




IEE
E P

ro
of

1072 SOSRepair patch 11 of the same defects; both SOSRepair and
1073 Prophet produce 5 patches that pass all evaluation tests on
1074 this set. GenProg and SOSRepair patch 16 of the same
1075 defects; 4 out of these 16 GenProg patches and 8 SOSRepair
1076 patches pass all evaluation tests. Thus, SOSRepair produces
1077 more patches that pass all independent tests than GenProg,
1078 and as many such patches as Angelix and Prophet. This sug-
1079 gests that semantic code search is a promising approach to
1080 generate high-quality repairs for real defects, and that it has
1081 potential to repair defects that are outside the scope of other,
1082 complementary repair techniques.

1083 4.4.3 Improving Patch Quality through

1084 Fault Localization

1085 Although these baseline results are promising, most of the
1086 patches previous semantic search-based repair produced on
1087 small program defects passed all held-out tests [38]. We
1088 investigated why SOSRepair patch quality is lower than this
1089 high bar. We hypothesized that two possible reasons are that
1090 real-world buggy programs do not contain code that can
1091 express the needed patch, or that fault localization impreci-
1092 sion hampers SOSRepair success. Encouragingly, anec-
1093 dotally, we found that many buggy programs do contain
1094 code that can express the developer patch. However, fault
1095 localization is the more likely culprit. For example, for gmp-
1096 1, fault localization reports 59 lines as equally-highly suspi-
1097 cious, including the line modified by the developer, but as
1098 part of its breadth-first strategy, SOSRepair only tries 10 of
1099 these 59.
1100 We further observed that in some cases, more than one
1101 mapping between variables satisfies the query, but only one
1102 results in a successful patch. Since trying all possible map-
1103 pings is not scalable, SOSRepair only tries the first mapping
1104 selected by the solver. Including more variables in the map-
1105 ping query increases the number of patch possibilities, but
1106 also the complexity of the query.
1107 We created SOSRepair�, a semi-automated version of
1108 SOSRepair that can take hints from the developer regarding
1109 fault location and variables of interest. SOSRepair� differs
1110 from SOSRepair in the following two ways:

1111 1) SOSRepair uses spectrum-based fault localization [37]
1112 to identify candidate buggy code regions. SOSRepair�

1113 uses a manually-specified candidate buggy code
1114 region. In our experiments, SOSRepair� uses the loca-
1115 tion of the code the developer modified to patch the
1116 defect as its candidate buggy code region, simulating
1117 the developer suggesting where the repair technique
1118 should try to repair a defect.
1119 2) SOSRepair considers all live variables after the inser-
1120 tion line in its query. While multiple mappings may
1121 exist that satisfy the constraints, not all such map-
1122 pings may pass all the tests. SOSRepair uses the one
1123 mapping the SMT solver returns. SOSRepair� can be
1124 told which variables not to consider, simulating the
1125 developer suggesting to the repair technique which
1126 variables likelymatter for a particular defect. A smaller
1127 set of variables of interest increases the chance that the
1128 mapping the SMT solver returns and SOSRepair� tries
1129 is a correct one. We found that for 6 defects (gzip-1,
1130 libtiff-4, libtiff-8, php-10, php-12, and

1131gmp-1), SOSRepair failed to produce a patch because
1132it attempted an incorrectmapping. For these 6 defects,
1133we instructed SOSRepair� to reduce the variables of
1134interest to just those variables used in the developer-
1135written patch.
1136On our benchmark, SOSRepair� patches 23 defects and 16
1137(70%) of them pass all independent tests. While it is unsound
1138to compare SOSRepair� to prior, fully-automated techni-
1139ques, our conclusions are drawn only from the comparison
1140to SOSRepair; the quality results for the SOSRepair�-patched
1141defects for the prior tools in Fig. 8 are only for reference.
1142Our experiments show that precise fault localization
1143allows SOSRepair� to patch 7 additional defects SOSRepair
1144could not (bottom of Fig. 8), and to improve the quality of 3
1145of SOSRepair’s patches. Overall, 9 new patches pass 100%
1146of the independent tests.
1147SOSRepair and SOSRepair� sometimes attempt to patch
1148defects at different locations: SOSRepair using spectrum-
1149based fault localization and SOSRepair� at the location
1150where the developer patched the defect. For 6 defects, SOS-
1151Repair finds a patch, but SOSRepair� does not. Note that
1152defects can often be patched at multiple locations, and devel-
1153opers do not always agree on a single location to patch a par-
1154ticular defect [10]. Thus, the localization hint SOSRepair�

1155receives is a heuristic, and may be neither unique nor opti-
1156mal. In each of these 6 cases, the patch SOSRepair finds it at
1157an alternate location than where the developer patched the
1158defect.
1159Because SOSRepair and SOSRepair� sometimes patch at
1160different locations, the patches they produce sometimes dif-
1161fer, and accordingly, so does the quality of those patches. In
1162our experiments, in all but one case (php-5) SOSRepair�

1163patches were at least as high, or higher quality than SOSRe-
1164pair patches for the same defect.
1165We conclude that research advancements that produce
1166more accurate fault localization or elicit guidance from
1167developers in a lightweightmanner are likely to dramatically
1168improve SOSRepair performance. Additionally, input (or
1169heuristics) on which variables are likely related to the buggy
1170functionality (and are thus appropriate to consider) could
1171limit the search to a smaller but more expressive domain,
1172further improving SOSRepair.

11734.5 Example Patches

1174In this section, we present several SOSRepair patches pro-
1175duced on the ManyBugs defects (Section 4.4), comparing
1176them to developer patches and those produced by other
1177tools. Our goal is not to be comprehensive, but rather to
1178present patches highlighting various design decisions.

1179Example 1 python-1. The python interpreter at revision
1180#69223 fails a test case concerning a variable that should
1181never be negative. The developer patch is as follows:

1182}

1183+ if (timeout < 0) {

1184+ PyErr_SetString(PyExc_ValueError,

1185+ “timeout must be non-negative“ );

1186+ return NULL;

1187+ }

1188seconds = (long )timeout;
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1189 Fault localization correctly identifies the developer’s inser-
1190 tion point for repair. Several snippets in the python project
1191 perform similar functionality to the fix, including the follow-
1192 ing, from the IOmodule:

1193 if (n < 0) {

1194 PyErr_SetString(PyExc_ValueError,

1195 “invalid key number“ );

1196 return NULL;

1197 }

1198 SOSRepair correctly maps variable n to timeout and
1199 inserts the code to repair the defect. Although the error mes-
1200 sage is not identical, the functionality is, and suitable to sat-
1201 isfy the developer tests. However, unlike the developer
1202 tests, the generated tests do consider the error message,
1203 explaining the patch’s relatively low success on the held-
1204 out tests. Synthesizing good error messages is an open prob-
1205 lem; such a semantically meaningful patch could still assist
1206 developers in more quickly addressing the underlying
1207 defect [106].
1208 GenProg did not patch this defect; Angelix was not
1209 attempted on it, as the defect is outside its defect class. The
1210 Prophet patch modifies an if-check elsewhere in the code to
1211 include a tautological condition:

1212 - if ((!rv)) {

1213 + if((!rv) && !(1)) {

1214 if (set_add_entry((PySetObject *)...

1215 This demonstrates how techniques that do not delete
1216 directly can still do so, motivating our explicit inclusion of
1217 deletion.

1218 Example 2 php-2. We demonstrate the utility of explicit
1219 deletion with our second example, from php-2 (recall
1220 Fig. 8). At the buggy revision, php fails two test cases
1221 because of an incorrect value modification in its string

1222 module. Both the developer and SOSRepair delete the
1223 undesired functionality:

1224 - if (len > s1_len - offset) {

1225 - len = s1_len - offset;

1226 - }

1227 Angelix and Prophet correctly eliminate the same func-
1228 tionality by modifying the if condition such that it always
1229 evaluates to false. GenProg inserts a return; statement
1230 in a different method.

