/0000-0003-0584-7094
https://orcid.org/0000-0003-0584-7094
https://orcid.org/0000-0003-0584-7094
https://orcid.org/0000-0003-3027-7986
https://orcid.org/0000-0003-3027-7986
https://orcid.org/0000-0003-3027-7986
https://orcid.org/0000-0003-3027-7986
https://orcid.org/0000-0003-3027-7986
https://orcid.org/0000-0002-3931-060X
https://orcid.org/0000-0002-3931-060X
https://orcid.org/0000-0002-3931-060X
https://orcid.org/0000-0002-3931-060X
https://orcid.org/0000-0002-3931-060X
mailto:A. Afzal and C. Le Goues are with the School of Computer ScienceCarnegie Mellon UniversityPittsburghPA15213USA
mailto:M. Motwani and Y. Brun are with the College of Information and Computer SciencesUniversity of Massachusetts AmherstAmherstMA01003-9264USA
mailto:K. T. Stolee is with the Department of Computer ScienceNorth Carolina State UniversityRaleighNC27695-8206USA

arrays correctly. At the same time, the second loop may not
be semantically identical to the buggy loop, especially on the
inputs that the buggy loop mishandles. We may not know a
priori if the second, similar loop is correct. However, sorting
is a commonly implemented subroutine. If we try to replace
the buggy code with several such similar loops, at least one
is likely to correctly sort arrays, allowing the program to pass
the test cases it previously failed. In fact, the high redun-
dancy present in software source code suggests such com-
monly implemented subroutines are frequent [4], [13], [14],
[25]. Second, we posit that replacing the entire loop with a
similar one is more likely to correctly encode sorting than
what could be achieved by replacing a + with a -, or inserting
a single line of code in themiddle of a loop.

Our earlier work on semantic-search-based repair [38]
presented one instance that demonstrated that higher-
granularity, semantic-based changes can, in fact, improve
quality. On short, student-written programs, on average, Sear-
chRepair patches passed 97.3% of independent tests not used
during patch construction. Meanwhile, the relatively lower-
granularity patches produced by GenProg [49], TrpAutoRe-
pair [75], and AE [107] passed 68.7, 72.1, and 64.2%, respec-
tively [38]. Unfortunately, as we describe next, SearchRepair
cannot apply to large, real-world programs.

This paper presents SOSRepair, a novel technique that
uses input-output-based semantic code search to automati-
cally find and contextualize patches to fix real-world
defects. SOSRepair locates likely buggy code regions, identi-
fies similarly-behaving fragments of human-written code,
and then changes the context of those fragments to fit the
buggy context and replace the buggy code. Semantic code
search techniques [77], [88], [89], [90] find code based on a
specification of desired behavior. For example, given a set
of input-output pairs, semantic code search looks for code
fragments that produce those outputs on those inputs.
Constraint-based semantic search [88], [89], [90] can search
for partial, non-executable code snippets. It is a good fit for
automated program repair because it supports searching
for code fragments that show the same behavior as a buggy
region on initially passing tests, while looking for one that
passes previously-failing tests as well.

While SOSRepair builds on the ideas from SearchRe-
pair [38], to make SOSRepair apply, at scale, to real-world
defects, we redesigned the entire approach and developed a
conceptually novel method for performing semantic code
search. The largest program SearchRepair has repaired is a
24-line C program written by a beginner programmer to
find the median of three integers [38]. By contrast, SOSRe-
pair patches defects made by professional developers in
real-world, multi-million-line C projects. Since SearchRepair
cannot run on these real-world defects, we show that SOS-
Repair outperforms SearchRepair on the IntroClass bench-
mark of small programs.

We evaluate SOSRepair on 65 real-world defects of 7
large open-source C projects from the ManyBugs bench-
mark [48]. SOSRepair produces patches for 22 defects,
including 1 that has not been patched by prior techniques
(Angelix [64], Prophet [58], and GenProg [49]). We evalu-
ate patch quality using held-out independent test
suites [85]. Of the 22 defects for which SOSRepair produces
patches, 9 (41%) pass all the held-out tests, which is more

than the prior techniques produce for these defects.
On small C programs in the IntroClass benchmark [48],
SOSRepair generates 346 patches, more than SearchRe-
pair [38], GenProg [49], AE [108], and TrpAutoRepair [75].
Of those patches, 239 pass all held-out tests, again, more
than the prior techniques.

To make SOSRepair possible, we make five major contri-
butions to both semantic code search and program repair:

1) A more-scalable semantic search query encoding. We
develop a novel, efficient, general mechanism for
encoding semantic search queries for program repair,
inspired by input-output component-based program
synthesis [35]. This encoding efficientlymaps the can-
didate fix code to the buggy context using a single
query over an arbitrary number of tests. By contrast,
SearchRepair [38] required multiple queries to cover
all test profiles and failed to scale to large code data-
bases or queries covering many possible permuta-
tions of variable mappings. Our new encoding
approach provides a significant speedup over the
prior approach, andwe show that the speedup grows
with query complexity.

2) Expressive encoding capturing real-world program behav-
ior. To apply semantic search to real-world programs,
we extend the state-of-the-art constraint encoding
mechanism to handle real-world C language con-
structs and behavior, including structs, pointers, mul-
tiple output variable assignments, console output,
loops, and library calls.

3) Search for patches that insert and delete code. Prior seman-
tic-search-based repair could only replace buggy code
with candidate fix code to affect repairs [38]. We
extend the search technique to encode deletion and
insertion.

4) Automated, iterative search query refinement encoding
negative behavior.We extend the semantic search
approach to include negative behavioral examples,
making use of that additional information to refine
queries. We also propose a novel, iterative, counter-
example-guided search-query refinement approach
to repair buggy regions that are not covered by the
passing test cases. When our approach encounters
candidate fix code that fails to repair the program, it
generates new undesired behavior constraints from
the new failing executions and refines the search
query, reducing the search space. This improves on
prior work, which could not repair buggy regions
that no passing test cases execute [38].

5) Evaluation and open-source implementation. We imple-
ment and release SOSRepair (https://github.
com/squaresLab/SOSRepair), which reifies the
above mechanisms. We evaluate SOSRepair on the
ManyBugs benchmark [48] commonly used in the
assessment of automatic patch generation tools (e.g.,
[58], [64], [75], [107]). These programs are four orders of
magnitude larger than the benchmarks previously
used to evaluate semantic-search-based repair [38]. We
show that, as compared to previous techniques applied
to these benchmarks (Angelix [64], Prophet [58], and
GenProg [49]), SOSRepair patches one defect none

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 2163

https://github.com/squaresLab/SOSRepair
https://github.com/squaresLab/SOSRepair

of those techniques patch, and produces patches of
comparable quality to those techniques. We measure
quality objectively, using independent test suites held
out from patch generation [85]. We therefore also
release independently-generated held-out test suites
(https://github.com/squaresLab/SOSRepair-
Replication-Package) for the defects we use to
evaluate SOSRepair.

Based on our experiments, we hypothesize that fault
localization’s imprecision on real-world defects hampers
SOSRepair. We create SOSRepair�, a semi-automated ver-
sion of SOSRepair that is manually given the code location in
which a human would repair the defect. SOSRepair� produ-
ces patches for 23 defects. For 16 (70%) of the defects, the pro-
duced patches pass all independent tests. Thus, SOSRepair�

is able to produce high-quality patches for twice the number
of defects than SOSRepair produces (16 versus 9). This sug-
gests that semantic code search holds promise for producing
high-quality repairs for real-world defects, perhaps in a
semi-automated setting in which developers suggest code
locations to attempt fixing. Moreover, advances in auto-
mated fault localization can directly improve automated
repair quality.

To directly test the hypothesis that patch granularity
affects the ability to produce high-quality patches, we alter
the granularity of code SOSRepair can replace when produc-
ing patches, allowing for replacements of 1 to 3 lines, 3 to 7
lines, or 6 to 9 lines of code. On the IntroClass benchmark,

using the 3–7-line granularity results in statistically signifi-
cantly more patches (346 for 3–7-, 188 for 1–3-, and 211 for 6–
9-line granularities) and statistically significantly more
patches that pass all the held-out tests (239 for 3–7-, 120 for
1–3-, and 125 for 6–9-line granularities).

The rest of this paper is organized as follows. Section 2
describes the SOSRepair approach and Section 3 our imple-
mentation of that approach. Section 4 evaluates SOSRepair.
Section 5 places our work in the context of related research,
and Section 6 summarizes our contributions.

2 THE SOSREPAIR APPROACH

Fig. 1 overviews the SOSRepair approach. Given a program
and a set of test cases capturing correct and buggy behavior,
SOSRepair generates patches by searching over a database of
snippets of human-written code. Unlike keyword or syntac-
tic search (familiar to users of standard search engines),
semantic search looks for code based on a specification of
desired and undesired behavior. SOSRepair uses test cases
to construct a behavioral profile of a potentially buggy code
region. SOSRepair then searches over a database of snippets
for one that implements the inferred desired behavior,
adapts a matching snippet to the buggy code’s context, and
patches the program by replacing the buggy region with
patch code, inserting patch code, or deleting the buggy
region. Finally, SOSRepair validates the patched program by
executing its test cases.

We first describe an illustrative example and define key
concepts (Section 2.1). We then detail SOSRepair’s approach
that (1) uses symbolic execution to produce static behavioral
approximations of a set of candidate bug repair snippets
(Section 2.2), (2) constructs a dynamic profile of potentially-
buggy code regions, which serve as inferred input-output
specifications of desired behavior (Section 2.3), (3) constructs
an SMT query to identify candidate semantic repairs to be
transformed into patches and validated (Section 2.4), and
(4) iteratively attempts to produce a patch until timeout
occurs (Section 2.5). This section focuses on the conceptual
approach; Section 3 will describe implementation details.

2.1 Illustrative Example and Definitions

Consider the example patched code in Fig. 2 (top), which we
adapt (with minor edits for clarity and exposition) from
php interpreter bug issue #60455, concerning a bug in the
streamsAPI.1 Bug #60455 reports that streamsmishandles

Fig. 1. Overview of the SOSRepair approach.

Fig. 2. Top: Example code, based on php bug # 60455, in function
stream_get_record. The developer patch modifies the condition on
line 7, shown on line 8. Bottom: A snippet appearing in the php date mod-
ule, implementing the same functionality as the developer patch (note that
just_read is never negative in this code), with different variable names. 1. https://bugs.php.net/bug.php?id=60455

2164 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

https://github.com/squaresLab/SOSRepair-Replication-Package
https://github.com/squaresLab/SOSRepair-Replication-Package
https://bugs.php.net/bug.php?id=60455

files when the EOF character is on its own line. The fixing
commit message elaborates: “stream_get_line misbehaves if
EOF is not detected together with the last read.” The change
forces the loop to continue such that the last EOF character is
consumed. The logic that the developer used to fix this bug is
not unique to the stream_get_record function; indeed,
very similar code appears in the php datemodule (bottom of
Fig. 2). This is not unusual: there exists considerable redun-
dancy within and across open-source repositories [4], [25],
[33], [96].

Let F refer to a code snippet of 3–7 lines of C code. F can
correspond to either the buggy region to be replaced or a
snippet to be inserted as a repair. In our example bug, a can-
didate buggy to-be-replaced region is lines 7–11 in top of
Fig. 2; the snippet in the bottom of Fig. 2 could serve as a
repair snippet. We focus on snippets of size 3–7 lines of code
because patches at a granularity level greater than single-
expression, -statement, or -line may be more likely to capture
developer intuition, producingmore-correct patches [38], but
code redundancy drops off sharply beyond seven lines [25],
[33].We also verify these findings by conducting experiments
that use code snippets of varying sizes (Section 4.3).

F ’s input variables f are those whose values can ever be
used (in the classic dataflow sense, either in a computation,
assignment, or predicate, or as an argument to a function
call); F ’s output variables ~Rf are those whose value may be
definedwith a definition that is not killed by the end of the snip-
pet. In the buggy region of Fig. 2, f is fjust read; toread;
leng; ~Rf is fleng. ~Rf may be of arbitrary size, and f and ~Rf

are not necessarily disjoint, as in our example. ~Vf is the set of
all variables of interest inF : ~Vf ¼ f [~Rf .

To motivate a precise delineation between variable uses
and definitions, consider a concrete example that demon-
strates correct behavior for the buggy code in Fig. 2: if
just_read = 5 and len = 10 after line 6, at line 12, it should
be the case that just_read = 5 and len = 15. A naive,
constraint-based expression of this desired behavior, e.g.,
ðjust read ¼ 5Þ ^ ðlen ¼ 10Þ ^ ðjust read ¼ 5Þ ^ ðlen ¼
15Þ is unsatisfiable, because of the conflicting constraints
on len.

