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Computer Science & Engineering

Most software development tasks require developers to interact with multiple versions of a

codebase directly or through an analysis tool. Consider a developer, Alice, who wants to implement

a new feature. To ensure that her changes are of high quality, Alice might want to continuously

analyze the current codebase. To make the changes fast but with confidence, Alice might use

automated transformations such as refactorings. While using these transformations Alice might

want to analyze the likely future codebases, which these transformations would generate, to make

more informed decisions. Finally, to pinpoint the cause of any regression defect, Alice might want

to analyze historical codebases e.g., to binary search the development history.

Unfortunately, developers’ interaction with multiple codebases is limited since modern inte-

grated development environments (IDEs) maintain one version of the codebase with limited de-

velopment history. First, it is difficult to run an arbitrary analysis continuously with development

since most analyses assume that the code under analysis does not change for the duration of the

analysis. Second, having access to one codebase makes it impossible to analyze likely future code-

bases continuously with development since the modifications done to generate the future codebases

conflict with development. Third, maintaining a limited development history makes it difficult to

analyze historical codebases e.g., to extract information from the development history.

This dissertation introduces a novel technique, Codebase Replication, which creates and incre-

mentally maintains a copy of the developer’s codebase. Our thesis is that having access to copy



codebases improves developers’ interaction with the current codebase, likely future codebases, and

historical codebases. Improving the developer’s interaction with codebases will simplify software

engineering tasks and reduce developer mistakes.

Continuous analyses — analyses that run in the background after each developer edit and up-

date their result unobtrusively — improve developers’ interaction with the current codebase. Hav-

ing access to an in-sync copy codebase simplifies the design and implementation of continuous

analyses. We introduce Codebase Analysis, which lets developers run an existing analysis con-

tinuously with development without worrying about conflicting edits. We prototyped Solstice, an

implementation of Codebase Analysis for the Eclipse IDE. Solstice has negligible (< 2.5 ms) syn-

chronization delay and IDE overhead. Using Solstice, we implemented four continuous analyses.

Each of these analyses required less than 800 lines of Java code and 20 hours of development time,

on average. Our case study with Solstice continuous testing shows that developers like continuous

feedback and they like continuous analysis tools built with Solstice.

Impure analyses — analyses that modify the source code before computing results — improve

developers’ interaction with likely future codebases. We show how Codebase Analysis supports

impure analyses and guarantees that these analyses’ modifications will not conflict with devel-

opment. We introduce a new impure analysis that augments IDE recommendations with their

speculatively computed consequences. We created a prototype implementation, Quick Fix Scout,

in the context of Eclipse Quick Fixes. Our experiment shows that Quick Fix Scout can speed up

compilation error removal tasks by 10%.

Being able to access the development history in the granularity that is the most optimal for the

underlying software engineering task improves developers’ interaction with historical codebases.

We introduce Codebase Manipulation, a history manipulation framework that lets developers ac-

cess the history at different granularities for different tasks. We prototyped Bread, an implemen-

tation of Codebase Manipulation for the Eclipse IDE. Bread automatically creates a fine-grained

development history by recording each edit. We show that Codebase Manipulation can express a



range of development tasks by providing algorithms for three common information-retrieval-based

tasks. Using Bread, we prototyped two of these algorithms. Our initial experience with these tools

suggests that Bread can simplify information-retrieval-based software engineering tasks.
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Chapter 1

INTRODUCTION

A codebase is a collection of resources that are required to build a software system, including

the source code and the data dependencies. Software development tasks require the developer to

interact with different versions of the codebase. Consider a developer, Alice, who wants to im-

plement a new feature. While implementing this feature, Alice would prefer if the recent changes

(1) are of high quality, (2) are implemented fast but with confidence, and (3) do not introduce de-

fects. To ensure that the recent changes are of high quality, Alice might want to run continuous

program analyses, such as static defect finding tools. A continuous analysis runs in the back-

ground after each developer edit and updates its results unobstrusively. To ensure that the recent

changes are implemented fast but with confidence, Alice might use automated transformations

such as refactorings, auto completions, and quick fixes. While using these transformations, Alice

might want to run speculative analyses to make more informed decisions. A speculative analysis

computes the consequences of an action before that action is executed. Finally, to pinpoint the

cause of any regression defect introduced by the recent changes, Alice might want to binary search

the development history. During this task, Alice interacts with the following codebases: current

(to run program analyses), likely future (to run speculative analyses), and historical (to search the

development history).

Developers’ interaction with the current codebase is well-studied. Modern integrated develop-

ment environments (IDEs), such as Eclipse [39] and Visual Studio [147], support code navigation

through hyperlinks and a browsable navigation history. Code Bubbles [15, 16] and Code Can-

vas [36] improve code understanding and navigation by letting the developer focus on code pieces

and the relation between them. Mylar [89, 127] improves code navigation by letting the developer

save and switch between development contexts [90]. Additionally, modern IDEs make it easier and
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more robust to modify the current codebase through simple code transformations, such as refactor-

ings, auto completions, and quick fixes. Code Recommenders [31] uses past developer actions and

the current context to reorder and filter code completion proposals [18, 125]. BeneFactor [58, 57]

and WitchDoctor [56] infer an ongoing manual refactoring and complete it with an automated one.

Unfortunately, software development tasks require more than navigating the current codebase

and simple code transformations. Developers might need to interact directly or indirectly —

through a program analysis — with the current, likely future, and historical codebases. Some

of this interaction is more useful when it is continuous. For example, a continuous program anal-

ysis causes fewer distractions and ensures that the analysis results are always available with the

least possible delay. For the above-mentioned example, Alice wanted to analyze (1) the current

codebase continuously with development, (2) the likely future codebases continuously with devel-

opment, and (3) the historical codebases.

Having access to a single codebase limits software development. The complexity of running

an arbitrary analysis continuously with development limits developers’ interaction with the current

codebase. For some analyses, such as testing [78, 115] and compilation [45], developers can use an

existing continuous implementations, however building continuous analyses in general is difficult

since developers’ edits conflict with the ongoing analysis execution. The complexity of designing

and building continuous speculative analyses limits developers’ interaction with the likely future

codebases. A continuous speculative analysis cannot work on the developer’s codebase since the

changes done by the analysis would confuse the developer. Finally, recording a limited develop-

ment history at a fixed granularity limits developers’ interaction with the historical codebases since

different development tasks require the developer to access the development history in different

granularities.

This dissertation reduces or removes the above-mentioned limitations. Our thesis is that soft-

ware development can be enhanced by improving developers’ interaction with (1) the current code-

base through continuous analysis feedback, (2) likely future codebases through speculative analysis

of likely developer actions, which helps the developer make more informed decisions, and (3) his-

torical codebases by maintaining a complete and fine-grained history, and letting the developer
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explore this history in the best granularity for the underlying task. All enhancements build upon a

powerful foundation: an incrementally-maintained copy of the developer’s codebase can be used

to run arbitrary computation — including program analyses — and store additional information, in

parallel with development.

The rest of the dissertation is organized as follows: Chapter 2 introduces a novel technique,

Codebase Replication, that creates and incrementally maintains a copy of the developer’s code-

base in real time. Chapters 3, 4, and 5 extend Codebase Replication and introduce three novel

approaches that enhance software development. Codebase Analysis makes it easier to design and

build continuous analysis. Speculative Analysis explores likely future actions and helps the de-

veloper make more informed decisions. Codebase Manipulation maintains a complete and fine-

grained development history and simplifies information retrieval from the development history by

letting the developer access this history at the best granularity for the underlying task. Chapter 6

puts the dissertation in the context of the related research. Chapter 7 concludes with the contribu-

tions.
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Chapter 2

CODEBASE REPLICATION

Techniques described in this dissertation (Chapters 3, 4, and 5) manifest as frameworks that

analyze, modify, or store data on the developer’s codebase. Developer edits conflict with these

frameworks since they both access the same codebase, simultaneously. For example, an impure

analysis modifies the developer’s codebase before computing results. Running an impure analysis

on the developer’s codebase, simultaneously with development would confuse the developer and

become detrimental. We developed Codebase Replication, a novel technique [105, 106] that incre-

mentally maintains a copy of the developer’s codebase, in real time. Codebase Replication removes

the above-mentioned problem by letting these frameworks run programs and store additional data

on an up-to-date copy codebase.