1231 Example 3 php-1. Finally, we show a SOSRepair patch that
1232 captures a desired semantic effectwhile syntactically differ-
1233 ent from the human repair. Revision 74343ca506 of php-1
1234 (recall Fig. 8) fails 3 test cases due to an incorrect condition
1235 around a loopbreak, which the developermodifies:

1236 - if (just_read< toread) {

1237 + if (just_read == 0) {

1238 break;

1239 }

1240 This defect inspired our illustrative example (Section 2.1).
1241 Using default settings, SOSRepair first finds a patch identical

1242to the developer fix. To illustrate, we present a different but
1243similar fix that SOSRepair finds if run beyond the first repair:

1244if ((int )box_length <= 0) {

1245break ;

1246}

1247SOSRepair maps box_length to just_read, and repla-
1248ces the buggy code. In this code, just_read is only ever
1249greater than or equal to zero, such that this patch is accept-
1250able. Angelix and Prophet were not attempted on this defect;
1251GenProg deletes other functionality.

12524.6 Query Encoding Performance

1253To answer our final two research questions, we isolate and
1254evaluate two key novel features of SOSRepair. First, this
1255section evaluates the performance improvements gained
1256by SOSRepair’s novel query encoding approach. Second,
1257Section 4.7 evaluates the effects of SOSRepair’s negative
1258profile refinement approach on reducing the search space.
1259In the repair search problem, query complexity is a func-
1260tion of the number of test inputs through a region and the
1261number of possible mappings between a buggy region and
1262the repair context. To understand the differences between
1263SOSRepair’s and the old approach’s encodings, consider a
1264buggy snippet C with two input variables a and b and a single
1265output variable c. Suppose C is executed by two tests, t1 and
1266t2. And supposeS is a candidate repair snippetwith two input
1267variables x and y, a single output variable z, and path con-
1268straints ’c generated by the symbolic execution engine.
1269SOSRepair’s encodinguses location variables to discover a valid
1270mapping between variables a; b and x; y that satisfy ’c con-
1271straints for both test cases t1 and t2, with a single query (recall
1272Section 2.4.1).Meanwhile, the prior approach [38] traverses all
1273possible mappings between variables (m1 : ða ¼ xÞ ^ ðb ¼
1274yÞ ^ ðc ¼ zÞ and m2 : ða ¼ yÞ ^ ðb ¼ xÞ ^ ðc ¼ zÞ), and creates
1275a query for every test case, for every possible variable map-
1276ping. A satisfiable query implies its mapping is valid for that
1277particular test. For example, to show that mapping m1 is a
1278valid mapping, two queries are required (one for t1 and one
1279for t2), and only if both are satisfiable ism1 considered valid.
1280The number of queries required for this approach grows
1281exponentially in the number of variables, as there is an expo-
1282nential number of mappings (permutation) of the variables.
1283In our example, there are two possible mappings and two
1284tests, so four queries are required, unlike SOSRepair’s one.
1285To evaluate the performance impact of SOSRepair’s
1286new encoding, we reimplement the previous encoding
1287approach [38]. We then compare SMT solver speed on the
1288same repair questions using each encoding. Running on two
1289randomly-selected ManyBugs defects, we measured the
1290response time of the solver on more than 10,000 queries for
1291both versions of encoding techniques. Fig. 9 shows the speed
1292up using the new encoding as compared to the old encoding,
1293as a function of query complexity (number of tests times
1294the number of variable permutations). The new encoding
1295approach delivers a significant speed up over the previous
1296approach, and the speed up increases linearly with query
1297complexity (R2 ¼ 0:982).
1298Looking at the two approaches individually, query time
1299increases linearly with query complexity (growing slowly
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1301 ous encoding, and is significantly more variable with the
1302 new encoding and does not appear linearly related to query
1303 complexity (R2 ¼ 0:008). Overall, Fig. 9 shows the speed up
1304 achieved with the new encoding, and its linear increase as
1305 query complexity grows.