For the purposes of this explanation, we first address the
issue by defining a static variable renaming transformation
over snippets. Let UfðxÞ return all uses of a variable x in F
and DfðxÞ return all definitions of x in F that are not killed.
We transform arbitrary F to enforce separation between
inputs and outputs as follows:

F0 ¼ F ½UfðxÞ=xi� s:t:x 2 Vf; xi 2 Xin; xi fresh

F t ¼ F 0½DfðxÞ=xi� s:t:x 2 Rf; xi 2 Xout; xi fresh:

All output variables are, by definition, treated also as
inputs, and we choose fresh names as necessary. Xin and
Xout refer to the sets of newly-introduced variables.

2.2 Candidate Snippet Encoding

In an offline pre-processing step, we prepare a database of
candidate repair snippets of 3–7 lines of C code. This code
can be from any source, including the same project, its previ-
ous versions, or open-source repositories. A naive lexical
approach to dividing code into line-based snippets generates

many implausible and syntactically invalid snippets, such as
by crossing block boundaries (e.g., lines 10–12 in the top of
Fig. 2). Instead, we identify candidate repair snippets from
C blocks taken from the code’s abstract syntax tree (AST).
Blocks of length 3–7 lines are treated as a single snippet.
Blocks of length less than 3 lines are grouped with adja-
cent blocks. We transform all snippetsF intoF t (Section 2.1).
In addition to the code itself (pre- and post- transformation)
and the file in which it appears, the database stores two
types of information per snippet:

1) Variable names and types.Patches are constructed at the
AST level, and are thus always syntactically valid.
However, they can still lead to compilation errors if
they reference out-of-scope variable names, user-
defined types, or called functions. We thus identify
and store names of user-defined structs and called
functions (including the file in which they are
defined). We additionally store all variable names
from the original snippet F (~Vf , f , ~Rf), as well as their
corresponding renamed versions inF t (Xin andXout).

2) Static path constraints. We symbolically execute [12],
[40] F t to produce a symbolic formula that statically
overapproximates its behavior, described as con-
straints over snippet input and outputs. For exam-
ple, the fix snippet in Fig. 2 can be described as

ððbufflenin > 0Þ ^ ðmylenout ¼ mylenin þ buffleninÞÞ_
ð:ðbufflenin > 0Þ ^ ðmylenout ¼ myleninÞÞ:

We query an SMT solver to determine whether
such constraints match desired inputs and outputs.

The one-time cost of database construction is amortized
across many repair efforts.

2.3 Profile Construction

SOSRepair uses spectrum-based fault localization (SBFL) [37]
to identify candidate buggy code regions. SBFL uses test cases
to rank program entities (e.g., lines) by suspiciousness. We
expand single lines identified by SBFL to the enclosing AST
block. Candidate buggy regions may be smaller than 3 lines if
no region of fewer than 7 lines can be created by combining
adjacent blocks.

Given a candidate buggy region F , SOSRepair constructs
a dynamic profile of its behavior on passing and failing tests.
Note that the profile varies by the type of repair, and that
SOSRepair can either delete the buggy region; replace it with
a candidate repair snippet; or insert a piece of code immedi-
ately before it. We discuss how SOSRepair iterates over and
chooses between repair strategies in Section 2.5. Here, we
describe profile generation for replacement and insertion
(the profile is not necessary for deletion).

SOSRepair first statically substitutesF t forF in the buggy
program, declaring fresh variables Xin and Xout. SOSRepair
then executes the program on the tests, capturing the values
of all local variables before and after the region on all cover-
ing test cases. (For simplicity and without loss of generality,
this explanation assumes that all test executions cover all
input and output variables.) Let Tp be the set of all initially
passing tests that coverF t and Tn the set of all initially failing
tests that do so. If t is a test case coveringF t, let valInðt; xÞ be

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 2165

the observed dynamic value of x on test case t before F t is
executed and valOutðt; xÞ its dynamic value afterwards. We
index each observed value of each variable of interest x by
the test execution on which the value is observed, denoted
xt. This allows us to specify desired behavior based onmulti-
ple test executions or behavioral examples at once. To illus-
trate, assume a second passing execution of the buggy region
in Fig. 2 on which len is 15 on line 6 and 25 on line 12 (ignor-
ing just_read for brevity).

�ðlenin ¼ 10Þ ^ ðlenout ¼
15Þ� ^ �ðlenin ¼ 15Þ ^ ðlenout ¼ 25Þ�� is trivially unsatis-

fiable;
�ðlenin1 ¼ 10Þ ^ ðlenout1 ¼ 15Þ� ^ �ðlenin2 ¼ 15Þ^

ðlenout2 ¼ 25Þ��, which indexes the values by the tests on
which they were observed, is not. The dynamic profile is
then defined as follows:

P :¼ Pin ^ Pp
out ^ Pn

out:

Pin encodes bindings of variables to values on entry to the
candidate buggy region on all test cases; Pp

out enforces the
desired behavior of output variables to match that observed
on initially passing test cases; Pn

out enforces that the output
variables should notmatch to those observed on initially fail-
ing test cases. Pin is the same for both replacement and inser-
tion profiles

Pin :¼
^

t2Tp[Tn

^
xi2Xin

xt
i ¼ valInðt; xiÞ:

Pout combines constraints derived from both passing and
failing executions, or Pp

out ^ Pn
out. For replacement queries

Pp
out :¼

^
t2Tp

^
xi2Xout

xti ¼ valOutðt; xiÞ

Pn
out :¼

^
t2Tn

:
^

xi2Xout

xt
i ¼ valOutðt; xiÞ

 !
:

For insertion queries, the output profile specifies that the
correct code should simply preserve observed passing behav-
ior while making some observable change to initially failing
behavior

Pp
out :¼

^
t2Tp

^
xi2Xout

xt
i ¼ valInðt; xiÞ

Pn
out :¼

^
t2Tn

:
^

xi2Xout

xt
i ¼ valInðt; xiÞ

 !
:

Note that we neither know, nor specify, the correct value
for these variables on such failing tests, and do not require
annotations or developer interaction to provide them such
that they may be inferred.

2.4 Query Construction

Assume candidate buggy region C (a context snippet), candi-
date repair snippet S, and corresponding input variables,
output variables, etc. (as described in Section 2.1). Our goal is
to determine whether the repair code S can be used to edit
the buggy code, such that doing so will possibly address the
buggy behavior without breaking previously-correct behav-
ior. This task is complicated by the fact that candidate repair
snippets may implement the desired behavior, but use the

wrong variable names for the buggy context (such as in our
example in Fig. 2). We solve this problem by constructing a
single SMT query for each pair of C, S, that identifieswhether
a mapping exists between their variables (~Vc and ~Vs) such
that the resulting patched code (S either substituted for or
inserted before C) satisfies all the profile constraints P . An
important property of this query is that, if satisfiable, the sat-
isfying model provides a variable mapping that can be used
to rename S to fit the buggy context.

The repair search query is thus comprised of three con-
straint sets: (1) mapping components cmap and cconn, which
enforce a valid and meaningful mapping between variables
in the candidate repair snippet and those in the buggy con-
text, (2) functionality component ffunc, which statically cap-
tures the behavior of the candidate repair snippet, and (3) the
specification of desired behavior, captured in a dynamic pro-
file P (Section 2.3). We now detail the mapping and function-
ality components, as well as how patches are constructed and
validated based on satisfiable semantic search SMT queries.

2.4.1 Mapping Component

Our approach to encoding semantic search queries for pro-
gram repair takes inspiration from SMT-based input-output-
guided component-basedprogramsynthesis [35]. The original
synthesis goal is to connect a set of components to construct a
function f that satisfies a set of input-output pairs hai;bii
(such that 8i; fðaiÞ ¼ bi). This is accomplished by introducing
a set of location variables, one for each possible component
and function input and output variable, that define the order
of and connection between components. Programs are syn-
thesized by constructing an SMT query that constrains loca-
tion variables so that they describe a well-formed program
with the desired behavior on the given inputs/outputs. If
the query is satisfiable, the satisfying model assigns integers
to locations and can be used to construct the desired func-
tion. See the prior work by Jha et al. for full details [35].

Mapping Queries for Replacement. We extend the location
mechanism to map between the variables used in a candi-
date repair snippet and those available in the buggy context.
We first describe how mapping works for replacement
queries, and then the differences required for insertion. We
define a set of locations as

L ¼ flxjx 2 ~Vc [~Vsg:

The query must constrain locations so that a satisfying
assignment tells SOSRepair how to suitably rename varia-
bles in S such that a patch compiles and enforces desired
behavior. The variable mappingmust be valid: Each variable
in S must uniquely map to some variable in C (but not vice
versa; not all context snippet variables need map to a repair
snippet variable). The cmap constraints therefore define an

injectivemapping from ~Vs to ~Vc

cmap :¼
^

x2~Vc[~Vs
1 � lx � j~Vcj

0
@

1
A

^ distinctðL; ~VcÞ ^ distinctðL; ~VsÞ
distinctðL; ~V Þ :¼

^
x;y2~V ;x6�y

lx 6¼ ly:

2166 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

This exposition ignores variable types for simplicity; in
practice, we encode them such that matched variables have
the same types via constraints on valid locations.

Next, cconn establishes the connection between location
values and variable values as well as between input and out-
put variables s, ~Rs and their freshly-renamed versions in Xin

andXout across all covering test executions t 2 Tp [Tn. This is
important because although the introduced variables elimi-
nate the problem of trivially unsatisfiable constraints over
variables used as both inputs and outputs, naive constraints
over the fresh variables — e.g., ðlenin1 ¼ 10Þ ^ ðlenout1 ¼
15Þ— are instead trivially satisfiable. Thus

cconn :¼cout ^ cin

cout :¼
^

x2XC
out;y2XS

out

lx ¼ ly)

^jTp[Tn j

t¼1

xt
in ¼ ytin ^ xt

out ¼ ytout

 !

cin :¼
^

x2XC
in
;y2XS

in

lx ¼ ly)
^jTp[Tnj

t¼1

xt
in ¼ ytin

!
:

Where XC
in and XS

in refer to the variables in the context
and repair snippet respectively and xin refers to the fresh
renamed version of variable x, stored in Xin (and similarly
for output variables).

Insertion. Instead of drawing ~Vc from the replacement
region (a heuristic design choice to enable scalability), inser-
tion queries define ~Vc as the set of local variables live after
the candidate insertion point. They otherwise are encoded
as above.

2.4.2 Functionality Component

ffunc uses the path constraints describing the candidate
repair snippet S such that the query tests whether S satisfies
the constraints on the desired behavior described by the
profile constraints P . The only complexity is that we must
copy the symbolic formula to query over multiple simulta-
neous test executions. Let ’c be the path constraints from
symbolic execution. ’cðiÞ is a copy of ’c where all variables

xin 2 XS
in and xout 2 XS

out are syntactically replaced with
indexed versions of themselves (e.g., xi

in for xin). Then

ffunc :¼
^jTp[Tn j

i¼1

’cðiÞ;

ffunc is the same for replacement and insertion queries.

2.4.3 Patch Construction and Validation

The repair query conjoins the above-described constraints

cmap ^ cconn ^ ffunc ^ P:

Given S and C for which a satisfiable repair query has been
constructed, the satisfying model assigns values to locations
in L and defines a valid mapping between variables in the
original snippets S and C (rather than their transformed ver-
sions). This mapping is used to rename variables in S and
integrate it into the buggy context. For replacement edits, the

renamed snippet replaces the buggy region wholesale; for
insertions, the renamed snippet is inserted immediately
before the buggy region. It is possible for the semantic search
to return satisfying snippets that do not repair the bug when
executed, if either the snippet fails to address the bug cor-
rectly, or if the symbolic execution is too imprecise in its
description of snippet behavior. Thus, SOSRepair validates
patches by running the patched program on the provided
test cases, reporting the patch as a fix if all test cases pass.

2.5 Patch Iteration

Traversal. SOSRepair iterates over candidate buggy regions
and candidate repair strategies, dynamically testing all snip-
pets whose repair query is satisfiable. SOSRepair is parame-
terized by a fault localization strategy, which returns a
weighted list of candidate buggy lines. Such strategies can be
imprecise, especially in the absence of high-coverage test
suites [87]. To avoid getting stuck trying many patches in the
wrong location, SOSRepair traverses candidate buggy regions
using breadth-first search. First, it tries deletion at every
region. Deletion is necessary to repair certain defects [115],
though it can also lead to low-quality patches [76]. However,
simply disallowing deletion does not solve the quality prob-
lem: even repair techniques that do not formally support dele-
tion can do so by synthesizing tautological if conditions [56],
[64]. Similarly, SOSRepair can replace a buggy region with a
snippet with no effect. Because patches that effectively delete
are likely less maintainable and straightforward than those
that simply delete, if a patch deletes functionality, it is better
to do so explicitly. Thus, SOSRepair tries deleting the candi-
date buggy region first by replacing it with an empty candi-
date snippet whose only constraint is TRUE. We envision
future improvements to SOSRepair that can create and com-
pare multiple patches per region, preferring those that main-
tain the most functionality. Next, SOSRepair attempts to
replace regions with identified fix code, in order of ranked
suspiciousness; finally, SOSRepair tries to repair regions by
inserting code immediately before them. We favor replace-
ment over insertion because the queries aremore constrained.
SOSRepair can be configured with various database traversal
strategies, such as trying snippets from the same file as the
buggy region first, as well as trying up to N returned match-
ing snippets per edit type per region. SOSRepair then cycles
through buggy regions and matched snippets N-wise, before
moving to the next edit type.