Codebase Replication satisfies two design goals: isolation — ensuring that the framework pro-

grams do not interrupt the development — and currency — ensuring that the framework programs

access an up-to-date version of the developer’s codebase with minimal delay. Isolation is achieved

by running the framework programs on the copy codebase, which ensures that their side-effects

are contained within the copy codebase and not visible to the developer. Currency is achieved by

detecting developer edits at the finest granularity and incrementally applying these edits to the copy

codebase at times that do not conflict with an ongoing program execution.

Previous approaches that runs programs concurrently with development fail to achieve either

isolation or currency. For example, most continuous analysis frameworks, such as Eclipse’s Incre-

mental Project Builders [42], achieve some currency by running analyses on the developer’s code,

however they cannot guarantee isolation. Similarly, integration servers, such as Jenkins [82] and

Hudson [77], satisfy isolation by running programs on copy codebases at the integration server,

however they fail to satisfy currency since they only update these copies when a special action,
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such as committing new changes, takes place.

developer edits

and actions

IDE API

developer     edits 
and     actions

copy 
codebase

Codebase
Replication

IDE

Frameworkdeveloper’s 
editor

developer edits

run program or

store metadata

Figure 2.1: Codebase Replication architecture (colored). Code-
base Replication (blue) listens to developer actions — including
all edits — using IDE application programming interface (pur-
ple). Edits are applied to the copy codebase. A framework (light
blue) runs a program on the copy codebase while the developer
continues working on the main codebase.

Figure 2.1 illustrates how Code-

base Replication, the IDE, and a

framework interact with each other.

Codebase Replication detects devel-

oper actions, including all edits to the

codebase, through IDE application

programming interface (API). Code-

base Replication incrementally main-

tains a copy codebase that is always

in sync with the developer’s code by

applying all actions that modify the

source code to this copy codebase.

The frameworks that extend Code-

base Replication run their programs or store additional data on this copy codebase, without in-

terrupting development, while still having access to the most recent codebase.

Codebase Replication is implemented (together with Codebase Analysis (Chapter 3)) as an

Eclipse plug-in, called Solstice [111]. Using Solstice, we showed that Codebase Analysis — hence

Codebase Replication — have negligible IDE overhead (≤ 3ms) and high currency during the

incremental synchronization of the copy codebase (≤ 3ms) for common developer actions [105].
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Chapter 3

CODEBASE ANALYSIS:
PROVIDING CONTINUOUS ANALYSIS FEEDBACK

When a developer edits source code, the sooner the developer learns the changes’ effects on

program analyses, the more helpful those analyses are. A delay can lead to wasted effort or confu-

sion [12, 88, 128]. Ideally, the developer would learn the implications of a change as soon as the

change is made.

A few analysis tools already provide immediate feedback. IDEs such as Eclipse and Visual

Studio continuously compile the code to inform developers about a compilation error as soon as

a code change causes one. Continuous testing informs the developer as soon as possible after a

change breaks a test [128]. Speculative conflict detection informs the developer of a conflict soon

after the developer commits conflicting changes locally [21]. Speculative quick fix informs the

developer of the implications of making a compilation-error-fixing change even before the change

takes place [109].

Unfortunately, most analysis tools are not designed to continuously provide up-to-date results.

Instead, a developer may need to initiate the analysis manually.1 To ease converting these offline

analysis tools into continuous analysis tools [33] that run automatically and always provide up-to-

date results, we introduce Codebase Analysis.

After computing analysis results, a continuous analysis tool may indicate that information is

available, display the analysis results, or prompt other relevant analyses or tools to run. Some

analyses benefit more than others from continuous execution. For example, a fast continuous

analysis provides more frequent and earlier feedback than a slow continuous analysis. Even for

long-running analyses, continuous execution could provide results to the developer after an external

1Only 17% of Eclipse plug-ins listed on GitHub that implement analyses are continuous and reactive to the devel-
oper’s latest changes; see Section 3.2.1.
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interruption, such as receiving a phone call. This is sooner than the developer would otherwise

learn the results, and, again, without requiring the developer to initiate the analysis.

Our goal is not to make analyses run faster nor incrementally, but to make it easy to run them

more frequently and to simplify the developer’s workflow — all without requiring a redesign of the

analysis tool. Research that makes analyses run faster, including partial and incremental computa-

tion, is orthogonal to our work.

Making an analysis continuous is challenging. This explains why few continuous analyses ex-

ist, despite their benefits. Two major challenges are isolation and currency. Isolation requires that

(1) the analysis should not prevent the developer from making new changes, and code changes

made by an impure (side-effecting) analysis should not alter the code while the developer is work-

ing, and (2) developer edits should not make results of an ongoing analysis potentially stale. Cur-

rency requires that (1) analysis results are made available as soon as possible, and (2) results that

are outdated by new developer edits are identified as stale.

Building on Codebase Replication, Codebase Analysis addresses these challenges by employ-

ing two additional principles:

1. exclusive ownership — allowing analyses to request exclusive write access to the copy of the

developer’s codebase, and

2. staleness detection — identifying results made stale by new developer changes.

Existing analysis automation techniques fail to achieve simultaneous isolation and memory-

change currency. Build tools such as Ant [1] and Maven [2] can be automated to achieve file-

change currency, but they do not achieve isolation since the developer and the analysis work on

the same codebase. These build tools could create a separate copy of the codebase and achieve

isolation in the same way as integration servers, such as Hudson [77] and SonarQube [138], but

such an approach cannot achieve memory-change currency: build tools can only access the code

saved to disk, whereas integration servers can only access the latest version control commit. Code-

base Analysis enables isolated memory-change-triggered continuous analyses without increasing

implementation complexity.

If the developer edits the code while the analysis is running, Codebase Analysis can choose
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from a variety of reactions: terminate and restart the offline analysis so that the produced results

are always accurate; defer propagating the developer’s edits to the copy codebase until the analysis

is finished so that the analysis can complete, in case the results are useful even when a little stale;

or complete the analysis and use analysis-specific logic to mark parts of the results as stale. Since

computing analysis results early and often means that more accurate results are available sooner

after the developer changes the code, the results could be shown to the developer immediately to

reduce wasted time [12, 88, 128], or less frequently to avoid distracting and annoying the devel-

oper [13]. Codebase Analysis supports both. An up-to-date analysis result might become stale

after an edit to the program. In this case, a continuous analysis can either immediately remove

the stale results and indicate that the offline analysis is re-executing on the updated program, or

mark the results stale, but keep them until the new results are computed, so that the results are not

removed from the developer’s context. Codebase Analysis supports both.

If a UI were poorly designed to interrupt the developer, then the continuous analysis results

could be distracting to the developer. However, if the information is presented unobtrusively and

the developer is permitted to act on it when he or she chooses, then developers find it useful. This

has been confirmed experimentally by Saff et al. [129] and is reflected by the popularity of con-

tinuous analysis tools such as continuous compilation. Codebase Analysis automatically updates

the analysis results in a separate GUI element without disturbing the developer. The developer can

make this GUI element (in)visible to ignore or have access to the analysis results.

The main contributions of this chapter are:

• A discussion of the three major design dimensions of continuous analysis implementations

(Section 3.2).

• A Codebase Analysis design that addresses currency and isolation (Section 3.3), including

two alternatives for adding external interruption support to a continuous analysis implemen-

tation to increase its input currency without violating the analysis isolation (Section 3.3.3).

• Solstice, an Eclipse-based realization of Codebase Analysis that brings isolation and cur-

rency to offline analyses for easily converting them into continuous analysis Eclipse plug-ins

(Section 3.4).
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• An evaluation of Solstice’s performance, in terms of overhead (isolation cost) and respon-

siveness to changes (currency) (Section 3.5.1).

• Four publicly-available, continuous analysis plug-ins with isolation and currency properties,

and an evaluation of the ease of building such plug-ins with Solstice (Section 3.5.2).