1306 4.7 Profile Refinement Performance

1307 The profile refinement approach (recall Section 2.5) uses
1308 negative tests to iteratively improve a query, reduce the
1309 number of attempted candidate snippets, and repair defects
1310 without covering passing test cases. By default, SOSRepair
1311 uses the automated, iterative query refinement on all defects
1312 whenever at least one faulty region under consideration is
1313 covered only by negative test cases. In our experiments, for
1314 2 ManyBugs defects (libtiff-8 and lighttpd-2), the
1315 patches SOSRepair and SOSRepair� produce cover a region
1316 only covered by negative test cases, though SOSRepair and
1317 SOSRepair� use the refinement process while attempting to
1318 patch other defects as well.
1319 In this experiment, we evaluate the effect of iterative pro-
1320 file refinement using negative examples on the size of the
1321 considered SMT search space. We conduct this experiment
1322 on a subset of the IntroClass dataset to control for the effect of
1323 symbolic execution performance (which is highly variable on
1324 the real-world programs in ManyBugs). We ran SOSRepair
1325 on all the defects in the median, smallest, and grade pro-
1326 grams, only using the initially failing test cases, with profile
1327 refinement, for repair. For every buggy line selected by the
1328 fault localization and expanded into a region with granular-
1329 ity of 3–7 lines of code, wemeasured the number of candidate
1330 snippets in the database that can be rejected by the SMT-
1331 solver (meaning the patch need not be dynamically tested to
1332 be rejected, saving time) using only negative queries.
1333 Fig. 10 shows the percent of the search space excluded
1334 after multiple iterations for all buggy regions. For example,
1335 the first bar shows that on 68% of buggy regions tried, fewer
1336 than 20% of candidate snippets were eliminated by the solver
1337 when only negative tests are available, leaving more than
1338 80% of possible candidates for dynamic evaluation. We find
1339 that approach effectiveness depends on the nature of the
1340 defect and snippets. In particular, the approach performs
1341 poorly when desired snippet behavior involves console out-
1342 put that depends on a symbolic variable. This makes sense:
1343 KLEE produces random output in the face of symbolic con-
1344 sole output, and such output is uninformative in specifying

1345undesired behavior. Our results show that on 14% of the
1346defects (that are dependent on console output), more than
134740% of database snippets can be rejected using only the test
1348cases that the program initially failed. We also transformed
1349the defects in the dataset to capture console output by vari-
1350able assignments, treating those variables as the output
1351(rather than the console printout); Fig. 10 also shows the
1352results of running the same study on the modified programs.
1353More than 40% of the possible snippets can be eliminated for
135466% of the preprocessed programs. Overall, profile refine-
1355ment can importantly eliminate large amounts of the search
1356space, but its success depends on the characteristics of the
1357code under repair.

13584.8 Threats and Limitations

1359Even though SOSRepair works on defects that require devel-
1360opers to modify a single (potentially multi-line) location in
1361the source code, we ensure that it generalizes to all kinds of
1362defects belonging to large unrelated projects by evaluating
1363SOSRepair on a subset of the ManyBugs benchmark [48],
1364which consists of real-world, real-developer defects, and is
1365used extensively by prior program repair evaluations [48],
1366[58], [64], [70], [75], [107]. The defects in our evaluation also
1367cover the novel aspects of our approach, e.g., defects with
1368only negative profiles, console output, and various edit
1369types.
1370Our work inherits KLEE’s limitations: SOSRepair cannot
1371identify snippets that KLEE cannot symbolically execute,
1372impacting patch expressiveness nevertheless, the modified
1373buggy code can include KLEE-unsupported constructs,
1374such as function pointers. Note that this limitation of KLEE
1375is orthogonal to our repair approach. As KLEE improves in
1376its handling of more complex code, so will SOSRepair. Our
1377discussion of other factors influencing SOSRepair success
1378(recall Section 4.4) suggests directions for improving appli-
1379cability and quality.
1380Our experiments limit the database of code snippets to
1381those found in the same project, based on observations of
1382high within-project redundancy [4]. Anecdotally, we have
1383observed SOSRepair failing to produce a patch when using
1384snippets only from the same project, but succeeding with a
1385correct patch when using snippets from other projects. For
1386example, for gzip-1 defect, the code in gzip lacks the

Fig. 10. Fraction of defects that can reject fractions of the search space
(measured via SMT queries) using only iteratively-constructed negative
examples. Profile refinement improves scalability by reducing the number
of candidate snippets to consider. Console output that relies on symbolic
values affects this performance.