Profile Refinement. Initially-passing test cases partially
specify the expected behavior of a buggy code region, thus
constraining which candidate snippets quality to be returned
by the search. Initially-failing test cases only specify what the
behavior should not be (e.g., “given input 2, the output should
not be 4”). This is significantly less useful in distinguishing
between candidate snippets. Previous work in semantic
search-based repair disregarded the negative example behav-
ior in generating dynamic profiles [38]. Such an approach
might be suitable for small programs with high-coverage test
suites. Unfortunately, in real-world programs, buggy regions
may only be executed by failing test cases [87]. We observed
this behavior in our evaluation on real-world defects.

To address this problem, other tools, such as Angelix [64],
require manual specification of the correct values of variables
for negative test cases. By contrast, we address this problem

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 2167

in SOSRepair via a novel incremental, counter-example-guided
profile refinement for candidate regions that do not have pass-
ing executions. Given an initial profile derived from failing
test cases (e.g., “given input 2, the output should not be 4”),
SOSRepair tries a single candidate replacement snippet S. If
unsuccessful, SOSRepair adds the newly discovered unac-
ceptable behavior to the profile (e.g., “given input 2, the out-
put should not be 6”). Fig. 3 details the algorithm for this
refinement process. Whenever SOSRepair tries a snippet and
observes that all tests fail, it adds one new negative-behavior
constraint to the constraint profile for each failing test. Each
constraint is the negation of the observed behavior. For exam-
ple, if SOSRepair observes that test t fails, it computes its out-
put variable values (e.g., x1 ¼ 3, x2 ¼ 4) and adds the
constraint : ðxt

1 ¼ 3Þ ^ ðxt
2 ¼ 4Þ� �

to the profile, which speci-
fies that the incorrect observed behavior should not take
place. Thus, SOSRepair gradually builds a profile based on
negative tests without requiring manual effort. SOSRepair
continues on trying replacement snippets with queries that
are iteratively improved throughout the repair process.
Although this is slower than starting with passing test cases,
it allows SOSRepair to patchmore defects.

3 THE SOSREPAIR IMPLEMENTATION

We implement SOSRepair using KLEE [12], Z3 [21], and the
clang [17] infrastructure; the latter provides parsing, name
and type resolution, and rewriting facilities, among others.
Section 3.1 describes the details of our implementation.
Section 3.2 summarizes the steps we took to release our
implementation and data, and to make our experiments
reproducible.

3.1 SOSRepair Implementation Design Choices

In implementing SOSRepair, we made a series of design
decisions, which we now describe.

Snippet Database. SOSRepair uses the symbolic execution
engine in KLEE [12] to statically encode snippets. SOSRepair
uses KLEE’s built-in support for loops, using a two-second
timeout; KLEE iterates over the loop as many times as possi-
ble in the allocated time. We encode user-defined struct
types by treating them as arrays of bytes (as KLEE does).
SOSRepair further inherits KLEE’s built-in mechanisms for
handling internal (GNU C) function calls. As KLEE does not
symbolically execute external (non GNU C) function calls,
SOSRepair makes no assumptions about such functions’

side-effects. SOSRepair instead makes a new symbolic vari-
able for each of the arguments and output, which frees these
variables from previously generated constraints. These fea-
tures substantially expand the expressive power of the con-
sidered repair code over previous semantic search-based
repair. We do sacrifice soundness in the interest of expres-
siveness by casting floating point variables to integers (this is
acceptable because unsoundness can be caught in testing).
This still precludes the encoding of snippets that include
floating point constants, but future SOSRepair versions can
take advantage of KLEE’s recently added floating point
support.

Overall, we encode snippets by embedding them in a
small function, called from main, and defining their input
variables as symbolic (using klee_make_symbolic). We
use KLEE off-the-shelf to generate constraints for the
snippet-wrapping function, using KLEE’s renaming facili-
ties to transform F into F t for snippet encoding. KLEE gen-
erates constraints for nearly all compilable snippets.
Exceptions are very rare, e.g., KLEE will not generate con-
straints for code containing function pointers. However,
KLEE will sometimes conservatively summarize snippets
with single TRUE constraints in cases where it can techni-
cally reason about code but is still insufficiently expressive
to fully capture its semantics.

Console Output. Real-world programs often print mean-
ingful output. Thus, modeling console output in semantic
search increases SOSRepair applicability. We thus define a
symbolic character array to represent console output in can-
didate repair snippets. Because symbolic arrays must be of
known size, we only model the first 20 characters of output.
We transform calls to printf and fprintf to call
sprintf with the same arguments. KLEE handles these
standard functions natively. We track console output in the
profile by logging the start and end of the buggy candidate
region, considering anything printed between the log state-
ments as meaningful.

Profile Construction. For consistency with prior work [38],
we use Tarantula [37] to rank suspicious source lines. We
leave the exploration of other fault localization mechanisms
to future work. To focus our study on SOSRepair efficacy
(rather than efficiency, an orthogonal concern), we assume
the provision of one buggy method to consider for repair,
and then apply SBFL to rank lines in the method. Given such
a ranked list, SOSRepair expands the identified lines to sur-
rounding regions of 3–7 lines of code, as in the snippet
encoding step. The size of the region is selected by conduct-
ing an initial experiment on small programs presented in
Section 4.3. SOSRepair attempts to repair each correspond-
ing buggy region in rank order, skipping lines that have
been subsumed into previously-identified and attempted
buggy regions.

Queries and Iteration. Z3 [21] can natively handle integers,
booleans, reals, bit vectors, and several other common data
types, such as arrays and pairs. To determine whether a can-
didate struct type is in scope, we match struct names syntac-
tically. For our experiments, we construct snippet databases
from the rest of the program under repair, pre-fix, which
supports struct matching. Additionally, programs are locally
redundant [96], and developers are more often right than
not [22], and thuswe hypothesize that a defectmay be fixable

Fig. 3. Incremental, counter-example profile refinement. REFINEPROFILE

receives a program with the candidate snippet incorporated, a set of
Tests that fail on program, and the set of output variables Xout. It com-
putes new constraints to refine the profile by excluding the observed
behavior. valOutðt; xi; programÞ returns the output value of variable xi

when test t is executed on program.

2168 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

via code elsewhere in the same program. However, this may
be unnecessarily restrictive for more broadly-constructed
databases. We leave a more flexible matching of struct types
to future work. SOSRepair is configured by default to try
repair snippets from the same file as a buggy region first, for
all candidate considered regions; then the same module;
then the same project.

3.2 Open-Source Release and Reproducibility

To support the reproduction of our results and help research-
ers build on our work, we publicly release our implementa-
tion: https://github.com/squaresLab/SOSRepair.
We also release a replication package that includes all patches
our techniques found on the ManyBugs benchmark and
the necessary scripts to rerun the experiment discussed in
Section 4.4, and all independently generated tests discussed
in Section 4.1.2: https://github.com/squaresLab/

SOSRepair-Replication-Package.
Our implementation includes Docker containers and

scripts for reproducing the evaluation results described in
Section 4. The containers and scripts use BugZoo [95], a
decentralized platform for reproducing and interacting
with software bugs. These scripts both generate snippet
databases (which our release excludes due to size) and exe-
cute SOSRepair.

SOSRepair uses randomness to make two choices during
its execution: the order in which to consider equally suspi-
cious regions returned by SOSRepair’s fault localization, and
the order in which to consider potential snippets returned by
the SMT solver that satisfy all the query constraints.
SOSRepair’s configuration includes a random seed that con-
trols this randomness, making executions deterministic.
However, there remain two sources of nondeterminism that
SOSRepair cannot control. First, SOSRepair sets a time limit
on KLEE’s execution on each code snippet (recall Section
3.1). Due to CPU load and other factors, in each invocation,
KLEE may be able to execute the code a different number of
times in the time limit, and thus generate different con-
straints. Second, if a code snippet contains uninitialized vari-
ables, those variables’ values depend on the memory state.
Because memory state may differ between executions, SOS-
Repair may generate different profiles on different execu-
tions. As a result of these two sources of nondeterminism,
SOSRepair’s resultsmay vary between executions. However,
in our experiments, we did not observe this nondeterminism
affect SOSRepair’s ability to find a patch, only its search
space and execution time.

4 EVALUATION

This section evaluates SOSRepair, answering several
research questions. The nature of each research question
informs the appropriate dataset used in its answering, as
we describe in the context of our experimental methodology
(Section 4.1). We begin by using IntroClass [48], a large
dataset of small, well-tested programs, to conduct con-
trolled evaluations of:

� Comparison to prior work: How does SOSRepair
perform as compared to SearchRepair [38], the prior
semantic-based repair approach (Section 4.2)?

� Tuning: What granularity level is best for the pur-
poses of finding high-quality repairs (Section 4.3)?

Next, in Section 4.4, we address our central experimental
concern by evaluating SOSRepair on real-world defects
taken from the ManyBugs benchmark [48], addressing:

� Expressiveness: How expressive and applicable is
SOSRepair in terms of the number and uniqueness
of defects it can repair?

� Quality: What is the quality and effectiveness of
patches produced by SOSRepair?

� The role of fault localization: What are the limitations
and bottlenecks of SOSRepair’s performance?

Section 4.5 discusses informative real-world example
patches produced by SOSRepair.

Finally, we isolate and evaluate two key SOSRepair
features:

� Performance improvements: How much perfor-
mance improvements does SOSRepair’s novel query
encoding approach afford (Section 4.6)?

� Profile refinement: How much is the search space
reduced by the negative profile refinement approach
(Section 4.7)?

Finally, we discuss threats to the validity of our experi-
ments and SOSRepair’s limitations in Section 4.8.

4.1 Methodology

We use two datasets to answer the research questions out-
lined above. SOSRepair aims to scale semantic search repair
to defects in large, real-world programs. However, such
programs are not suitable for most controlled large-scaled
evaluations, necessary for, e.g., feature tuning. Additionally,
real-world programs preclude a comparison to previous
work that does not scale to handle them. For such questions,
we consider the IntroClass benchmark [48] (Section 4.1.1).
However, where possible, and particularly in our core
experiments, we evaluate SOSRepair on defects from large,
real-world programs taken from the ManyBugs [48] bench-
mark (Section 4.1.2).

We run all experiments on a server running Ubuntu
16.04 LTS, consisting of 16 Intel(R) Xeon(R) 2.30 GHz CPU
E5-2699 v3s processors and 64 GB RAM.

4.1.1 Small, Well-Tested Programs

The IntroClass benchmark [48] consists of 998 small defective
C programs (maximum 25 lines of code) with multiple test
suites, intended for evaluating automatic program repair
tools. Because the programs are small, it is computationally
feasible to run SOSRepair on all defects multiple times, for
experiments that require several rounds of execution on the
whole benchmark. Since our main focus is applicability to
real-world defects, we use the IntroClass benchmark for tun-
ing experiments, and to comparewith prior work that cannot
scale to real-world defects.

Defects. The IntroClass benchmark consists of 998 defects
from solutions submitted by undergraduate students to six
small C programming assignments in an introductory C
programming course. Each problem class (assignment) is
associated with two independent test suites: One that is
written by the instructor of the course (the black-box test

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 2169

https://github.com/squaresLab/SOSRepair
https://github.com/squaresLab/SOSRepair-Replication-Package
https://github.com/squaresLab/SOSRepair-Replication-Package

suite), and one that is automatically generated by KLEE [12],
a symbolic execution tool that automatically generates tests
(the white-box test suite). Fig. 6 shows the number of defects
in each program assignment group that fail at least one test
case from the black-box test suite. The total number of such
defects is 778.

Patch Quality. For all repair experiments on IntroClass,
we provide the black-box tests to the repair technique to
guide the search for a patch. We then use the white-box test
suite to measure patch quality, in terms of the percent of
held-out tests the patched program passes (higher is better).

4.1.2 Large, Real-World Programs

The ManyBugs [48] benchmark consists of 185 defects taken
from nine large, open-source C projects, commonly used to
evaluate automatic program repair tools (e.g., [58], [64],
[75], [107]).