• An evaluation of the Solstice continuous testing plug-in in two case studies, demonstrating

that Solstice (and therefore Codebase Analysis) continuous analysis tools are intuitive and

easy to use, and are liked by the programmers (Section 3.5.3).

The rest of this chapter is organized as follows: Section 3.1 defines concepts used in the rest of

this chapter. Section 3.2 discusses the key design dimensions for continuous analyses. Section 3.3

presents the design of Codebase Analysis and Section 3.4 presents Solstice, which extends and in-

stantiates Codebase Analysis design for Eclipse. Section 3.5 presents our experiments and results.

Section 3.6 concludes with the contributions.

3.1 Definitions

In order to explain Codebase Analysis, we first define several concepts, including what it means

for an analysis to be continuous.

A snapshot is the state of the source code of a software program at a point in time. An analysis

is a computation on a snapshot that produces a result. An offline analysis is an analysis that requires

no developer input. A continuous analysis is one that automatically computes an up-to-date result

without the need for the developer to trigger it. Finally, a pure analysis is one that does not modify

the snapshot on which it runs, while an impure analysis may. More formally:

Definition 1 (Snapshot). A snapshot is a single developer’s view of a program at a point in time,

including the current contents of unsaved editor buffers. A unique snapshot is associated to each

point in time.

Each of a developer’s changes creates a new snapshot.

This chapter considers analyses that run on a single developer’s codebase. Some analyses,

such as conflict detection [21, 22], may need multiple developers’ codebases for the same program.
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Codebase Analysis is applicable to such analyses, although the definition of a snapshot would need

to be extended.

Definition 2 (Analysis). An analysis is a function A : S→ R that maps a snapshot s ∈ S to a result

r ∈ R: A(s) = r.

Definition 3 (Offline analysis). An offline analysis is an analysis that requires no human input

during execution.

For example, a rename refactoring is not an offline analysis because each execution requires

specifying a programming element (e.g., a variable) and a new name for this element. An offline

analysis may require human input for one-time setup, such as setting configuration parameters or

the location of a resource.

Definition 4 (Analysis implementation). An offline analysis implementation Ao for an analysis A

is a computer program that, on input snapshot s, produces r = A(s).

We denote as TAo(s) the time it takes an analysis implementation Ao to compute r = A(s) on a

snapshot s.

It is our goal to convert an offline analysis implementation Ao into a continuous analysis imple-

mentation Ac that executes Ao internally.

Definition 5 (ε-continuous analysis implementation). Let A be an offline analysis, and let ts be

the time at which snapshot s comes into existence. An analysis implementation Ac that uses Ao is

ε-continuous if ∃εa,εs ≤ ε such that for all snapshots s, both of the following are true:

1. Ac makes r = A(s) available no later than ts +TAo(s)+ εa if no new snapshot is created before

this time. εa is the result delay: the time it takes to interrupt an ongoing analysis (Ao) execution,

apply any pending edits to the copy codebase, restart the analysis, and deliver the results (e.g.,

to a UI or a downstream analysis). εa is independent of the underlying offline analysis run time

since it does not include TAo(s).

2. For all times after ts+1 + εs, Ac indicates that all results for s are stale. εs is the staleness delay:

the time it takes to mark the displayed results as stale after the moment they become stale.
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We often refer to ε-continuous analyses as simply continuous, implying that an appropriately

small ε exists. For simplicity of presentation, our definition of a continuous analysis assumes

the most eager policies for handling concurrent developer edits and displaying stale results. Sec-

tions 3.2.2 and 3.2.3 explore other policies.

To modify the developer’s code simultaneously with development, the impure analysis must

maintain a copy, which makes it particularly challenging to convert an impure offline analysis to a

continuous analysis. Our approach handles both pure and impure analyses.

Definition 6 (Pure/impure analysis implementation). An analysis implementation Ao is pure iff its

computation on a snapshot s does not alter s. An impure analysis implementation may alter s.

Running a test suite is an example of a pure analysis because it does not alter the source code.

Mutation analysis — applying a mutation operation to the source code and running tests on this

mutant — is an impure analysis. An analysis that performs source code instrumentation is a special

case of an impure analysis. An analysis that performs run-time instrumentation of a loaded binary

is pure. Note that an impure analysis only alters the source code temporarily, while computing the

results. Once the results are computed, the impure analysis or Codebase Analysis must revert the

source code to its initial state.

3.2 Key Design Dimensions for a Continuous Analysis Tool

Our approach to implementing a continuous analysis involves executing an offline analysis in-

ternally. This section discusses three key design dimensions for continuous analysis tools that are

converted from their offline analyses. Section 3.2.1 investigates what can trigger a continuous anal-

ysis tool to internally run the offline analysis, Section 3.2.2 investigates when a continuous analysis

tool can abort an offline analysis execution, and Section 3.2.3 investigates how stale results are dis-

played to the developer. For each dimension, we discuss the advantages and disadvantages and

provide examples from existing analysis implementations.
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3.2.1 Triggering Analysis Execution

A continuous analysis may use four categories of triggers to start internal offline analysis execu-

tions: (1) whenever the snapshot changes in memory, (2) whenever the snapshot changes on disk,

(3) periodically, and (4) other triggers. Additionally, analyses from each of the categories may be

delayed and/or overlapping.

Memory-change triggers: The continuous analysis runs the internal offline analysis each time the

program snapshot changes in memory, such as when the developer makes an edit in the IDE. A

memory-change-triggered analysis provides feedback without requiring the developer to save the

file. The Solstice Continuous Testing plug-in (described in Section 3.5.2) and Eclipse reconciler

compiler2 are examples of this category of analysis.

File-change triggers: The continuous analysis runs the internal offline analysis each time the pro-

gram snapshot changes in the file system. A file-change-triggered analysis is motivated by the hy-

pothesis that changes a developer saves to disk are more likely to be permanent than those merely

made in memory. Finally, as file-system changes are less frequent than memory changes, these

triggers can result in less resource use. However, waiting for changes to be saved to disk can de-

lay computing pertinent analysis information. Eclipse provides a continuous analysis framework,

called Incremental Project Builders [42]. Incremental Project Builders broadcasts the difference

between two incremental builds on the file system, so that other analyses can access this difference

and incrementally update results. Any continuous analysis Eclipse plug-in built using Incremen-

tal Project Builders, such as the FindBugs [55], Checkstyle [43], and Metrics [47] plug-ins, is a

file-change-triggered continuous analysis.

Periodic and non-stop: The continuous analysis runs the offline analysis with a regular period.

For example, the Crystal tool [22, 20] executes its analysis every 10 minutes. A variant of periodic

analysis is a non-stop analysis, which runs every time the previous execution finishes. A periodic

2Eclipse contains two different compilers. The reconciler compiler operates on unsaved buffer content in order to
give quick feedback; Eclipse calls it the “Java reconciler”. The incremental compiler operates on saved files and
gives more complete and correct feedback about compiler errors whenever the user saves the document; Eclipse
calls it the “incremental Java builder”.
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analysis is most suitable when it is difficult to determine which actions may affect the analysis

result.

Other triggers: Quality-control analyses often run before or after each version control commit.

Pre-commit analyses prevent developers from committing code that breaks the build or test suite.

These quality-control analyses must be fast since they would otherwise discourage the developer

from making frequent commits. Building components and running unit tests that are directly af-

fected by the changes are examples of such quality-control analyses. Post-commit analyses such

as continuous integration notify developers soon after a bad commit. Continuous-integration anal-

yses can be slower since they run separately from development, typically on a dedicated integra-

tion server. Building the software completely and running all integration tests are examples of

continuous-integration analyses.

Analyses from each of the above categories may be delayed after the trigger before running the

offline analysis. Eclipse’s reconciler compiler is delayed until the developer pauses typing to avoid

running the analysis during a burst of developer edits. The delay avoids executing the analysis on

intermediate snapshots for which the results are less likely to be of interest to developers and are

likely to become stale quickly: the delay thus also reduces analysis overhead. Delays are most

appropriate for a memory-change-triggered analysis. Although file-change- and other-triggered

analyses rarely use delays since actions such as saving a file or committing code already suggest

good opportunities to run the offline analysis, these analyses might introduce delays for taking

common developer patterns into consideration. For example, developers commit in bursts and a

delay may avoid running the analysis on a snapshot that is about to be overridden by a new commit.