Fig. 9. The speedup of the new encoding approach over the previous
approach grows with query complexity.
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1387 necessary snippet to produce a patch, but that snippet
1388 appears in the python code. Extending SOSRepair to use
1389 snippets from other projects could potentially improve
1390 SOSRepair’s effectiveness, but also creates new scalability
1391 challenges, including handling code snippets that include
1392 custom-defined, project-specific types and structures.
1393 Precisely assessing patch quality is an unsolved problem.
1394 As with other repair techniques guided by tests, we use tests,
1395 a partial specification, to evaluate the quality of SOSRepair’s
1396 patches. Held-out, independently generated or written test
1397 suites represent the state-of-the-art of patch quality evalua-
1398 tion [85], along with manual inspection [58], [76]. Although
1399 developer patches (which we use as a functional oracle) may
1400 contain bugs, in the absence of a better specification, evalua-
1401 tions such as oursmust rely on the developers.
1402 We conduct several experiments (e.g., Sections 4.3 and 4.7)
1403 on small programs from the IntroClass benchmark [48], since
1404 these experiments require controlled, large-scale executions
1405 of SOSRepair. Even though these experiments provide valu-
1406 able insights, their results may not immediately extend to
1407 large, real-world programs.
1408 We publicly release our code, results, and new test suites
1409 to support future evaluation, reproduction, and extension,
1410 mitigating the risk of errors in our implementation or
1411 setup. All materials may be downloaded from https://

1412 github.com/squaresLab/SOSRepair (SOSRepair’s
1413 implementa t ion) , and https://github.com/

1414 squaresLab/SOSRepair-Replication-Package

1415 (SOSRepair’s replication package).

1416 5 RELATED WORK

1417 We place our work in the context of related research in two
1418 areas, code search and automated program repair.

1419 5.1 Code Search

1420 Execution-based semantic code search [77] executes code
1421 to find matches with queries as test cases, signature, and
1422 keywords [77]. Meanwhile constraint-satisfaction-based
1423 search [88], [89], [90] matches input-output examples to code
1424 fragments via symbolic execution. SOSRepair builds on this
1425 prior work. Synthesis can adapt code-search results to a
1426 desired context [93], [105]. The prior approaches had
1427 humans directly or indirectlywrite queries. By contrast, SOS-
1428 Repair automatically extracts search queries from program
1429 state and execution, and uses the query results to map snip-
1430 pets to a new context. Other code search work synthesizes
1431 Java directly from free-form queries [32], [86] or based on
1432 crash reports [27]. While effective at repairing Java expres-
1433 sions that use wrong syntax or are missing arguments [32],
1434 this type of repair does not target semantic errors and
1435 requires an approximate Java-like expression as part of the
1436 query (and is thus similar to synthesis by sketching [86]).

1437 5.2 Program Repair

1438 There are two general classes of approaches to repairing
1439 defects using failing tests to identify faulty behavior and
1440 passing tests to demonstrate acceptable program behavior:
1441 generate-and-validate or heuristic repair and semantic-based
1442 repair. The formeruses search-based techniques or predefined