Defects. The first four columns of Fig. 4 show the project,
size of source code, number of developer-written tests, and
the number of defective versions of the ManyBugs programs
we use to evaluate SOSRepair. Prior work [68] argues for
explicitly defining defect classes(the types of defects that can
be fixed by a given repair method) while evaluating repair
tools, to allow for fair comparison of tools on comparable
classes. For instance, Angelix [64] cannot fix the defects that
require adding a new statement or variable, and therefore all
defects that require such modification are excluded from its
defect class. For SOSRepair, we define a more general defect
class that includes all the defects that can be fixed by editing
one ormore consecutive lines of code in one location, and are
supported by BugZoo (version 2.1.29) [95]. As mentioned in

Section 3.2, we use Docker containers managed by BugZoo
to run experiments in a reproducible fashion. BugZoo sup-
ports ManyBugs scenarios that can be configured on a mod-
ern, 64-bit Linux system; we therefore exclude 18 defects
from valgrind and fbc, which require the 32-bit Fedora 13
virtual machine image originally released with ManyBugs.
Further, automatically fixing defects that require editing
multiple files or multiple locations within a file is beyond
SOSRepair’s current capabilities. We therefore limit the
scope of SOSRepair’s applicability only to the defects that
require developers to edit one or more consecutive lines of
code in a single location. In theory, SOSRepair can be used to
find multi-location patches, but considering multiple loca-
tions increases the search space and is beyond the scope of
this paper.

SOSRepair’s defect class includes 65 of the 185 Many-
Bugs defects. We use method-level fault localization by lim-
iting SOSRepair’s fault localization to the method edited
by the developer’s patch, which is sometimes hundreds of
lines long. We construct a single snippet database (recall
Section 3) per project from the oldest version of the buggy
code among all the considered defects. Therefore, the snippet
database contains none of the developer-written patches.

Fig. 5 shows, for each ManyBugs program, the mean and
median snippet size, the number of variables in code snip-
pets, the number of functions called within the snippets, the
number of constraints for the code snippets stored in the
database, and the time spent on building the database. For
each program, SOSRepair generates thousands of snippets,
and for each snippet, on average, KLEE generates tens of
SMT constraints. SOSRepair generated a total of 145,639 snip-
pets, with means of 140 characters, 4 variables, 1 function
call, and 13 SMT constraints. The database generation is
SOSRepair’s most time-consuming step, which only needs to
happen once per project. The actual time to generate the
database varies based on the size of the project. It takes from
2.3 hours for gzip up to 115 hours for wireshark, which is
the largest program in the ManyBugs benchmark. On aver-
age, it takes 8.2 seconds to generate each snippet. However,
we collected these numbers using a single thread. This step
is easily parallelizable, representing a significant perfor-
mance opportunity in generating the database. We set the
snippet granularity to 3–7 lines of code, following the results
of our granularity experiments (Section 4.3) and previous
work on code redundancy [25].

Fig. 4. Subject programs and defects in our study, and the number of
each for which SOSRepair generates a patch.

2170 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

Fig. 5. The code snippet database SOSRepair generates for each of the ManyBugs programs. SOSRepair generated a total of 145,639 snippets,
with means of 140 characters, 4 variables, 1 function call, and 13 SMT constraints. On average, SOSRepair builds the database in 35 hours, using a
single thread.

Patch Quality.Akey concern in automated program repair
research is the quality of the produced repairs [76], [85]. One
mechanism for objectively evaluating patch quality is via
independent test suites, held out from patch generation. The
defects in ManyBugs are released with developer-produced
test suites of varying quality, often with low coverage of
modified methods. Therefore, we construct additional held-
out test suites to evaluate the quality of generated patches.
For a given defect, we automatically generate unit tests for
all methods modified by either the project’s developer or by
at least one of the automated repair techniques in our evalua-
tion. We do this by constructing small driver programs that
invoke themodifiedmethods:

� Methods implemented as part of an extension or mod-
ule can be directly invoked from a driver’s main

function (e.g., the substr_comparemethod of php
stringmodule.)

� Methods implemented within internal libraries are
invoked indirectly by using other functionality. For
example, the method do_inheritance_check_

on_methodof zend_compile library in php is
invoked by creating and executing phpprograms
that implement inheritance. For such methods, the
driver’s mainfunction sets the values of requisite
global variables and then calls the functionality that
invokes the desired method.

We automatically generate random test inputs for the
driver programs that then invoke modified methods. We
generate inputs until either the tests fully cover the target
method or until adding new test inputs no longer signifi-
cantly increases statement coverage. For four php and two
lighttpd scenarios for which randomly generated test
inputs were unable to achieve high coverage, we manually
added new tests to that effect. For libtiffmethods requir-
ing tiff images as input, we use 7,214 tiff images randomly
generated and released by the AFL fuzz tester [2].We use the
developer-patched behavior to construct test oracles, record-
ing logged, printed, and returned values and exit codes as
ground truth behavior. If the developer-patched program
crashes on an input, we treat the crash as the expected
behavior.

We release these generated test suites (alongwith all source
code, data, and experimental results) to support future
evaluations of automated repair quality on ManyBugs. All

materials may be downloaded from https://github.

com/squaresLab/SOSRepair-Replication-Package.
This release is the first set of independently-generated quality-
evaluation test suites forManyBugs.

Baseline Approaches. We compare to three previous repair
techniques that have been evaluated on (subsets) of Many-
Bugs, relying on their public data releases. Angelix [64]
is a state-of-the-art semantic program repair approach;
Prophet [58] is a more recent heuristic technique that instan-
tiates templated repairs [56], informed by machine learning;
and GenProg [49] uses genetic programming to combine
statement-level program changes in a repair search. GenProg
has been evaluated on all 185ManyBugs defects; Angelix, on
82 of the 185 defects; Prophet, on 105 of 185. Of the 65 defects
that satisfy SOSRepair’s defect class, GenProg is evaluated
on all 65 defects, Angelix on 30 defects, and Prophet on 39
defects.

4.2 Comparison to SearchRepair

First, to substantiate SOSRepair’s improvement over previ-
ous work in semantic search-based repair, we empirically
compare SOSRepair’s performance to SearchRepair [38].
Because SearchRepair does not scale to the ManyBugs pro-
grams, we conduct this experiment on the IntroClass data-
set (Section 4.1.1). We use the black-box tests to guide the
search for repair, and the white-box tests to evaluate the
quality of the produced repair.

Fig. 6 shows the number of defects patched by each tech-
nique. SOSRepair patches more than twice as many defects
as SearchRepair (346 versus 150, out of the 778 total repairs
attempted). This difference is statistically significant based
on Fisher’s exact test (p < 10�15). The bottom row shows the
mean percent of the associated held-out test suite passed by
each patched program. Note that SOSRepair’s average patch
quality is slightly lower than SearchRepair’s (91.5 versus
97.3%). However, 239 of the 346 total SOSRepair patches
pass 100% of the held-out tests, constituting substantially
more very high-quality patches than SearchRepair finds total
(150). Overall, however, semantic search-based patch quality
is quite high, especially as compared to patches produced by
prior techniques as evaluated in the prior work: AE [107]
finds patches for 159 defects with average quality of 64.2%,
TrpAutoRepair [75] finds 247 patches with 72.1% quality,
and GenProg [108] finds 287 patches with average quality of
68.7% [38]. Overall, SOSRepair outperforms these prior tech-
niques in expressive power (number of defects repaired, at
346 of 778), and those patches are of measurably higher
quality.

4.3 Snippet Granularity

Snippet granularity informs the size and preparation of the
candidate snippet database, as well as SOSRepair’s expres-
siveness. Low granularity snippets may produce prohibi-
tively large databases and influence patch quality. High
granularity (i.e., larger) snippets lower the available redun-
dancy (previous work suggests that the highest code redun-
dancy is found in snippets of 1–7 lines of code [25]) and
may reduce the probability of finding fixes. Both for tuning
purposes and to assess one of our underlying hypotheses,
we evaluate the effect of granularity on repair success and

Fig. 6. Number of defects repaired by SearchRepair and SOSRepair on
IntroClass dataset. “Mean quality” denotes the mean percent of the asso-
ciated held-out test suite passed by each patched programs.

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 2171

https://github.com/squaresLab/SOSRepair-Replication-Package
https://github.com/squaresLab/SOSRepair-Replication-Package

patch quality by systematically altering the granularity level
of both the code snippets in the SOSRepair database and the
buggy snippet to be repaired. Because this requires a large
number of runs on many defects to support statistically sig-
nificant results, and to reduce the confounds introduced by
real-world programs, we conduct this experiment on the
IntroClass dataset, and use SOSRepair to try to repair all
defects in the dataset using granularity level configuration
of 1–3 lines, 3–7 lines, and 6–9 lines of code.

Fig. 7 shows the number of produced patches, the num-
ber of those patches that pass all the held-out tests, and the
mean percent of held-out test cases that the patches pass, by
granularity of the snippets in the SOSRepair database. The
granularity of 3–7 lines of code produces the most patches
(346 versus 188 and 211 with other granularities), and the
most patches that pass all the held-out tests (239 versus 120
and 125 with other granularities). Fisher’s exact test con-
firms that these differences are statistically significant (all
p < 10�70).

While the number of patches that pass all defects is sig-
nificantly higher for the 3–7 granularity, and the fraction of
patches that pass all held-out tests is higher for that granu-
larity (69.1% for 3–7, 63.8% for 1–3, and
59.2% for 6–9), the mean patch quality is similar for all the
three levels of granularity. We hypothesize that this obser-
vation may be a side-effect of the small size of the programs
in the IntroClass benchmark and the high redundancy
induced by many defective programs in that benchmark
attempting to satisfy the same specification. We suspect this
observation will not extend to benchmarks with more diver-
sity and program complexity, and thus make no claims
about the effect of granularity on average quality.

We configure our database in subsequent experiments to
use snippets of 3–7 lines, as these results suggest that doing
so may provide a benefit in terms of expressive power. The
results of this study may not immediately extend to large,
real-world programs; we leave further studies exploring
repair granularity for large programs to future work.

4.4 Repair of Large, Real-World Programs

A key contribution of our work is a technique for semantic
search-based repair that scales to real-world programs; we
therefore evaluate SOSRepair on defects from ManyBugs
that fall into its defect class (as described in Section 4.1.2). The
“patched” column in Fig. 4 summarizes SOSRepair’s ability
to generate patches. Fig. 8 presents repair effectiveness and

quality for all considered defects in the class, comparing
them with patches produced by previous evaluations of
Angelix, Prophet, andGenProg. Fig. 8 enumerates defects for
readability andmaps each “program ID” to a revision pair of
the defect and developer-written repair.

4.4.1 Repair Expressiveness and Applicability

SOSRepair patches 22 of the 65 defects that involved modi-
fying consecutive lines by the developer to fix those defects.
The Angelix, Prophet, and GenProg columns in Fig. 8 indi-
cate which approaches succeed on patching those defects
(• for not patched, and NA for not attempted, correspond-
ing to defects outside the defined defect class for a tech-
nique). There are 5 defects that all four techniques patch.
SOSRepair is the only technique that repaired libtiff-4.
SOSRepair produces patches for 3 defects that Angelix can-
not patch, 5 defects that Prophet cannot patch, and 6 defects
that GenProg cannot patch. These observations corroborate
results from prior work on small programs, which showed
that semantic search-based repair could target and repair
defects that other techniques cannot [38].

Even though efficiency is not a focus of SOSRepair’s
design, we measured the amount of time required to gener-
ate a patch with SOSRepair. On average, it took SOSRepair
5.25 hours to generate patches reported in Fig. 8. Efficiency
is separate from, and secondary to the ability to produce
patches and can be improved by taking advantage of paral-
lelism and multithreading in SOSRepair’s implementation.
On average, 57.6% of the snippets in the database (satisfying
type constraints) matched the SMT query described in Sec-
tion 2.4. Of the repaired defects, seven involve insertion,
seven involve replacement, and eight involve deletion.

4.4.2 Repair Effectiveness and Quality

Fig. 8 shows the percent of evaluation tests passed by
the SOSRepair, Angelix, Prophet, and GenProg patches.
“Coverage” is the average statement-level coverage of the
generated tests on the methods modified by either the devel-
oper or by at least one automated repair technique in our
evaluation. SOSRepair produces more patches (9, 41%) that
pass all independent tests than Angelix (4), Prophet (5) and,
GenProg (4). For the defects patched in-common by SOSRe-
pair and other techniques, Angelix and SOSRepair patch 9 of
the same defects; both SOSRepair and Angelix produce 4
patches that pass all evaluation tests on this set. Prophet and

Fig. 7. A comparison of applying SOSRepair to IntroClass defects with three different levels of granularity: 1–3, 3–7, and 6–9 lines of code.

2172 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

Fig. 8. SOSRepair patches 22 of the 65 considered defects, 9 (41%) of which pass all of the independent tests.When SOSRepair is manually provided
a fault location (SOSRepair�), it patches 23 defects, 16 (70%) of which pass all of the independent tests. All defects repaired by either SOSRepair or
SOSRepair� (shaded in gray) have a generated test suite for patch quality assessment. Coverage is the mean statement-level coverage of that test
suite on the patch-modified methods. indicates that a technique produced a patch, indicates that a technique did not produce a patch, and
NA indicates that the defect was not attempted by a technique (for Angelix, this defect was outside its defect class; for Prophet this defect was not
available because Prophet was evaluated on an older version of ManyBugs). Three of the released Angelix patches [64] (denoted z) do not
automatically apply to the buggy code. Each SOSRepair and SOSRepair� patch is either a replacement (!), an insertion (), or a deletion ().