Jenkins [82] supports a “quiet period” in which the builds are delayed after a commit to prevent an

incomplete commit trigger a build failure.

Additionally, analyses from each of the above categories may be overlapping. Whenever a

trigger fires while a previous offline analysis is still running, the continuous analysis has to de-

cide whether to start a second, concurrent copy of the offline analysis. If the analyses are non-

overlapping, the new offline analysis execution can be skipped, delayed until the current execution
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finishes, or started instead of finishing the previous execution (Section 3.2.2).

Surveying triggering in existing analyses: To determine how existing analysis tools, we surveyed

Eclipse plug-ins on GitHub. We performed manual inspection of the documentation, automated

analysis of the source code to find design patterns that indicate a continuous analysis, and manual

inspection of the source code when necessary.

Of the 159 projects that match “Eclipse plug-in”, 47 implemented analysis tools. Of those

47, 21 (45%) were continuous: 1 (2%) was triggered by VCS commands, 12 (26%) were file-

change-triggered and only 8 (17%) were memory-change-triggered. This suggests that despite the

significant benefits of memory-change-triggered continuous analyses, they are difficult to imple-

ment, which motivates and justifies our work.

Of the 21 continuous analyses, 16 (8 file-change-triggered and 8 memory-change-triggered)

extended Eclipse to handle languages other than Java, made possible in part by the relative sim-

plicity of using the Incremental Project Builder [42], Xtext [152], and Reconciler [44] patterns.

Similarly, we anticipate that our work will ease the creation and increase the number of memory-

change-triggered continuous analysis tools for arbitrary analyses.

3.2.2 Abandoning the Ongoing Offline Analysis

When the developer edits the program while a continuous analysis is running the offline analysis,

the continuous analysis can either (1) immediately interrupt the offline analysis execution without

getting any results, potentially rerunning it on the latest snapshot, or (2) never interrupt the offline

analysis, and finish running it on the snapshot, which is no longer the up-to-date development

snapshot.

Immediately interrupt: The continuous analysis abandons the ongoing offline analysis imme-

diately when a developer makes an edit. Such a continuous analysis is most suitable when the

results of the analysis on an outdated snapshot have little or no value. An immediately-interrupting

continuous analysis wastes no time executing on outdated snapshots. Quick Fix Scout [109] is an

example of an immediately-interrupting continuous analysis.
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Section 3.3.3 presents two designs for implementing immediately-interrupting continuous anal-

yses by forcibly terminating the ongoing offline analysis.

Never interrupt: The continuous analysis continues to execute the offline analysis despite concur-

rent developer edits. To ignore the developer edits, the never-interrupting continuous analysis runs

on a copy of a recent snapshot. An example is an analysis that runs after commits or nightly builds.

A never-interrupting analysis is most suitable when the offline analysis takes a long time to run

and when the results on a slightly outdated snapshot still has value to the developer. For example,

a continuous integration server may complete running tests, while allowing developers to continue

editing the program and make new commits. The test results are useful for localizing bugs. The

alternative of interrupting the test suite execution every time the developer makes a change could

mean the test suite rarely finishes and the developer rarely sees any analysis results.

Codebase Analysis enables never-interrupting continuous analyses by providing an isolated

copy of the snapshot. More sophisticated interruption policies are possible. For example, when

a conflicting developer edit takes place, an offline analysis could be permitted to complete its

execution if that execution is estimated to be at least 50% done.

3.2.3 Handling Stale Results

A continuous analysis that does not interrupt its offline analysis may generate stale results. Fur-

thermore, as the developer edits the code, displayed results may become stale.

We group continuous analyses by how they handle stale results into two categories: (1) im-

mediately remove stale results, and (2) wait to remove stale results until new results are available.

Analyses in either category can use cues to indicate that results are potentially stale and/or a new

analysis is being run. It would also be possible to delay removing the analysis results or to create

a separate (perhaps fast) analysis to check if stale results no longer apply, and remove them based

on that analysis.

Immediately remove: The continuous analysis immediately removes the stale results and, poten-

tially, indicates that the offline analysis is being rerun. This approach is appropriate if displaying

stale results may lead to developer confusion. For example, showing a compilation error for code



16

that the developer has already fixed may cause the developer to waste time re-examining the code.

Examples include Quick Fix Scout [109] and most Eclipse analyses based on Incremental Project

Builders, such as the Eclipse FindBugs and Checkstyle plug-ins. A never-interrupting, immedi-

ately-removing analysis may be a poor choice because if the developer edits the code while the

analysis is running, the continuous analysis completes the offline analysis but never shows its re-

sults to the developer.

Display stale: The continuous analysis waits to remove the stale results until new results are

available. Removing the old results may hinder a developer using them. For example, when fixing

multiple compilation errors, the first keystroke makes all the results stale, but nonetheless the

developer wants to see the error while fixing it and may want to move on to another error while the

code is being recompiled. If the developer edits one part of the code, then all the analysis results

technically become stale, but the developer may know that analysis about unaffected parts of the

code remain correct. The Crystal tool [22, 20] is an example of a display-stale analysis, because it

visually identifies results as potentially stale.

Unless otherwise noted, when we describe an ε-continuous analysis implementation, we mean

a memory-change-triggered, non-overlapping, immediately-interrupting, immediately-removing

analysis.

3.3 Codebase Analysis

This section describes our Codebase Analysis design, and how it addresses the challenges of iso-

lation and currency.

3.3.1 Codebase Analysis Architecture

Codebase Analysis converts an offline analysis Ao into a continuous analysis Ac while addressing

the two major challenges to creating continuous analysis tools: isolation and currency.

Isolation ensures that the developer’s code changes and the execution of the offline analysis

happen simultaneously without affecting each other. The developer should be isolated from Ac: Ac
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should neither block the developer nor change the code as the developer is editing it (even though an

impure Ao may need to change the code). Additionally, Ac should be isolated from the developer:

developer edits should not alter the snapshot in the middle of an Ao execution, potentially affecting

the results.

Despite isolation between the developer and Ac, currency requires Ac to react quickly to devel-

oper edits and to Ao results. Whenever the developer makes an edit, Ac should be notified so that

it can mark old results as stale, terminate and restart Ao, or take other actions. Ac should react to

fine-grained changes in the developer’s editor’s buffer, without waiting until the developer saves

the changes to the file system nor commits them to a repository. Ac should also react quickly to

Ao results, making them promptly but unobtrusively available to the developer or to downstream

analyses.

Eclipse provides the Jobs API [48], which allows the UI thread to spawn an asynchronous task,

execute it in the background, and eventually join back to the UI thread. Eclipse’s incremental

compiler and continuous analysis plug-ins implemented on Incremental Project Builders use the

Jobs API. Codebase Analysis does not follow this approach because the Jobs API does not support

the goals of isolation and currency. The Jobs API does not maintain a separate copy of the program,

so any code changes by an impure analysis would interfere with the developer, thus failing to

provide isolation. The Jobs API does not have direct access to an editor-buffer-level representation

of the program, so to provide currency, the continuous analysis would have to combine active editor

buffers with the file representation of the program.

Codebase Analysis addresses the isolation challenge by creating and maintaining an in-sync

copy of the developer’s codebase. Codebase Analysis addresses the currency challenge by provid-

ing notifications for events that occur in the developer’s IDE and in Ac; these events can trigger

terminating and restarting Ao and updating the UI.

Figure 3.1 shows the architecture of Codebase Analysis. The IDE API generates events for

all developer actions, including changes to the code. Codebase Analysis keeps a queue of these

events, and applies them to the copy codebase. Meanwhile, Ac can pause the queue, run Ao on the

copy snapshot, collect Ao results, resume the queue, and update the results shown to the developer.
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Codebase Analysis also notifies Ac about new developer actions, so that Ac may decide to interrupt,

alter, or continue Ao’s execution.

developer edits

and actions

developer      edits
and     actions

IDE API

developer     edits 
and     actions

copy 
codebaseCodebase
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Figure 3.1: Codebase Analysis architecture. Codebase Analysis
(blue) facilitates communication between Ac (light blue) and a
developer’s IDE (dark purple) via asynchronous events.