1443templates to generate many syntactic candidate patches, vali-
1444dating them against the tests (e.g., GenProg [49], Prophet [58],
1445AE [107], HDRepair [46], ErrDoc [94], JAID [15], Qlose [19],
1446and Par [39], among others). Techniques such as DeepFix [31]
1447and ELIXIR [80] use learnedmodels to predict erroneous pro-
1448gram locations along with patches. ssFix [110] uses existing
1449code that is syntactically related to the context of a bug to pro-
1450duce patches. CapGen [109] works at the AST node level
1451(token-level) and uses context and dependency similarity
1452(instead of semantic similarity) between the suspicious code
1453fragment and the candidate code snippets to produce patches.
1454To manage the large search space of candidates created
1455because of using finer-level granularity, it extracts context
1456information from candidate code snippets and prioritizes the
1457mutation operators considering the extracted context infor-
1458mation. SimFix [36] considers the variable name and method
1459name similarity in addition to the structural similarity
1460between the suspicious code and candidate code snippets.
1461Similar to CapGen, it prioritizes the candidate modifications
1462by removing the ones that are found less frequently in exist-
1463ing patches. Hercules [81] generalizes single-location pro-
1464gram repair techniques to defects that require similar edits be
1465made in multiple locations. Enforcing that a patch keeps a
1466program semantically similar to the buggy version by ensur-
1467ing that user-specified correct traces execute properly on the
1468patched version can repair reactive programswith linear tem-
1469poral logic specifications [98]. Several repair approaches have
1470aimed to reduce syntactic or semantic differences between
1471the buggy and patched program [19], [36], [38], [45], [63], [98],
1472[109], with a goal of improving patch quality. For example,
1473Qlose [19]minimizes a combination of syntactic and semantic
1474differences between the buggy and patched programs while
1475generating candidate patches. SketchFix [34] optimizes the
1476candidate patch generation and evaluation by translating
1477faulty programs to sketches (partial programs with holes)
1478and lazily initializing the candidates of the sketcheswhile val-
1479idating them against the test execution. SOFix [50] uses 13
1480predefined repair templates to generate candidate patches.
1481These repair templates are created based on the repair pat-
1482terns mined from StackOverflow posts by comparing code
1483samples in questions and answers for fine-grained modifica-
1484tions. SapFix [60] and Getafix [83], two tools deployed on pro-
1485duction code at Facebook, efficiently produce repairs for large
1486real-world programs. SapFix [60] uses prioritized repair strat-
1487egies, including pre-defined fix templates, mutation opera-
1488tors, and bug-triggering change reverting, to produce repairs
1489in realtime. Getafix [83] learns fix patterns from past code
1490changes to suggest repairs for bugs that are found by Infer,
1491Facebook’s in-house static analysis tool.
1492SOSRepair’s approach to using existing code to inform
1493repair is reminiscent of Prophet [58], Par [39], IntPTI [16],
1494and HDRepair [46] that use models of existing code to cre-
1495ate or evaluate patches. SOSRepair does not use patterns,
1496but rather considers a database of code snippets for candi-
1497date patches, using a constraint solver and existing test
1498cases to assess them. The latter class of approaches use
1499semantic reasoning to synthesize patches to satisfy an
1500inferred specification (e.g., Nopol [112], Semfix [73], Direct-
1501Fix [63], Angelix [64], S3 [45], JFIX [44]). SemGraft [62] infers
1502specifications by symbolically analyzing a correct reference
1503implementation (as opposed to using test cases), but unlike
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1504 SOSRepair, requires that reference implementation. Gene-
1505 sis [55], Refazer [79], NoFAQ [20], Sarfgen [100], and
1506 Clara [30] process correct patches to automatically infer
1507 code transformations to generate patches, a problem con-
1508 ceptually related to our challenge in integrating repair snip-
1509 pets to a new context.
1510 SearchRepair [38] combines those classes, using a con-
1511 straint solver to identify existing code to construct repairs.
1512 SOSRepair builds on SearchRepair, fundamentally improv-
1513 ing the approach in several important ways. It is signifi-
1514 cantly more expressive (handling code constructs used in
1515 real code and reasoning about snippets that can affect multi-
1516 ple variables as output) and scalable (SearchRepair could
1517 only handle small, student-written C programs), supports
1518 deletion and insertion, uses failing test cases to restrict the
1519 search space, repairs code without passing examples, and
1520 its encoding of the repair query is significantly more expres-
1521 sive and efficient.
1522 The location mechanism we adapt to repair queries
1523 was previously proposed for program synthesis [35] and
1524 adapted to semantic-based program repair [63], [64], [73].
1525 Despite underlying conceptual similarities, SOSRepair dif-
1526 fers from these approaches in key ways. Instead of replacing
1527 buggy expressions in if conditions or assignments with syn-
1528 thesized expressions, SOSRepair uses the constraint solver
1529 to identify existing code to use as patches, at a higher level of
1530 granularity than in prior work. Like SOSRepair, semantic-
1531 based approaches constrain desired behavior with failing
1532 test cases to guide patch synthesis. Critically, however, prior
1533 techniques require that the expected output on failing test
1534 cases be explicitly stated, typically through annotation. See,
1535 for example, https://github.com/mechtaev/angelix/
1536 blob/master/doc/Manual.md. SOSRepair automatically
1537 infers and uses the negative behavior extracted from the
1538 program state with no additional annotation burden.
1539 Like SOSRepair, approaches that aim to generate higher-
1540 quality patches using a test suite are complementary to
1541 attempts to generate oracles to improve the test suite. For
1542 example, Swami processes natural-language specifications to
1543 generate precise oracles and tests, improving on both devel-
1544 oper-written and other automatically-generated tests [69].
1545 Similarly, Toradacu [29] and Jdoctor [9] generate oracles from
1546 Javadoc comments, and @tComment [92] generates precondi-
1547 tions related to nullness of parameters, each ofwhich can lead
1548 to better tests. Regression test generation tools, e.g., Evo-
1549 Suite [23] and Randoop [74], can help ensure patches do not
1550 alter otherwise-undertested functionality. UnsatGuided [114]
1551 generates regression tests using EvoSuite to constrain the
1552 repair process and produce fewer low-quality patches. How-
1553 ever, automatically-generated tests often differ in quality
1554 from manually-written ones [84], [101], and have different
1555 effects on patch quality [85]. Specification mining uses execu-
1556 tion data to infer (typically) FSM-based specifications [1], [5],
1557 [6], [7], [28], [41], [42], [43], [51], [52], [53], [54], [78], [82].
1558 TAUTOKO uses such specifications to generate tests, e.g., of
1559 sequences of method invocations on a data structure [18],
1560 then iteratively improving the inferred model [18], [99]. Patch
1561 quality can also potentially improve using generated tests for
1562 non-functional properties, such as software fairness, which
1563 rely on observed behavior, e.g., by asserting that the behavior
1564 on inputs differing in a controlled way should be sufficiently