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 2173

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 16,2021 at 03:18:25 UTC from IEEE Xplore. Restrictions apply.

brun
Rectangle

SOSRepair patch 11 of the same defects; both SOSRepair and
Prophet produce 5 patches that pass all evaluation tests on
this set. GenProg and SOSRepair patch 16 of the same
defects; 4 out of these 16 GenProg patches and 8 SOSRepair
patches pass all evaluation tests. Thus, SOSRepair produces
more patches that pass all independent tests than GenProg,
and as many such patches as Angelix and Prophet. This sug-
gests that semantic code search is a promising approach to
generate high-quality repairs for real defects, and that it has
potential to repair defects that are outside the scope of other,
complementary repair techniques.

4.4.3 Improving Patch Quality through

Fault Localization

Although these baseline results are promising, most of the
patches previous semantic search-based repair produced on
small program defects passed all held-out tests [38]. We
investigated why SOSRepair patch quality is lower than this
high bar. We hypothesized that two possible reasons are that
real-world buggy programs do not contain code that can
express the needed patch, or that fault localization impreci-
sion hampers SOSRepair success. Encouragingly, anec-
dotally, we found that many buggy programs do contain
code that can express the developer patch. However, fault
localization is the more likely culprit. For example, for gmp-
1, fault localization reports 59 lines as equally-highly suspi-
cious, including the line modified by the developer, but as
part of its breadth-first strategy, SOSRepair only tries 10 of
these 59.

We further observed that in some cases, more than one
mapping between variables satisfies the query, but only one
results in a successful patch. Since trying all possible map-
pings is not scalable, SOSRepair only tries the first mapping
selected by the solver. Including more variables in the map-
ping query increases the number of patch possibilities, but
also the complexity of the query.

We created SOSRepair�, a semi-automated version of
SOSRepair that can take hints from the developer regarding
fault location and variables of interest. SOSRepair� differs
from SOSRepair in the following two ways:

1) SOSRepair uses spectrum-based fault localization [37]
to identify candidate buggy code regions. SOSRepair�

uses a manually-specified candidate buggy code
region. In our experiments, SOSRepair� uses the loca-
tion of the code the developer modified to patch the
defect as its candidate buggy code region, simulating
the developer suggesting where the repair technique
should try to repair a defect.

2) SOSRepair considers all live variables after the inser-
tion line in its query. While multiple mappings may
exist that satisfy the constraints, not all such map-
pings may pass all the tests. SOSRepair uses the one
mapping the SMT solver returns. SOSRepair� can be
told which variables not to consider, simulating the
developer suggesting to the repair technique which
variables likelymatter for a particular defect. A smaller
set of variables of interest increases the chance that the
mapping the SMT solver returns and SOSRepair� tries
is a correct one. We found that for 6 defects (gzip-1,
libtiff-4, libtiff-8, php-10, php-12, and

gmp-1), SOSRepair failed to produce a patch because
it attempted an incorrectmapping. For these 6 defects,
we instructed SOSRepair� to reduce the variables of
interest to just those variables used in the developer-
written patch.

On our benchmark, SOSRepair� patches 23 defects and 16
(70%) of them pass all independent tests. While it is unsound
to compare SOSRepair� to prior, fully-automated techni-
ques, our conclusions are drawn only from the comparison
to SOSRepair; the quality results for the SOSRepair�-patched
defects for the prior tools in Fig. 8 are only for reference.

Our experiments show that precise fault localization
allows SOSRepair� to patch 7 additional defects SOSRepair
could not (bottom of Fig. 8), and to improve the quality of 3
of SOSRepair’s patches. Overall, 9 new patches pass 100%
of the independent tests.

SOSRepair and SOSRepair� sometimes attempt to patch
defects at different locations: SOSRepair using spectrum-
based fault localization and SOSRepair� at the location
where the developer patched the defect. For 6 defects, SOS-
Repair finds a patch, but SOSRepair� does not. Note that
defects can often be patched at multiple locations, and devel-
opers do not always agree on a single location to patch a par-
ticular defect [10]. Thus, the localization hint SOSRepair�

receives is a heuristic, and may be neither unique nor opti-
mal. In each of these 6 cases, the patch SOSRepair finds it at
an alternate location than where the developer patched the
defect.

Because SOSRepair and SOSRepair� sometimes patch at
different locations, the patches they produce sometimes dif-
fer, and accordingly, so does the quality of those patches. In
our experiments, in all but one case (php-5) SOSRepair�

patches were at least as high, or higher quality than SOSRe-
pair patches for the same defect.

We conclude that research advancements that produce
more accurate fault localization or elicit guidance from
developers in a lightweightmanner are likely to dramatically
improve SOSRepair performance. Additionally, input (or
heuristics) on which variables are likely related to the buggy
functionality (and are thus appropriate to consider) could
limit the search to a smaller but more expressive domain,
further improving SOSRepair.

4.5 Example Patches

In this section, we present several SOSRepair patches pro-
duced on the ManyBugs defects (Section 4.4), comparing
them to developer patches and those produced by other
tools. Our goal is not to be comprehensive, but rather to
present patches highlighting various design decisions.

Example 1 python-1. The python interpreter at revision
#69223 fails a test case concerning a variable that should
never be negative. The developer patch is as follows:

}

+ if (timeout < 0) {

+ PyErr_SetString(PyExc_ValueError,

+ “timeout must be non-negative“);

+ return NULL;

+ }

seconds = (long)timeout;

2174 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 16,2021 at 03:18:25 UTC from IEEE Xplore. Restrictions apply.

Fault localization correctly identifies the developer’s inser-
tion point for repair. Several snippets in the python project
perform similar functionality to the fix, including the follow-
ing, from the IOmodule:

if (n < 0) {

PyErr_SetString(PyExc_ValueError,

“invalid key number“);

return NULL;

}

SOSRepair correctly maps variable n to timeout and
inserts the code to repair the defect. Although the error mes-
sage is not identical, the functionality is, and suitable to sat-
isfy the developer tests. However, unlike the developer
tests, the generated tests do consider the error message,
explaining the patch’s relatively low success on the held-
out tests. Synthesizing good error messages is an open prob-
lem; such a semantically meaningful patch could still assist
developers in more quickly addressing the underlying
defect [106].

GenProg did not patch this defect; Angelix was not
attempted on it, as the defect is outside its defect class. The
Prophet patch modifies an if-check elsewhere in the code to
include a tautological condition:

- if ((!rv)) {

+ if((!rv) && !(1)) {

if (set_add_entry((PySetObject *)...

This demonstrates how techniques that do not delete
directly can still do so, motivating our explicit inclusion of
deletion.

Example 2 php-2. We demonstrate the utility of explicit
deletion with our second example, from php-2 (recall
Fig. 8). At the buggy revision, php fails two test cases
because of an incorrect value modification in its string

module. Both the developer and SOSRepair delete the
undesired functionality:

- if (len > s1_len - offset) {

- len = s1_len - offset;

- }

Angelix and Prophet correctly eliminate the same func-
tionality by modifying the if condition such that it always
evaluates to false. GenProg inserts a return; statement
in a different method.

Example 3 php-1. Finally, we show a SOSRepair patch that
captures a desired semantic effectwhile syntactically differ-
ent from the human repair. Revision 74343ca506 of php-1
(recall Fig. 8) fails 3 test cases due to an incorrect condition
around a loopbreak, which the developermodifies:

- if (just_read< toread) {

+ if (just_read == 0) {

break;

}

This defect inspired our illustrative example (Section 2.1).
Using default settings, SOSRepair first finds a patch identical

to the developer fix. To illustrate, we present a different but
similar fix that SOSRepair finds if run beyond the first repair:

if ((int)box_length <= 0) {

break ;

}

SOSRepair maps box_length to just_read, and repla-
ces the buggy code. In this code, just_read is only ever
greater than or equal to zero, such that this patch is accept-
able. Angelix and Prophet were not attempted on this defect;
GenProg deletes other functionality.

4.6 Query Encoding Performance

To answer our final two research questions, we isolate and
evaluate two key novel features of SOSRepair. First, this
section evaluates the performance improvements gained
by SOSRepair’s novel query encoding approach. Second,
Section 4.7 evaluates the effects of SOSRepair’s negative
profile refinement approach on reducing the search space.

In the repair search problem, query complexity is a func-
tion of the number of test inputs through a region and the
number of possible mappings between a buggy region and
the repair context. To understand the differences between
SOSRepair’s and the old approach’s encodings, consider a
buggy snippet C with two input variables a and b and a single
output variable c. Suppose C is executed by two tests, t1 and
t2. And supposeS is a candidate repair snippetwith two input
variables x and y, a single output variable z, and path con-
straints ’c generated by the symbolic execution engine.
SOSRepair’s encodinguses location variables to discover a valid
mapping between variables a; b and x; y that satisfy ’c con-
straints for both test cases t1 and t2, with a single query (recall
Section 2.4.1).Meanwhile, the prior approach [38] traverses all
possible mappings between variables (m1 : ða ¼ xÞ ^ ðb ¼
yÞ ^ ðc ¼ zÞ and m2 : ða ¼ yÞ ^ ðb ¼ xÞ ^ ðc ¼ zÞ), and creates
a query for every test case, for every possible variable map-
ping. A satisfiable query implies its mapping is valid for that
particular test. For example, to show that mapping m1 is a
valid mapping, two queries are required (one for t1 and one
for t2), and only if both are satisfiable ism1 considered valid.
The number of queries required for this approach grows
exponentially in the number of variables, as there is an expo-
nential number of mappings (permutation) of the variables.
In our example, there are two possible mappings and two
tests, so four queries are required, unlike SOSRepair’s one.

To evaluate the performance impact of SOSRepair’s
new encoding, we reimplement the previous encoding
approach [38]. We then compare SMT solver speed on the
same repair questions using each encoding. Running on two
randomly-selected ManyBugs defects, we measured the
response time of the solver on more than 10,000 queries for
both versions of encoding techniques. Fig. 9 shows the speed
up using the new encoding as compared to the old encoding,
as a function of query complexity (number of tests times
the number of variable permutations). The new encoding
approach delivers a significant speed up over the previous
approach, and the speed up increases linearly with query
complexity (R2 ¼ 0:982).

Looking at the two approaches individually, query time
increases linearly with query complexity (growing slowly

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 2175

slope-wise, but with a very high R2 ¼ 0:993) with the previ-
ous encoding, and is significantly more variable with the
new encoding and does not appear linearly related to query
complexity (R2 ¼ 0:008). Overall, Fig. 9 shows the speed up
achieved with the new encoding, and its linear increase as
query complexity grows.

4.7 Profile Refinement Performance

The profile refinement approach (recall Section 2.5) uses
negative tests to iteratively improve a query, reduce the
number of attempted candidate snippets, and repair defects
without covering passing test cases. By default, SOSRepair
uses the automated, iterative query refinement on all defects
whenever at least one faulty region under consideration is
covered only by negative test cases. In our experiments, for
2 ManyBugs defects (libtiff-8 and lighttpd-2), the
patches SOSRepair and SOSRepair� produce cover a region
only covered by negative test cases, though SOSRepair and
SOSRepair� use the refinement process while attempting to
patch other defects as well.

In this experiment, we evaluate the effect of iterative pro-
file refinement using negative examples on the size of the
considered SMT search space. We conduct this experiment
on a subset of the IntroClass dataset to control for the effect of
symbolic execution performance (which is highly variable on
the real-world programs in ManyBugs). We ran SOSRepair
on all the defects in the median, smallest, and grade pro-
grams, only using the initially failing test cases, with profile
refinement, for repair. For every buggy line selected by the
fault localization and expanded into a region with granular-
ity of 3–7 lines of code, wemeasured the number of candidate
snippets in the database that can be rejected by the SMT-
solver (meaning the patch need not be dynamically tested to
be rejected, saving time) using only negative queries.

Fig. 10 shows the percent of the search space excluded
after multiple iterations for all buggy regions. For example,
the first bar shows that on 68% of buggy regions tried, fewer
than 20% of candidate snippets were eliminated by the solver
when only negative tests are available, leaving more than
80% of possible candidates for dynamic evaluation. We find
that approach effectiveness depends on the nature of the
defect and snippets. In particular, the approach performs
poorly when desired snippet behavior involves console out-
put that depends on a symbolic variable. This makes sense:
KLEE produces random output in the face of symbolic con-
sole output, and such output is uninformative in specifying

undesired behavior. Our results show that on 14% of the
defects (that are dependent on console output), more than
40% of database snippets can be rejected using only the test
cases that the program initially failed. We also transformed
the defects in the dataset to capture console output by vari-
able assignments, treating those variables as the output
(rather than the console printout); Fig. 10 also shows the
results of running the same study on the modified programs.
More than 40% of the possible snippets can be eliminated for
66% of the preprocessed programs. Overall, profile refine-
ment can importantly eliminate large amounts of the search
space, but its success depends on the characteristics of the
code under repair.