Codebase Analysis supports mul-

tiple Ac using the same copy code-

base, via the readers-writers lock pro-

tocol. Codebase Analysis runs one

impure Ac or multiple pure Ac in par-

allel. For example, a developer might

run continuous testing and Find-

Bugs in parallel to obtain both dy-

namic information — test results —

and static information — FindBugs

warnings. Running multiple pure Ac in parallel amortizes the already-low overhead (see Sec-

tion 3.5.1). Codebase Analysis guarantees that, even with multiple Ac, at any given time, the copy

codebase can be modified by at most one analysis, and the copy codebase never changes during a

pure analysis execution.

For exposition purposes, this dissertation introduces the Codebase Analysis design with one

copy codebase. A Codebase Analysis implementation can maintain multiple copy codebases and

run multiple impure Ac in parallel by running each impure Ac on a separate copy codebase.

3.3.2 Ensuring Isolation and Currency

In addition to Codebase Replication’s principles, Codebase Analysis employs two more principles

to overcome the challenges of isolation and currency: exclusive ownership, and staleness detection.

Exclusive ownership: Changing the snapshot in the middle of an execution may cause Ao to

produce incorrect results or to crash. The situation also arises if multiple Ao run on the same code

at once, and at least one of them is impure. Codebase Analysis allows one impure Ac at a time to

claim exclusive access to a copy snapshot while its Ao executes, excluding all other analyses and

pausing synchronization updates with the developer’s buffer.
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Staleness detection: Ao results from an old snapshot might become stale as a result of the devel-

oper’s changes. If a change occurs while Ao executes, the result may already become stale by the

time Ao completes. When a change occurs, Codebase Analysis notifies Ac and allows it to choose

to finish executing or to terminate Ao.

Section 3.5 will revisit how well our design and implementation satisfy these requirements.

3.3.3 Improving Currency with Analysis Termination

To improve analysis input currency, when there is an edit that conflicts with an ongoing analysis

execution, Codebase Analysis has the ability to terminate the ongoing analysis execution, apply

the conflicting edits to the copy codebase, and rerun the analysis on the updated codebase. Proper

termination of an ongoing analysis requires additional support from either Ao or Ac. This section

discusses two designs: one in which the support is provided by Ao and one in which the support is

provided by Ac.

Ao-provided termination support: The first way to provide external support for termination is

to require external interruption support from the offline analysis Ao. When Codebase Analysis in-

terrupts an ongoing analysis execution, Ao is expected to abandon its execution and do any cleanup

that is needed in a timely manner, such as reverting modifications to the source code, databases, file

pointers, and class loaders. If Ao provides external interruption support, Ac requires no changes. It

just interrupts Ao when a conflicting developer edit is detected.

Ac-provided termination support: The second way to provide external support for termina-

tion is to design Ac to never interrupt the offline analysis Ao, instead executing Ao multiple times on

different chunks of the codebase (e.g., one execution per file). Ac then needs to compose the indi-

vidual results into a single analysis result for the whole program. Each time Ao finishes executing

on a chunk, Ac checks for interrupts. If there is an interrupt, Ac abandons computing the result for

the whole program, cleans up, and returns ownership to Codebase Analysis. This approach does

not require any modifications to Ao. However, it is only applicable when Ao is modular (can be

split up to work on program chunks) and executing it on individual chunks is much faster than on
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the whole program.

To enable Ac-provided termination support, Codebase Analysis supports a step-based execution

model that handles interruption and termination, making it easy to write an interruptible Ac for a

modular Ao. The continuous analysis Ac creates a sequence of steps, each one an atomic unit of

work that executes in a reasonable amount of time, such as several seconds. There are two kinds

of steps: (1) RUN steps that represent normal analysis execution, and (2) CLEANUP steps that

clean up side effects. Codebase Analysis maintains a worklist of steps, executes them in order,

and checks for interruptions after each step execution. When it detects an interruption, such as a

developer edit, Codebase Analysis ignores the remaining RUN steps and executes the remaining

CLEANUP steps.

Consider a continuous testing analysis tool (Section 3.5.2) that runs all tests in the project and

displays the results to the developer. The tool would not be responsive to the developer’s changes

if it finishes executing the entire test suite before checking for new developer changes. The step-

based execution model improves the tool’s responsiveness by checking for changes more often, for

example, after each class’s tests finish.

For a modular offline analysis, executing it on a chunk of code corresponds to adding one RUN

step to the worklist. For example, continuous testing adds the following steps to the worklist:

one RUN step that creates a new class loader and identifies the test classes that JUnit can run

(concrete classes with at least one test), one RUN step per test class that runs JUnit on that class,

and one CLEANUP step, which releases the resources used by the new class loader. For the above-

mentioned continuous testing implementation, Codebase Analysis checks for conflicting edits after

each step. If there is an interruption, Codebase Analysis ignores remaining RUN steps, but executes

the CLEANUP step, which ensures that the new class loader does not leak memory.

Assuming that executing each step is bounded by τ time, the step-based analysis execution

approach guarantees that the offline analysis execution can be terminated safely in (c+1) · τ time,

where c is the number of CLEANUP steps added to the worklist before the analysis is interrupted.

We anticipate that for most analyses, c will be small.

Our Eclipse-based Codebase Analysis prototype Solstice, which we describe next in Sec-
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tion 3.4, supports the step-based execution model, and all the Solstice-based plug-in analyses from

Section 3.5.2 use it. Support for the step-based execution model required, on average, only an extra

100 LoC.

3.4 Solstice: Codebase Analysis for the Eclipse IDE

To evaluate Codebase Analysis, we built Solstice, an Eclipse-based, open-source Codebase Anal-

ysis prototype. Solstice is available at https://bitbucket.org/kivancmuslu/solstice/ pub-

licly. This section describes Solstice (Section 3.4.1), explains how to implement continuous anal-

ysis tools using Solstice (Section 3.4.2), and describes one such implementation (Section 3.4.3).

Later, Section 3.5.2 describes our experience using Solstice to develop four continuous analysis

tools.

To the best of our knowledge; Solstice is the first framework that aids implementing memory-

change-triggered analysis tools for arbitrary source and binary code analyses, which would other-

wise be considerably more difficult to build.

3.4.1 Solstice Implementation

This section explains the Solstice implementation and refines Codebase Analysis with Eclipse-

specific concerns.

Figure 3.2 illustrates Solstice’s architecture. Solstice consists of two parts. Solstice server

runs on the developer’s Eclipse and is responsible for listening to the developer’s actions. Sol-

stice client runs on a background Eclipse (which we describe next) and is responsible for

keeping the copy codebase in sync and managing the ownership of the copy codebase. Solstice-

based continuous analysis tools use Solstice client for their computation logic and Solstice

server for their visualization logic and to interact with the developer.

The Eclipse API allows each Eclipse process to be associated with (and have access to) only

one workspace. Solstice interacts with two Eclipse processes running at once: the developer’s

normal Eclipse, which manages the developer’s workspace, and a second, background Eclipse,

https://bitbucket.org/kivancmuslu/solstice/


22

developer’s 
editor

Solstice client

display offline

analysis AO results

developer edits

and actions

developer edits

and actions

developer     edits 
and actions

offline analysis

AO results

copy 
workspace

run offline

analysis AO

event queue

pause(..)
resume(..)

developer edits

developer   edits 
and   actions

d
ev

el
o

p
er

’s
 E

cl
ip

se

b
ac

kg
ro

u
n

d
 (

h
ea

d
le

ss
) 

Ec
lip

se

developer   edits
and actions

Solstice 
server

analysis
client

analysis 
server

core Eclipse 
plug-ins

offline 
analysis

AO

Figure 3.2: Solstice architecture as an instantiation of the Codebase Analysis architecture (Figure 3.1) for
Eclipse. Solstice observes the workspace in the developer’s Eclipse and creates a new Eclipse process to
manage the copy workspace. Solstice and the continuous analysis (Ac) each consist of two components,
a server (Solstice server for Solstice and analysis server for Ac) that interacts with the developer’s
Eclipse, and a client (Solstice client for Solstice and analysis client for Ac) that interacts with the
copy Eclipse. The developer’s Eclipse (dark purple) generates events for developer actions, including edits.
Solstice server (blue) sends these events to Solstice client (blue) and notifies Ac (light blue) of the
actions. Solstice client stores these actions temporarily in the event queue, applies the edits to the copy
workspace, notifies Ac of these actions, and provides a pause-resume API for managing exclusive ownership
of the copy workspace. Ac (light blue) interacts with the developer’s editor, Solstice, and the copy Eclipse.
Analysis client runs Ao on the copy workspace and sends the results to analysis server. Analysis
server modifies the developer’s editor accordingly and implements staleness logic.

which runs Solstice client and maintains the copy workspace (and with it, the copy codebase).