1565similar [3], [11], [26]. Meanwhile, assertions on system data
1566can also act as oracles [71], [72], and inferred causal relation-
1567ships in data management systems [24], [65], [66] can help
1568explain query results, debug errors [102], [103], [104], and
1569suggest oracles for systems that rely on data management
1570systems [67].
1571Our central goal is to improve the ability of program
1572repair to produce correct patches. Recent work has argued
1573for evaluating patch correctness using independent tests [47],
1574[85], [111], [113], which is the approach we follow, as
1575opposed to manual examination [57], [76]. Of the 22 defects
1576for which SOSRepair produces patches, 9 pass all the inde-
1577pendent tests, more than prior techniques. Improving fault
1578localization, 16 of the patches SOSRepair� produces pass
1579all independent tests. This suggests that high-granularity,
1580semantic-search-based repair can producemore high-quality
1581patches, and that better fault localization can play an impor-
1582tant role in improving repair quality.

15836 CONTRIBUTIONS

1584Automated program repair may reduce software production
1585costs and improve software quality, but only if it produces
1586high-quality patches. While semantic code search can pro-
1587duce high-quality patches [38], such an approach has never
1588been demonstrated on real-world programs. In this paper,
1589we have designed SOSRepair, a novel approach to using
1590semantic code search to repair programs, focusing on extend-
1591ing expressiveness to that of real-world C programs and
1592improving the search mechanism’s scalability. We evaluate
1593SOSRepair on 65 defects in large, real-world C programs,
1594such as php and python. SOSRepair produces patches for 22
1595(34%) of the defects, and 9 (41%) of those patches pass 100%
1596of independently-generated, held-out tests. SOSRepair
1597repairs a defect no prior techniques have, and produces
1598higher-quality patches. In a semi-automated approach that
1599manually specifies the fault’s location, SOSRepair patches 23
1600defects, of which 16 (70%) pass all independent tests. Our
1601results suggest semantic code search is a promising approach
1602for automatically repairing real-world defects.
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