4.8 Threats and Limitations

Even though SOSRepair works on defects that require devel-
opers to modify a single (potentially multi-line) location in
the source code, we ensure that it generalizes to all kinds of
defects belonging to large unrelated projects by evaluating
SOSRepair on a subset of the ManyBugs benchmark [48],
which consists of real-world, real-developer defects, and is
used extensively by prior program repair evaluations [48],
[58], [64], [70], [75], [107]. The defects in our evaluation also
cover the novel aspects of our approach, e.g., defects with
only negative profiles, console output, and various edit
types.

Our work inherits KLEE’s limitations: SOSRepair cannot
identify snippets that KLEE cannot symbolically execute,
impacting patch expressiveness nevertheless, the modified
buggy code can include KLEE-unsupported constructs,
such as function pointers. Note that this limitation of KLEE
is orthogonal to our repair approach. As KLEE improves in
its handling of more complex code, so will SOSRepair. Our
discussion of other factors influencing SOSRepair success
(recall Section 4.4) suggests directions for improving appli-
cability and quality.

Our experiments limit the database of code snippets to
those found in the same project, based on observations of
high within-project redundancy [4]. Anecdotally, we have
observed SOSRepair failing to produce a patch when using
snippets only from the same project, but succeeding with a
correct patch when using snippets from other projects. For
example, for gzip-1 defect, the code in gzip lacks the

Fig. 10. Fraction of defects that can reject fractions of the search space
(measured via SMT queries) using only iteratively-constructed negative
examples. Profile refinement improves scalability by reducing the number
of candidate snippets to consider. Console output that relies on symbolic
values affects this performance.

Fig. 9. The speedup of the new encoding approach over the previous
approach grows with query complexity.

2176 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

necessary snippet to produce a patch, but that snippet
appears in the python code. Extending SOSRepair to use
snippets from other projects could potentially improve
SOSRepair’s effectiveness, but also creates new scalability
challenges, including handling code snippets that include
custom-defined, project-specific types and structures.

Precisely assessing patch quality is an unsolved problem.
As with other repair techniques guided by tests, we use tests,
a partial specification, to evaluate the quality of SOSRepair’s
patches. Held-out, independently generated or written test
suites represent the state-of-the-art of patch quality evalua-
tion [85], along with manual inspection [58], [76]. Although
developer patches (which we use as a functional oracle) may
contain bugs, in the absence of a better specification, evalua-
tions such as oursmust rely on the developers.

We conduct several experiments (e.g., Sections 4.3 and 4.7)
on small programs from the IntroClass benchmark [48], since
these experiments require controlled, large-scale executions
of SOSRepair. Even though these experiments provide valu-
able insights, their results may not immediately extend to
large, real-world programs.

We publicly release our code, results, and new test suites
to support future evaluation, reproduction, and extension,
mitigating the risk of errors in our implementation or
setup. All materials may be downloaded from https://

github.com/squaresLab/SOSRepair (SOSRepair’s
implementa t ion) , and https://github.com/

squaresLab/SOSRepair-Replication-Package

(SOSRepair’s replication package).

5 RELATED WORK

We place our work in the context of related research in two
areas, code search and automated program repair.

5.1 Code Search

Execution-based semantic code search [77] executes code
to find matches with queries as test cases, signature, and
keywords [77]. Meanwhile constraint-satisfaction-based
search [88], [89], [90] matches input-output examples to code
fragments via symbolic execution. SOSRepair builds on this
prior work. Synthesis can adapt code-search results to a
desired context [93], [105]. The prior approaches had
humans directly or indirectlywrite queries. By contrast, SOS-
Repair automatically extracts search queries from program
state and execution, and uses the query results to map snip-
pets to a new context. Other code search work synthesizes
Java directly from free-form queries [32], [86] or based on
crash reports [27]. While effective at repairing Java expres-
sions that use wrong syntax or are missing arguments [32],
this type of repair does not target semantic errors and
requires an approximate Java-like expression as part of the
query (and is thus similar to synthesis by sketching [86]).

5.2 Program Repair

There are two general classes of approaches to repairing
defects using failing tests to identify faulty behavior and
passing tests to demonstrate acceptable program behavior:
generate-and-validate or heuristic repair and semantic-based
repair. The formeruses search-based techniques or predefined

templates to generate many syntactic candidate patches, vali-
dating them against the tests (e.g., GenProg [49], Prophet [58],
AE [107], HDRepair [46], ErrDoc [94], JAID [15], Qlose [19],
and Par [39], among others). Techniques such as DeepFix [31]
and ELIXIR [80] use learnedmodels to predict erroneous pro-
gram locations along with patches. ssFix [110] uses existing
code that is syntactically related to the context of a bug to pro-
duce patches. CapGen [109] works at the AST node level
(token-level) and uses context and dependency similarity
(instead of semantic similarity) between the suspicious code
fragment and the candidate code snippets to produce patches.
To manage the large search space of candidates created
because of using finer-level granularity, it extracts context
information from candidate code snippets and prioritizes the
mutation operators considering the extracted context infor-
mation. SimFix [36] considers the variable name and method
name similarity in addition to the structural similarity
between the suspicious code and candidate code snippets.
Similar to CapGen, it prioritizes the candidate modifications
by removing the ones that are found less frequently in exist-
ing patches. Hercules [81] generalizes single-location pro-
gram repair techniques to defects that require similar edits be
made in multiple locations. Enforcing that a patch keeps a
program semantically similar to the buggy version by ensur-
ing that user-specified correct traces execute properly on the
patched version can repair reactive programswith linear tem-
poral logic specifications [98]. Several repair approaches have
aimed to reduce syntactic or semantic differences between
the buggy and patched program [19], [36], [38], [45], [63], [98],
[109], with a goal of improving patch quality. For example,
Qlose [19]minimizes a combination of syntactic and semantic
differences between the buggy and patched programs while
generating candidate patches. SketchFix [34] optimizes the
candidate patch generation and evaluation by translating
faulty programs to sketches (partial programs with holes)
and lazily initializing the candidates of the sketcheswhile val-
idating them against the test execution. SOFix [50] uses 13
predefined repair templates to generate candidate patches.
These repair templates are created based on the repair pat-
terns mined from StackOverflow posts by comparing code
samples in questions and answers for fine-grained modifica-
tions. SapFix [60] and Getafix [83], two tools deployed on pro-
duction code at Facebook, efficiently produce repairs for large
real-world programs. SapFix [60] uses prioritized repair strat-
egies, including pre-defined fix templates, mutation opera-
tors, and bug-triggering change reverting, to produce repairs
in realtime. Getafix [83] learns fix patterns from past code
changes to suggest repairs for bugs that are found by Infer,
Facebook’s in-house static analysis tool.

SOSRepair’s approach to using existing code to inform
repair is reminiscent of Prophet [58], Par [39], IntPTI [16],
and HDRepair [46] that use models of existing code to cre-
ate or evaluate patches. SOSRepair does not use patterns,
but rather considers a database of code snippets for candi-
date patches, using a constraint solver and existing test
cases to assess them. The latter class of approaches use
semantic reasoning to synthesize patches to satisfy an
inferred specification (e.g., Nopol [112], Semfix [73], Direct-
Fix [63], Angelix [64], S3 [45], JFIX [44]). SemGraft [62] infers
specifications by symbolically analyzing a correct reference
implementation (as opposed to using test cases), but unlike

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 2177

https://github.com/squaresLab/SOSRepair
https://github.com/squaresLab/SOSRepair
https://github.com/squaresLab/SOSRepair-Replication-Package
https://github.com/squaresLab/SOSRepair-Replication-Package

SOSRepair, requires that reference implementation. Gene-
sis [55], Refazer [79], NoFAQ [20], Sarfgen [100], and
Clara [30] process correct patches to automatically infer
code transformations to generate patches, a problem con-
ceptually related to our challenge in integrating repair snip-
pets to a new context.

SearchRepair [38] combines those classes, using a con-
straint solver to identify existing code to construct repairs.
SOSRepair builds on SearchRepair, fundamentally improv-
ing the approach in several important ways. It is signifi-
cantly more expressive (handling code constructs used in
real code and reasoning about snippets that can affect multi-
ple variables as output) and scalable (SearchRepair could
only handle small, student-written C programs), supports
deletion and insertion, uses failing test cases to restrict the
search space, repairs code without passing examples, and
its encoding of the repair query is significantly more expres-
sive and efficient.

The location mechanism we adapt to repair queries
was previously proposed for program synthesis [35] and
adapted to semantic-based program repair [63], [64], [73].
Despite underlying conceptual similarities, SOSRepair dif-
fers from these approaches in key ways. Instead of replacing
buggy expressions in if conditions or assignments with syn-
thesized expressions, SOSRepair uses the constraint solver
to identify existing code to use as patches, at a higher level of
granularity than in prior work. Like SOSRepair, semantic-
based approaches constrain desired behavior with failing
test cases to guide patch synthesis. Critically, however, prior
techniques require that the expected output on failing test
cases be explicitly stated, typically through annotation. See,
for example, https://github.com/mechtaev/angelix/
blob/master/doc/Manual.md. SOSRepair automatically
infers and uses the negative behavior extracted from the
program state with no additional annotation burden.

Like SOSRepair, approaches that aim to generate higher-
quality patches using a test suite are complementary to
attempts to generate oracles to improve the test suite. For
example, Swami processes natural-language specifications to
generate precise oracles and tests, improving on both devel-
oper-written and other automatically-generated tests [69].
Similarly, Toradacu [29] and Jdoctor [9] generate oracles from
Javadoc comments, and @tComment [92] generates precondi-
tions related to nullness of parameters, each ofwhich can lead
to better tests. Regression test generation tools, e.g., Evo-
Suite [23] and Randoop [74], can help ensure patches do not
alter otherwise-undertested functionality. UnsatGuided [114]
generates regression tests using EvoSuite to constrain the
repair process and produce fewer low-quality patches. How-
ever, automatically-generated tests often differ in quality
from manually-written ones [84], [101], and have different
effects on patch quality [85]. Specification mining uses execu-
tion data to infer (typically) FSM-based specifications [1], [5],
[6], [7], [28], [41], [42], [43], [51], [52], [53], [54], [78], [82].
TAUTOKO uses such specifications to generate tests, e.g., of
sequences of method invocations on a data structure [18],
then iteratively improving the inferred model [18], [99]. Patch
quality can also potentially improve using generated tests for
non-functional properties, such as software fairness, which
rely on observed behavior, e.g., by asserting that the behavior
on inputs differing in a controlled way should be sufficiently

similar [3], [11], [26]. Meanwhile, assertions on system data
can also act as oracles [71], [72], and inferred causal relation-
ships in data management systems [24], [65], [66] can help
explain query results, debug errors [102], [103], [104], and
suggest oracles for systems that rely on data management
systems [67].

Our central goal is to improve the ability of program
repair to produce correct patches. Recent work has argued
for evaluating patch correctness using independent tests [47],
[85], [111], [113], which is the approach we follow, as
opposed to manual examination [57], [76]. Of the 22 defects
for which SOSRepair produces patches, 9 pass all the inde-
pendent tests, more than prior techniques. Improving fault
localization, 16 of the patches SOSRepair� produces pass
all independent tests. This suggests that high-granularity,
semantic-search-based repair can producemore high-quality
patches, and that better fault localization can play an impor-
tant role in improving repair quality.

6 CONTRIBUTIONS

Automated program repair may reduce software production
costs and improve software quality, but only if it produces
high-quality patches. While semantic code search can pro-
duce high-quality patches [38], such an approach has never
been demonstrated on real-world programs. In this paper,
we have designed SOSRepair, a novel approach to using
semantic code search to repair programs, focusing on extend-
ing expressiveness to that of real-world C programs and
improving the search mechanism’s scalability. We evaluate
SOSRepair on 65 defects in large, real-world C programs,
such as php and python. SOSRepair produces patches for 22
(34%) of the defects, and 9 (41%) of those patches pass 100%
of independently-generated, held-out tests. SOSRepair
repairs a defect no prior techniques have, and produces
higher-quality patches. In a semi-automated approach that
manually specifies the fault’s location, SOSRepair patches 23
defects, of which 16 (70%) pass all independent tests. Our
results suggest semantic code search is a promising approach
for automatically repairing real-world defects.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation
under grants no. CCF-1453474, CCF-1563797, CCF-1564162,
CCF-1645136, and CCF-1763423.