The background Eclipse is headless — it has no UI elements and the developer never sees it. The

copy workspace resides in a hidden folder on disk. The Solstice implementation maintains one

copy codebase. It runs all pure Ac in parallel, and each impure Ac in isolation.

Each time the developer starts Eclipse, Solstice executes an initialization synchronization pro-

tocol that briefly blocks the developer and ensures that the copy workspace is in sync with the de-

veloper’s workspace. The first time the developer uses Solstice, the initialization synchronization

protocol acts as a full synchronization and creates a complete copy of the developer’s workspace

on disk. Future executions verify the integrity of the files in the copy workspace through checksum

and update the files that were added, removed, or changed in the developer’s workspace outside of

the IDE.
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After the initialization synchronization protocol, Solstice server attaches listeners to the

developer’s Eclipse. The listeners track edits to the source code, changes to the current cursor

location, changes to the currently selected file, changes to the currently selected Eclipse project,

invocations of Quick Fix, proposals offered for a Quick Fix invocation, and selections, completions,

and cancellations of Quick Fix proposals. Developer actions that alter the code generate both a

developer action event (e.g., to say that the developer clicked on a menu item) and an edit event

that encodes the code changes. Solstice server sends the developer’s events to the Solstice

client, which makes the incoming events available to the continuous analysis tool through the

observer pattern and applies all edits on the developer’s workspace to the copy workspace.

3.4.2 Building Solstice-Based Tools

This section explains how to use Solstice to build a continuous analysis tool Ac based on an of-

fline analysis implementation Ao. We refer to the author as the person developing Ac, and to the

developer as the person later using Ac.

To implement Ac, the author specifies: (1) how Ac computes the results, (2) how Ac interacts

with the developer, (3) the information that needs to be communicated between the server and the

client components of Ac, and (4) how Ac handles stale results.

(1) The author specifies Ac computation logic — how Ao runs and produces results. The compu-

tation logic is implemented as an Eclipse plug-in that interacts with Solstice client, represented

as analysis client in Figure 3.2. The computation logic always runs on the background Eclipse

using the contents of the copy workspace.

Most analyses must verify some pre-conditions before running on a codebase. Solstice API

contains analysis steps that simplify this verification process for common pre-conditions. For

example, the author can use ProjectCompilesStep to ensure that the codebase has no compilation

errors or ResourceExistsStep to ensure that a particular resource (e.g., test folder) exists. If a

step’s pre-conditions fails, Solstice abandons the analysis and shows a descriptive warning message

to the developer.

As an additional contingency mechanism for infinite loops due to bugs in the analysis or dy-
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namic execution of unknown code, Solstice lets the author specify a timeout for each step. If a

step takes longer than its timeout, Solstice assumes that the analysis went into an infinite loop and

terminates the analysis, including the remaining steps.

(2) The author specifies the interaction logic — how Ac shows results and interacts with the

developer. The interaction logic is implemented as an Eclipse plug-in that interacts with Sol-

stice server, represented as analysis server in Figure 3.2. The interaction logic runs on the

developer’s Eclipse using the developer’s editor.

The same way Eclipse manages the life-cycle of its plug-ins, Solstice manages the life-cycle

of Ac: each Ac starts after Solstice starts (when the developer opens Eclipse) and terminates before

Solstice terminates (when the developer closes Eclipse). The author does not need to create and

manage a thread for Ac, as Solstice takes care of these details.

For the rest of the section, we assume that Ac interacts with the developer. Continuous analysis

tools that do not interact with the developer (e.g., an observational Ac that only logs developer

actions) do not need an analysis client component: Solstice client duplicates all developer

edits and Ac (analysis client) can access those events directly from Solstice client via

listeners.

(3) The author specifies the communication between analysis client and analysis serv-

er. The analysis results generated by analysis client need to be sent to analysis server to

be displayed to the developer, as shown in Figure 3.2. The communication does not have to be

one-directional (although the example communication shown in Figure 3.2 is). For example, the

analysis server can allow the developer to modify Ac settings, which it would then send to the

analysis client.

The Solstice API trivializes the inter-process communication between the analysis cli-

ent and the analysis server. The author can invoke sendMessage(...) to communicate a

Serializable Java object from the analysis client to the analysis server or vice versa.

Solstice takes care of all low-level networking details, deserializes the object on the receiver, and

executes a method that processes the object.

(4) The author writes the logic for handling potentially-stale Ao results. Solstice timestamps
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Sync Time (seconds)
Workspace Code Size Empty Copy In-sync Copy

Program Size (MB) (KLoC) µ σ µ σ

CrosswordSage [35] 17 4 0.3 0.2 0.1 0.1
ASMX [5] 26 43 1.8 0.4 0.5 0.1
Voldemort [148] 55 160 6.4 0.8 1.3 0.2
JDT [46] 164 1,694 124.0 10.8 8.6 1.1

Figure 3.3: Solstice initial synchronization protocol performance. Each cell is the mean of 20 executions.

every developer action and edit, Ao start, and Ao finish, to ensure that no event is lost and that

Solstice knows to which snapshot an Ao result applies. Solstice supports all the policies discussed

for abandoning Ao (Section 3.2.2) and handling stale results (Section 3.2.3). Solstice provides

APIs for common scenarios, such as removing Ao results with each developer edit. To specify

the staleness behavior of Ac, the author needs to set the value of one boolean argument. Solstice

takes care of all low-level details, such as attaching multiple listeners to Eclipse to detect resource

changes and updating the analysis visualization while handling potentially stale results.

3.4.3 An Example Solstice Continuous Analysis Plug-in

Suppose an author wants to use Solstice to build an Ac using an Ao. The author decides that Ac will

be never-interrupting (Section 3.2.2) and display-stale (Section 3.2.3): when the developer makes

a change while Ao executes, Ao might as well finish, and Ac will display potentially stale results to

the developer, with an indicator.

The author would have to write the following interaction logic for Ac (analysis server):

class Server extends AnalysisServer {
public Server() {
super(true /*Display potentially stale results with an indicator*/);

}
// Implement one of the following two methods:
/** Convert results to human-readable text that will be displayed
* in the analysis view. */

String resultToText(Result result) {...}
/** Convert results to Eclipse markers that will be displayed
* in the analysis marker view and in the source code. */
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IMarker[] resultToMarkers(Result result) {...}
}

Server passes true to the AnalysisServer constructor, which makes Solstice display po-
tentially stale results with a special indicator. Solstice calls resultToText(...) and result-

ToMarkers(...) with Ao results (Result) received from the analysis client. The author needs
to implement at least one of these methods to transform Result into a human-readable text or
Eclipse markers, which Solstice uses to automatically update the contents of the corresponding
Eclipse view.

The author would also have to write the following computation logic for Ac (analysis cli-

ent):

class Analysis extends ResourceBasedAnalysis {
List<Step> getSteps() {
List<Step> steps = new ArrayList<>();
steps.add(new RunStep() {
void run() {
Result result = runOfflineAnalysis();
generateResult(result);

}});
return steps;

}
}

Analysis extends ResourceBasedAnalysis, which makes Solstice rerun Ao each time Sol-
stice applies all developer edits to the copy workspace and the copy workspace is up to date.
Under the step-based semantics, Solstice executes the analysis steps returned from getSteps().
Each step can invoke generateResult(Result), which makes Solstice automatically send this
Result to the analysis server.