REFERENCES

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and
J. J. Wylie, “Fault-scalable Byzantine fault-tolerant services,” in
Proc. ACM Symp. Operating Syst. Principles, 2005, pp. 59–74.

[2] afl fuzz, “American fuzzy lop,” 2018. [Online]. Available: http://
lcamtuf.coredump.cx/afl/

[3] R. Angell, B. Johnson, Y. Brun, andA.Meliou, “Themis: Automat-
ically testing software for discrimination,” in Proc. Eur. Softw. Eng.
Conf. and ACM SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2018,
pp. 871–875.

[4] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The
plastic surgery hypothesis,” in Proc. ACM SIGSOFT Symp. Found.
Softw. Eng., Nov. 2014, pp. 306–317.

[5] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and
A. Krishnamurthy, “Using declarative specification to improve the
understanding, extensibility, and comparison of model-inference
algorithms,” IEEE Trans. Softw. Eng., vol. 41, no. 4, pp. 408–428,
Apr. 2015.

2178 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

https://github.com/mechtaev/angelix/blob/master/doc/Manual.md
https://github.com/mechtaev/angelix/blob/master/doc/Manual.md
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

[6] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy,
“Inferring models of concurrent systems from logs of their behavior
with csight,” in Proc. IEEE/ACM Int. Conf. Softw. Eng., Jun. 2014,
pp. 468–479.

[7] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst,
“Leveraging existing instrumentation to automatically infer
invariant-constrained models,” in Proc. Eur. Softw. Eng. Conf. and
ACM SIGSOFT Symp. Found. Softw. Eng., Sep. 2011, pp. 267–277.

[8] S. Bhatia, P. Kohli, and R. Singh, “Neuro-symbolic program cor-
rector for introductory programming assignments,” in Proc.
ACM/IEEE Int. Conf. Softw. Eng., May 2018, pp. 60–70.

[9] A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezz�e,
and S. D. Castellanos, “Translating code comments to procedure
specifications,” in Proc. Int. Symp. Softw. Testing Anal., 2018,
pp. 242–253.

[10] M. B€ohme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe,
and A. Zeller, “Where is the bug and how is it fixed? An experi-
ment with practitioners,” in Proc. Eur. Softw. Eng. Conf. and ACM
SIGSOFT Int. Symp. Found. Softw. Eng., Sep. 2017, pp. 117–128.

[11] Y. Brun and A. Meliou, “Software fairness,” in Proc. Eur. Softw. Eng.
Conf. and ACM SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2018,
pp. 754–759.

[12] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proc. USENIX Conf. Operating Syst. Des. Implemen-
tation, 2008, pp. 209–224.

[13] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezz�e,
“Automatic recovery from runtime failures,” in Proc. ACM/IEEE
Int. Conf. Softw. Eng., 2013, pp. 782–791.

[14] A. Carzaniga, A. Gorla, N. Perino, and M. Pezz�e, “Automatic
workarounds for web applications,” in Proc. ACM SIGSOFT Int.
Symp. Found. Softw. Eng., 2010, pp. 237–246.

[15] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair
without the contracts,” in Proc. IEEE/ACM Int. Conf. Autom.
Softw. Eng., 2017, pp. 637–647.

[16] X. Cheng, M. Zhou, X. Song, M. Gu, and J. Sun, “IntPTI: Auto-
matic integer error repair with proper-type inference,” in Proc.
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2017, pp. 996–1001.

[17] C. Lattner, “Clang: A C language family frontend for LLVM,”
2019. [Online]. Available: https://clang.llvm.org/

[18] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller,
“Generating test cases for specification mining,” in Proc. Int.
Symp. Softw. Testing Anal., 2010, pp. 85–96.

[19] L. D’Antoni, R. Samanta, and R. Singh, “Qlose: Program repair
with quantitative objectives,” in Proc. Int. Conf. Comput. Aided
Verification, Jul. 2016, pp. 383–401.

[20] L. D’Antoni, R. Singh, andM. Vaughn, “NoFAQ: Synthesizing com-
mand repairs from examples,” in Proc. Eur. Softw. Eng. Conf. and
ACMSIGSOFT Int. Symp. Found. Softw. Eng., 2017, pp. 582–592.

[21] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,”
in Proc. Int. Conf. Tools Algorithms Construction Anal. Syst., 2008,
pp. 337–340.

[22] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
deviant behavior: A general approach to inferring errors in systems
code,” ACM SIGOPS Operating Syst. Rev., vol. 35, no. 5, pp. 57–72,
2001.

[23] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Trans. Softw. Eng., vol. 39, no. 2, pp. 276–291, Feb. 2013.

[24] C. Freire, W. Gatterbauer, N. Immerman, and A. Meliou, “A
characterization of the complexity of resilience and responsibility
for self-join-free conjunctive queries,” Proc. VLDB Endowment,
vol. 9, no. 3, pp. 180–191, 2015.

[25] M. Gabel and Z. Su, “A study of the uniqueness of source
code,” in Proc. SIGSOFT Int. Symp. Found. Softw. Eng., 2010,
pp. 147–156.

[26] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: Testing
software for discrimination,” in Proc. Eur. Softw. Eng. Conf. and
ACMSIGSOFT Int. Symp. Found. Softw. Eng., Sep. 2017, pp. 498–510.

[27] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei, “Fixing
recurring crash bugs via analyzing Q&A sites,” in Proc. 30th IEEE/
ACM Int. Conf. Autom. Softw. Eng., Nov. 2015, pp. 307–318.

[28] C. Ghezzi, M. Pezz�e, M. Sama, and G. Tamburrelli, “Mining
behavior models from user-intensive web applications,” in Proc.
ACM/IEEE Int. Conf. Softw. Eng., 2014, pp. 277–287.

[29] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezz�e, “Automatic gener-
ation of oracles for exceptional behaviors,” in Proc. Int. Symp.
Softw. Testing Anal., Jul. 2016, pp. 213–224.

[30] S. Gulwani, I. Radi�cek, and F. Zuleger, “Automated clustering
and program repair for introductory programming assign-
ments,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des. Imple-
mentation, 2018, pp. 465–480.

[31] R. Gupta, S. Pal, A. Kanade, and S. K. Shevade, “DeepFix: Fixing
common C language errors by deep learning,” in Proc. Conf. Artif.
Intell., 2017, pp. 1345–1351.

[32] T. Gvero and V. Kuncak, “Synthesizing Java expressions from
free-form queries,” in Proc. ACM Int. Conf. Object Oriented Pro-
gram. Syst. Lang. Appl., 2015, pp. 416–432.

[33] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proc. ACM/IEEE Int. Conf. Softw.
Eng., 2012, pp. 837–847.

[34] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical
program repair with on-demand candidate generation,” in Proc.
ACM/IEEE Int. Conf. Softw. Eng., 2018, pp. 12–23.

[35] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in Proc. ACM/IEEE Int.
Conf. Softw. Eng., 2010, pp. 215–224.

[36] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping pro-
gram repair space with existing patches and similar code,” in
Proc. Int. Symp. Softw. Testing Anal., 2018, pp. 298–309.

[37] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proc. Int. Conf. Softw.
Eng., 2002, pp. 467–477.

[38] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing pro-
grams with semantic code search,” in Proc. IEEE/ACM Int. Conf.
Autom. Softw. Eng., Nov. 2015, pp. 295–306.

[39] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch genera-
tion learned from human-written patches,” in Proc. ACM/IEEE
Int. Conf. Softw. Eng., 2013, pp. 802–811.

[40] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976.

[41] I. Krka, Y. Brun, G. Edwards, and N. Medvidovic, “Synthesizing
partial component-level behavior models from system specifica-
tions,” in Proc. Eur. Softw. Eng. Conf. and ACM SIGSOFT Symp.
Found. Softw. Eng., Aug. 2009, pp. 305–314.

[42] T.-D. B. Le, X. B. D. Le, D. Lo, and I. Beschastnikh, “Synergizing
specification miners through model fissions and fusions,” in
Proc. 30th IEEE/ACM Int. Conf. Autom. Softw. Eng., Nov. 2015,
pp. 115–125.

[43] T.-D. B. Le and D. Lo, “Beyond support and confidence: Explor-
ing interestingness measures for rule-based specification min-
ing,” in Proc. Int. Conf. Softw. Anal., Evolution, Reengineering, 2015,
pp. 331–340.

[44] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “JFIX:
Semantics-based repair of Java programs via symbolic PathFinder,”
in Proc. ACM Int. Symp. Softw. Testing Anal., 2017, pp. 376–379.

[45] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3:
Syntax- and semantic-guided repair synthesis via programming
by examples,” in Proc. Eur. Softw. Eng. Conf. and ACM SIGSOFT
Int. Symp. Found. Softw. Eng., 2017, pp. 593–604.

[46] X.-B. D. Le, D. Lo, and C. Le Goues, “History driven program
repair,” in Proc. Int. Conf. Softw. Anal., Evolution, Reengineering,
Mar. 2016, vol. 1, pp. 213–224.

[47] X.-B. D. Le, F. Thung, D. Lo, and C. L. Goues, “Overfitting in
semantics-based automated program repair,” in Proc. ACM/IEEE
Int. Conf. Softw. Eng., 2018, pp. 163–163.

[48] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The ManyBugs and IntroClass
benchmarks for automated repair of C programs,” IEEE Trans.
Softw. Eng., vol. 41, no. 12, pp. 1236–1256, Dec. 2015.

[49] C. Le Goues, T. Nguyen, S. Forrest, andW. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Trans.
Softw. Eng., vol. 38, no. 1, pp. 54–72, Jan./Feb. 2012.

[50] X. Liu and H. Zhong, “Mining StackOverflow for program
repair,” in Proc. Int. Conf. Softw. Anal., Evolution, Reengineering,
2018, pp. 118–129.

[51] D. Lo and S.-C. Khoo, “QUARK: Empirical assessment of autom-
aton-based specification miners,” in Proc. Work. Conf. Reverse
Eng., 2006, pp. 51–60.

[52] D. Lo and S.-C. Khoo, “SMArTIC: Towards building an accurate,
robust and scalable specification miner,” in Proc. ACM SIGSOFT
Int. Symp. Found. Softw. Eng., 2006, pp. 265–275.

[53] D. Lo and S. Maoz, “Scenario-based and value-based specification
mining: Better together,” inProc. IEEE/ACMInt. Conf. Autom. Softw.
Eng., 2010, pp. 387–396.

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 2179

https://clang.llvm.org/

[54] D. Lo, L. Mariani, and M. Pezz�e, “Automatic steering of behav-
ioral model inference,” in Proc. Eur. Softw. Eng. Conf. and ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2009, pp. 345–354.

[55] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proc. Eur. Softw. Eng. Conf. and
ACMSIGSOFT Int. Symp. Found. Softw. Eng., 2017, pp. 727–739.

[56] F. Long and M. Rinard, “Staged program repair with condition
synthesis,” in Proc. Eur. Softw. Eng. Conf. and ACM SIGSOFT Int.
Symp. Found. Softw. Eng., 2015, pp. 166–178.

[57] F. Long andM. Rinard, “An analysis of the search spaces for gen-
erate and validate patch generation systems,” in Proc. ACM/IEEE
Int. Conf. Softw. Eng., 2016, pp. 702–713.

[58] F. Long and M. Rinard, “Automatic patch generation by learning
correct code,” in Proc. ACM SIGPLAN-SIGACT Symp. Principles
Program. Lang., 2016, pp. 298–312.

[59] C. Macho, S. McIntosh, and M. Pinzger, “Automatically repair-
ing dependency-related build breakage,” in Proc. Int. Conf. Softw.
Anal., Evolution, Reengineering, 2018, pp. 106–117.

[60] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,
A. Mols, and A. Scott, “SapFix: Automated end-to-end repair at
scale,” in Proc. ACM/IEEE Int. Conf. Softw. Eng., May 2019,
pp. 269–278.

[61] M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingre-
dients already exist? An empirical inquiry into the redundancy
assumptions of program repair approaches,” in Proc. ACM/IEEE
Int. Conf. Softw. Eng. New Ideas Emerging Results Track, 2014,
pp. 492–495.

[62] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and
A. Roychoudhury, “Semantic program repair using a reference
implementation,” in Proc. Int. Conf. Softw. Eng., 2018, pp. 129–139.

[63] S. Mechtaev, J. Yi, and A. Roychoudhury, “DirectFix: Looking for
simple program repairs,” in Proc. Int. Conf. Softw. Eng., May 2015,
pp. 448–458.

[64] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable
multiline program patch synthesis via symbolic analysis,” in
Proc. IEEE/ACM 38th Int. Conf. Softw. Eng., 2016, pp. 691–701.

[65] A.Meliou,W.Gatterbauer, J. Y.Halpern, C. Koch, K. F.Moore, and
D. Suciu, “Causality in databases,” IEEE Data Eng. Bull., vol. 33,
no. 3, pp. 59–67, Sep. 2010.