3.5 Evaluation

To evaluate Solstice, we empirically measured its performance overhead (Section 3.5.1), deter-
mined the ease of using Solstice by implementing four proof-of-concept continuous analysis tools
(Section 3.5.2), observed developers’ interaction with continuous analysis tools in two case studies
(Section 3.5.3), and compared Solstice to other methods of implementing IDE-integrated continu-
ous analyses (Section 3.5.4).
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Operation Initial File IDE Over- Sync Operation Initial File IDE Over- Sync
Name Size Size (chars) head (s) Delay (s) Name Size Size (chars) head (s) Delay (s)

Text
Insert

1

1 0.001 0.002

Text
Delete

1

1 0.001 0.002
100 0.001 0.002 100 0.001 0.002

1,000 0.001 0.002 1,000 0.001 0.002
10,000 0.002 0.002 10,000 0.003 0.002

100

1 0.001 0.002

100

1 0.001 0.002
100 0.001 0.002 100 0.001 0.002

1,000 0.001 0.002 1,000 0.001 0.002
10,000 0.002 0.003 10,000 0.002 0.002

Text Edit Summary ≤ 0.003 ≤ 0.003

File
Add

1
1,000

0.001 0.001
File
Remove

1
1,000

0.001 0.001
100 0.102 0.157 100 0.056 0.106

1,000 1.464 1.305 1,000 0.566 2.491
File Edit Summary grows linearly with size

Figure 3.4: The Solstice-induced overhead on developer edits for keeping the copy workspace in sync.
Text operations of size 1 are single keystrokes, and larger text operations add, replace, or remove 100
consecutive characters at once to represent cut, paste, and tool applications, such as applying a refactoring
or an auto-complete. File operations of size 1 are manual file generation, copy, and removal, and larger
file operations represent copying, removing, or importing a directory or an entire Eclipse project. “IDE
Overhead” measures the overhead imposed on the responsiveness of the IDE, and “Sync Delay” measures
the delay before the copy workspace is up to date. For each text operation experiment, we executed the
operation 100 times and took the average to reduce external bias, such as JVM warmup.

3.5.1 Solstice Performance Evaluation

An effective continuous analysis should meet the following requirements:

Low initialization overhead: The developer should not be blocked too long during startup (Sec-
tion 3.5.1).
Low synchronization overhead: While using the IDE, the developer should experience negligible
overhead (Section 3.5.1).
High analysis input currency: The delay after an edit before an analysis can access an up-to-date
program in the copy codebase should be small (Section 3.5.1).

This section presents the results of performance experiments addressing these three require-
ments. The experiments were executed on a MacBook Pro laptop (Mac OS X 10.9, i7 2.3 GHz
quad core, 16 GB RAM, SSD hard drive). Solstice ran with a 512 MB RAM limitation for each of
the server and client components.

Initial Synchronization Protocol Cost

Every time the developer runs Eclipse, Solstice executes a blocking initial synchronization protocol
(recall Section 3.4) to ensure that the copy workspace is in sync with the developer’s workspace.
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This is required because Solstice does not track changes to the developer’s workspace when Eclipse
is not running.

We have tested Solstice’s initial synchronization protocol using four different workspace con-
tents (Figure 3.3). For each setting, we created a workspace with one program and invoked the
initial synchronization protocol for two extreme cases: full synchronization and no synchroniza-
tion. In the full case, the copy workspace is empty, which requires Solstice to copy the entire
workspace. In the none case, the copy workspace is already in sync, which requires Solstice to
only verify that the copies are in sync using checksums. Since developers make most of their code
changes within an IDE, we expect most invocations of Solstice after the first one to resemble the
none case.

Figure 3.3 shows that Solstice has low synchronization overhead. This could be further reduced
by a lazy initial synchronization protocol that only processes the active Eclipse project and its
dependencies, not all projects in the program (for example, JDT consists of 29 Eclipse projects
from eclipse.jdt, eclipse.jdt.core, eclipse.jdt.debug, and eclipe.jdt.ui).

Solstice would have been easier to implement if it always built a brand new copy of the
workspace on Eclipse startup. There would be two main sources of overhead:

1. Copying the files. For the JDT workspace, containing 16,408 files, this takes 30 seconds (σ =

1.1 sec.).
2. Creating an Eclipse project and importing it into the workspace. Eclipse creates metadata for

the project and indexes project files. For the JDT workspace, this takes 74 seconds (σ = 2.5
sec.).

This is 12 times slower than Solstice’s incremental synchronization, which takes only 8.6 seconds
for the JDT workspace.

IDE Synchronization Overhead

Solstice tracks all developer changes at the editor buffer level. The “IDE overhead” column of Fig-
ure 3.4 shows, for the most common developer actions, the IDE overhead that Solstice introduces
when the action is initiated programmatically. The overhead is independent of the edit size and is
no more than 2.5 milliseconds.

Even adding or removing 1000 files incurs modest overhead that is similar to the 1.085 seconds
that Eclipse takes to import similar-sized project (org.eclipse.jdt.core, 1205 files).
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Analysis
Lines of Code Dev. Evaluation Subject Program Ao Run εa εi

UI IPC Core Other Total Time (h) Name Version KLoC KNCSL Time (s) (s) (s)
FindBugs 240 18 239 22 519 25

Voldemort 1.6.4 160 115
74 0.033 0.002

PMD 265 18 224 22 529 4 25 0.102 0.004
Check Sync. 160 39 324 22 545 24 Java Grande 1.0 10.5 4.8 293 0.073 0.004
Testing 581 184 458 22 1245 25 Commons CLI 1.3 10.5 5.8 0.01 0.108 0.003

Figure 3.5: Summary of four Solstice-based continuous analysis tools. Each tool consists of “UI” code for
basic configuration and result visualization, “IPC” code for serialization, “Core” code for setting up and
running the offline analysis Ao, and “Other” code for extension points. Code sizes are larger than reported
in [105] because of new UI functionality and support for the step-based execution model. The continuous
PMD analysis took little development time due to similarities to FindBugs, which was developed before
it. Each tool is ε-continuous and the table reports the maximum observed ε values. The experiments used
PMD’s java-basic ruleset and all of Commons CLI’s 361 tests. The Check Synchronization evaluation
considers 11 (out of 31) of the Java Grande benchmark programs (main classes). 14 programs could not be
executed by Check Synchronization and 6 programs took longer than 5 minutes and were excluded due to
time considerations.

Copy Codebase Synchronization Delay

To allow Ac to access the up-to-date version of the developer’s code, Solstice must quickly syn-
chronize the copy workspace. The “Sync delay” column of Figure 3.4 shows the delay Solstice
incurs during synchronization for the most common developer operations. Synchronizing text edits
takes no more than 2.5 milliseconds. Thus, Solstice provides Ac access to the developer’s code that
is no more than 2.5 milliseconds old. Importing and deleting a 1000-file project takes longer, up
to 2.5 seconds, but since these operations are rare and already take several seconds for Eclipse to
execute, the Solstice delay should be acceptable.

Summary

Our performance analysis demonstrates that Solstice introduces negligible overhead to the IDE,
does not interrupt the development process (except during startup) and provides access to an up-
to-date copy codebase with negligible delay.

3.5.2 Solstice Usability Evaluation

We have used Solstice to build four continuous analysis Eclipse plug-ins, each using an existing
offline analysis implementation. This section describes these implementations and reports on the
building experience.

Figure 3.5 summarizes the continuous analysis tools built on Solstice. The epsilon values in
Figure 3.5 are computed by instrumenting Solstice to timestamp the moments when:
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te: the developer makes an edit,
tas: Solstice starts running Ao,
tae: Solstice finishes running Ao,
td: Solstice displays analysis results to the developer,
te′: the developer makes a new edit,
ts: Solstice marks analysis results as stale (after the new edit)

After an analysis computed its initial results, we made 10 small edits in Eclipse (ranging a
few lines to adding/remove one method) that produce different analysis results. For each analysis
execution, we computed εi = ts− te′ and εa = (tas− te)+ (td − tae) and Figure 3.5 displays their
maximum.