[66] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu, “The
complexity of causality and responsibility for query answers and
non-answers,” Proc. VLDB Endowment, vol. 4, no. 1, pp. 34–45,
2010.

[67] A. Meliou, S. Roy, and D. Suciu, “Causality and explanations
in databases,” Proc. VLDB Endowment Tut., vol. 7, no. 13,
pp. 1715–1716, 2014.

[68] M. Monperrus, “A critical review of “Automatic patch genera-
tion learned from human-written patches”: Essay on the problem
statement and the evaluation of automatic software repair,” in
Proc. ACM/IEEE Int. Conf. Softw. Eng., Jun. 2014, pp. 234–242.

[69] M. Motwani and Y. Brun, “Automatically generating precise
oracles from structured natural language specifications,” in Proc.
IEEE/ACM Int. Conf. Softw. Eng., May 2019, pp. 188–199.

[70] M. Motwani, S. Sankaranarayanan, R. Just, and Y. Brun, “Do auto-
mated program repair techniques repair hard and important
bugs?” Empirical Softw. Eng., vol. 23, no. 5, pp. 2901–2947, Oct. 2018.

[71] K. Muşlu, Y. Brun, and A. Meliou, “Data debugging with continu-
ous testing,” in Proc. Eur. Softw. Eng. Conf. and ACM SIGSOFT Int.
Symp. Found. Softw. Eng. New Ideas Track, Aug. 2013, pp. 631–634.

[72] K. Muşlu, Y. Brun, and A. Meliou, “Preventing data errors with
continuous testing,” in Proc. ACM SIGSOFT Int. Symp. Softw.
Testing Anal., Jul. 2015, pp. 373–384.

[73] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“SemFix: Program repair via semantic analysis,” in Proc. ACM/
IEEE Int. Conf. Softw. Eng., 2013, pp. 772–781.

[74] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed ran-
dom testing for Java,” in Proc. Conf. Object-Oriented Program. Syst.
Appl., 2007, pp. 815–816.

[75] Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair
through fault-recorded testing prioritization,” in Proc. Int. Conf.
Softw. Maintenance, Sep. 2013, pp. 180–189.

[76] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch gen-
eration systems,” in Proc. Int. Symp. Softw. Testing Anal., 2015,
pp. 24–36.

[77] S. P. Reiss, “Semantics-based code search,” in Proc. ACM/IEEE
Int. Conf. Softw. Eng., 2009, pp. 243–253.

[78] S. P. Reiss and M. Renieris, “Encoding program executions,” in
Proc. ACM/IEEE Int. Conf. Softw. Eng., 2001, pp. 221–230.

[79] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi,
R. Suzuki, and B.Hartmann, “Learning syntactic program transfor-
mations from examples,” in Proc. ACM/IEEE Int. Conf. Softw. Eng.,
2017, pp. 404–415.

[80] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “ELIXIR: Effec-
tive object oriented program repair,” in Proc. IEEE/ACM Int.
Conf. Autom. Softw. Eng., 2017, pp. 648–659.

[81] S. Saha, R. K. Saha, and M. R. Prasad, “Harnessing evolution for
multi-hunk program repair,” in Proc. ACM/IEEE Int. Conf. Softw.
Eng., May 2019, pp. 13–24.

[82] M. Schur, A. Roth, and A. Zeller, “Mining behavior models from
enterprise web applications,” in Proc. Eur. Softw. Eng. Conf. and
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2013, pp. 422–432.

[83] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning
to fix bugs automatically,” Proc. ACM Program. Languages,
Object-Oriented Programming, Systems, Languages, and Appli-
cations, vol. 3, Oct. 2019.

[84] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and
A. Arcuri, “Do automatically generated unit tests find real faults?
An empirical study of effectiveness and challenges,” in Proc. Int.
Conf. Autom. Softw. Eng., Nov. 2015, pp. 201–211.

[85] E. K. Smith, E. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
than the disease? Overfitting in automated program repair,” in
Proc. Eur. Softw. Eng. Conf. and ACM SIGSOFT Symp. Found.
Softw. Eng., Sep. 2015, pp. 532–543.

[86] A. Solar-Lezama, R. Rabbah, R. Bod�ık, and K. Ebcio�glu,
“Programming by sketching for bit-streaming programs,” in
Proc. ACM SIGPLAN Conf. Program. Lang. Des. Implementation,
2005, pp. 281–294.

[87] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity
and value of empirical assessments of the accuracy of coverage-
based fault locators,” in Proc. Int. Symp. Softw. Testing Anal., 2013,
pp. 314–324.

[88] K. T. Stolee and S. Elbaum, “Toward semantic search via SMT
solver,” in Proc. ACM SIGSOFT Int. Symp. Found. Softw. Eng. New
Ideas and Emerging Results Track, 2012, pp. 25:1–25:4.

[89] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for
source code,” ACM Trans. Softw. Eng. Methodology, vol. 23, no. 3,
pp. 26:1–26:45, May 2014.

[90] K. T. Stolee, S. Elbaum, and M. B. Dwyer, “Code search with
input/output queries: Generalizing, ranking, and assessment,” J.
Syst. Softw., vol. 116, pp. 35–48, 2016.

[91] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing
crashes in Android apps,” in Proc. ACM/IEEE Int. Conf. Softw.
Eng., 2018, pp. 187–198.

[92] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tComment:
Testing Javadoc comments to detect comment-code incon-
sistencies,” in Proc. Int. Conf. Softw. Testing, Verification, Valida-
tion, 2012, pp. 260–269.

[93] V. Terragni, Y. Liu, and S.-C. Cheung, “CSNIPPEX: Automated
synthesis of compilable code snippets from Q&A sites,” in Proc.
ACM Int. Symp. Softw. Testing Anal., 2016, pp. 118–129.

[94] Y. Tian and B. Ray, “Automatically diagnosing and repairing
error handling bugs in C,” in Proc. Eur. Softw. Eng. Conf. and
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2017, pp. 752–762.

[95] C. Timperley, S. Stepney, and C. Le Goues, “Poster: BugZoo—A
platform for studying software bugs,” in Proc. ACM/IEEE Int.
Conf. Softw. Eng., May 2018, pp. 446–447.

[96] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in
Proc. ACMSIGSOFT Int. Symp. Found. Softw. Eng., 2014, pp. 269–280.

[97] R. van Tonder and C. L. Goues, “Static automated program
repair for heap properties,” in Proc. ACM/IEEE Int. Conf. Softw.
Eng., 2018, pp. 151–162.

[98] C. von Essenz and B. Jobstmann, “Program repair without
regret,” Formal Methods Syst. Des., vol. 47, no. 1, pp. 26–50, 2015.

[99] R. J. Walls, Y. Brun, M. Liberatore, and B. N. Levine, “Discovering
specification violations in networked software systems,” in Proc.
IEEE Int. Symp. Softw. Rel. Eng., Nov. 2015, pp. 496–506.

[100] K. Wang, R. Singh, and Z. Su, “Search, align, and repair: Data-
driven feedback generation for introductory programming exer-
cises,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des. Imple-
mentation, 2018, pp. 481–495.

[101] Q.Wang, Y. Brun, andA.Orso, “Behavioral execution comparison:
Are tests representative of field behavior?” in Proc. IEEE Int. Conf.
Softw. Testing, Verification, Validation, Mar. 2017, pp. 321–332.

2180 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

[102] X. Wang, X. L. Dong, and A. Meliou, “Data X-Ray: A diagnostic
tool for data errors,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2015, pp. 1231–1245.

[103] X. Wang, A. Meliou, and E. Wu, “QFix: Demonstrating error
diagnosis in query histories,” in Proc. Int. Conf. Manage. Data,
2016, pp. 2177–2180.

[104] X. Wang, A. Meliou, and E. Wu, “QFix: Diagnosing errors
through query histories,” in Proc. ACM Int. Conf. Manage. Data,
2017, pp. 1369–1384.

[105] Y. Wang, Y. Feng, R. Martins, A. Kaushik, I. Dillig, and S. P. Reiss,
“Hunter: Next-generation code reuse for Java,” in Proc. ACM SIG-
SOFT Int. Symp. Found. Softw. Eng., 2016, pp. 1028–1032.

[106] W. Weimer, “Patches as better bug reports,” in Proc. Int. Conf.
Generative Program. Component Eng., 2006, pp. 181–190.

[107] W.Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equiva-
lence for adaptive program repair: Models and first results,” in
Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng., 2013, pp. 356–366.

[108] W.Weimer, T.Nguyen, C. LeGoues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proc. ACM/IEEE
Int. Conf. Softw. Eng., 2009, pp. 364–374.

[109] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-
aware patch generation for better automated program repair,” in
Proc. ACM/IEEE Int. Conf. Softw. Eng., 2018, pp. 1–11.

[110] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for auto-
mated program repair,” in Proc. IEEE/ACM Int. Conf. Autom.
Softw. Eng., 2017, pp. 660–670.

[111] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying
patch correctness in test-based program repair,” in Proc. ACM/
IEEE Int. Conf. Softw. Eng., 2018, pp. 789–799.

[112] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. R. Lamelas
Marcote, T. Durieux, D. Le Berre, and M. Monperrus, “Nopol:
Automatic repair of conditional statement bugs in Java programs,”
IEEETrans. Softw. Eng., vol. 43, no. 1, pp. 34–55, Jan. 2017.

[113] J. Yang,A. Zhikhartsev, Y. Liu, andL. Tan, “Better test cases for bet-
ter automated program repair,” in Proc. Eur. Softw. Eng. Conf. and
ACMSIGSOFT Int. Symp. Found. Softw. Eng., 2017, pp. 831–841.

[114] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus,
“Alleviating patch overfitting with automatic test generation: A
study of feasibility and effectiveness for the Nopol repair sys-
tem,” Empirical Softw. Eng., vol. 24, no. 1, pp. 33–67, Feb. 2019.

[115] H. Zhong and Z. Su, “An empirical study on real bug fixes,” in
Proc. Int. Conf. Softw. Eng., May 2015, pp. 913–923.

Afsoon Afzal received the MS degree in software
engineering from the School of Computer Sci-
ence, Carnegie Mellon University, in 2019. She is
working toward the PhD degree in the School of
Computer Science, Carnegie Mellon University.
She is interested in applying automated quality
assurance methods, including automated testing
and repair to evolving and autonomous systems.
More information is available at: http://www.cs.
cmu.edu/�afsoona.

ManishMotwani received theMS degree from the
College of Information and Computer Sciences,
University of Massachusetts Amherst, in 2018. He
is working toward the PhD degree in the College
of Information and Computer Sciences, University
of Massachusetts Amherst. His research involves
studying large software repositories to learn inter-
esting phenomena in software development and
maintenance, and to use that knowledge to design
novel automation techniques for testing and pro-
gram repair. More information is available at: http://
people.cs.umass.edu/�mmotwani/.

Kathryn T. Stolee received the BS, MS, and PhD
degrees from the University of Nebraska-Lincoln.
She is an assistant professor with the Department
of Computer Science, North Carolina State Univer-
sity. She received an NSF CAREER award. Her
research interests include program analysis, code
search, and empirical studies. She is a member of
the IEEE. More information is available at: http://
people.engr.ncsu.edu/ktstolee/.

Yuriy Brun received the PhD degree from the Uni-
versity of Southern California, in 2008 and com-
pleted his postdoctoral work with the University of
Washington, in 2012. He is an associate professor
with theCollege of Information andComputer Scien-
ces, University of Massachusetts Amherst. His
research focuses on software engineering, self-
adaptive systems, and testing software for fairness.
He received an NSF CAREER award and an IEEE
TCSC Young Achiever in Scalable Computing
Award. He is a seniormember of the IEEEand a dis-
tinguished member of the ACM. More information is
available at: http://www.cs.umass.edu/�brun/.

Claire Le Goues received the BA degree in com-
puter science from Harvard University and the MS
and PhD degrees from the University of Virginia.
She is an associate professor with the School of
Computer Science, Carnegie Mellon University,
where she is primarily affiliated with the Institute
for Software Research. She received an NSF
CAREER award. She is interested in constructing
high-quality systems in the face of continuous
software evolution, with a particular interest in
automatic error repair. She is a member of the
IEEE. More information is available at: http://
www.cs.cmu.edu/�clegoues.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 2181

http://www.cs.cmu.edu/~afsoona
http://www.cs.cmu.edu/~afsoona
http://www.cs.cmu.edu/~afsoona
http://people.cs.umass.edu/~mmotwani/
http://people.cs.umass.edu/~mmotwani/
http://people.cs.umass.edu/~mmotwani/
http://people.engr.ncsu.edu/ktstolee/
http://people.engr.ncsu.edu/ktstolee/
http://www.cs.umass.edu/~brun/
http://www.cs.umass.edu/~brun/
http://www.cs.cmu.edu/~clegoues
http://www.cs.cmu.edu/~clegoues
http://www.cs.cmu.edu/~clegoues

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