This section presents each continuous analysis as a separate Eclipse plug-in. Solstice supports
running multiple pure Ac in parallel.

Continuous FindBugs

FindBugs is a static analysis tool that finds common developer mistakes and bad practices in Java
code, such as incorrect bitwise operator handling and incorrect casts. FindBugs has found bugs in
open-source software, is useful to developers, and is extensible with new defect patterns [76]. It is
available as a command-line and a GUI tool, an Ant task extension, and an Eclipse plug-in [55].

The FindBugs Ant task extension and Eclipse plug-in can automate FindBugs invocations,
but both fall short of being ε-continuous according to Definition 5 in Section 3.1. The Ant task
extension executes only with each Ant build. The Eclipse plug-in has two FindBugs implemen-
tations. The developer has to manually invoke the complete FindBugs that analyzes the whole
project. There is also a lighter Eclipse-Incremental-Project-Builders version that is disabled by
default. This lightweight version automatically recomputes the FindBugs warning for the current
editor file whenever the developer saves outstanding changes on the editor file. Both tools require
the developer to perform an action to run, and neither reacts to changes made to the editor buffer.
Further, since changes to one file may affect the analysis results of another, the lightweight mode
of FindBugs plug-in may miss warnings.

We have used Solstice to build a proof-of-concept, open-source continuous FindBugs plug-in,
available at https://bitbucket.org/kivancmuslu/solstice-continuous-findbugs/. The
plug-in uses the command-line FindBugs to analyze the .class files for all the classes in the cur-
rently active Eclipse project and all their dependent libraries. The plug-in’s simple visualization
displays the FindBugs warnings in an Eclipse view [49], which is a configurable window similar

https://bitbucket.org/kivancmuslu/solstice-continuous-findbugs/
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Figure 3.6: Continuous FindBugs running on Voldemort. Both images show the top four warnings. The
left screenshot shows the original Voldemort implementation; its first FindBugs warning suggests that the
first use of .equals(...) is too restrictive. The developer changes .equals(...) to instanceof (right
screenshot) and the top warning disappears without the developer saving the file or invoking FindBugs.

Figure 3.7: Continuous PMD running on Voldemort. Both images show the top four warnings. The left
screenshot shows the original Voldemort implementation; its first PMD warning suggests that the parenthe-
ses around new are unnecessary. The developer removes these parentheses (right screenshot) and the first
warning disappears, without the developer saving the file or invoking PMD.

to the Eclipse Console. The plug-in immediately removes potentially stale warnings and recom-
putes warnings for the up-to-date codebase. Figure 3.6 shows two continuous FindBugs plug-in
screenshots.

Continuous PMD

PMD [123] is a static Java source code analysis that finds code smells and bad coding practices,
such as unused variables and empty catch blocks. It is available for download as a standalone
executable and as plug-ins for several IDEs, including Eclipse. Like FindBugs, it is popular and
well-maintained. Unlike FindBugs, PMD works on source code. The existing Eclipse plug-in is
not continuous; the developer must right-click on a project and run PMD manually.
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We have used Solstice to build a proof-of-concept, open-source continuous PMD plug-in,
available at https://bitbucket.org/kivancmuslu/solstice-continuous-pmd/. The plug-
in uses the command-line PMD to analyze the .java files for the currently active Eclipse project.
The plug-in’s visualization displays the PMD results in an Eclipse view. The plug-in immediately
removes potentially stale results and recomputes results for the up-to-date codebase. Figure 3.7
shows two continuous PMD plug-in screenshots.

Continuous Check Synchronization

Check Synchronization [29], based on technology first introduced in Eraser [131], is a race detec-
tion tool that detects potentially incorrect synchronization using dynamic checks. The tool has not
yet been integrated into any IDEs.

We have used Solstice to build a proof-of-concept, open-source continuous Check Synchro-
nization plug-in, available at https://bitbucket.org/kivancmuslu/solstice-continuous-
check-synchronization/. The plug-in searches for all classes with main methods inside the
current project and runs the Check Synchronization tool on these classes. For each class with a
main method, the plug-in shows the results to the developer through an Eclipse view. The plug-in
immediately removes potentially stale results and recomputes new results for up-to-date codebase.
Figure 3.8 shows two continuous Check Synchronization plug-in screenshots.

Continuous Testing

Continuous testing [130] uses otherwise idle CPU cycles to run tests to let the developer know as
soon as possible when a change breaks a test. Continuous testing can reduce development time by
up to 15% [128]. There are Eclipse [130, 78], Visual Studio [34], and Emacs [129] plug-ins for
continuous testing. The original Eclipse plug-in [130] is ε-continuous, however it modifies Eclipse
core plug-ins, making it difficult to update the implementation for new Eclipse releases; in fact, the
plug-in does not support recent versions of Eclipse. By contrast, Solstice requires no modifications
to the Eclipse core plug-ins and would apply across many Eclipse versions.

We have used Solstice to build a proof-of-concept, open-source continuous testing plug-in,
available at https://bitbucket.org/kivancmuslu/solstice-continuous-testing/. The
plug-in runs the tests of the currently active Eclipse project. The plug-in immediately removes
potentially stale test results and recomputes the test results for up-to-date codebase. The plug-in’s
simple visualization displays the test results in an Eclipse view. Figure 3.9 shows two continuous
testing plug-in screenshots.

https://bitbucket.org/kivancmuslu/solstice-continuous-pmd/
https://bitbucket.org/kivancmuslu/solstice-continuous-check-synchronization/
https://bitbucket.org/kivancmuslu/solstice-continuous-check-synchronization/
https://bitbucket.org/kivancmuslu/solstice-continuous-testing/
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Figure 3.8: Continuous data race detection running on Pool. Both images show the top warning.
The left screenshot shows the original, buggy Pool implementation; its first warning suggests that the
SleepingObjectFactory.counter field might have a data race. The developer adds synchronized to
the method signature (right screenshot) and the top warning disappears without the developer saving the file
or invoking data race detection.

3.5.3 Solstice Continuous Testing Usability Evaluation

Figure 3.9: Continuous testing running on Apache commons.cli.
The left screenshot shows the original commons.cli implementa-
tion, for which all tests pass. The developer defines the id of an
option to be its second character (right screenshot) and immedi-
ately sees that this change causes an existing test to fail, without
saving the file or invoking JUnit.

We evaluated how continuous tools
built with Solstice affect developer
behavior in two ways. The au-
thor of this dissertation used the Sol-
stice continuous testing plug-in (Sec-
tion 3.5.2) during routine debugging
(Section 3.5.3), and we ran a case
study (Section 3.5.3).

Debugging with Solstice Continuous

Testing

The first author used the Solstice con-
tinuous testing plug-in (CTSolstice)
while debugging a BibTeX manage-
ment project, consisting of 7 Java KLoC. The project was exhibiting RuntimeException crashes
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on a specific input. The author used CTSolstice while writing tests and fixing the defect. This took
3 days, and required an extension to the project’s architecture and writing more than 100 LoC.

At the start of the debugging process, the subject program had no tests. The author wrote two
tests: a regression test to validate that nothing was broken while fixing the defect, and another
test for the failing input to observe the presence of the error. The tests were 60 LoC on average
and implemented the following algorithm: parse a bibliography from a hard-coded file, program-
matically construct a bibliography that is expected to be equivalent to the parsed one, and assert
that two bibliography representations are equivalent. The case study led to the following three
observations:

CTSolstice can speed up discovering unknown bugs: When an input file did not exist, the pro-
gram crashed with a FileNotFoundException. The author discovered this error early, right after
starting implementing the regression test: CTSolstice ran an incomplete test with an invalid path.
The author would not have thought to run this incomplete test and would have discovered the error
later, if at all.

CTSolstice simplifies debugging: CTSolstice enables live programming [17, 23, 149, 71]. While
debugging, developers often use print statements to view intermediate program state and assist in
understanding behavior. CTSolstice makes the continuous testing console output and error streams
available to the developer. With each edit, CTSolstice recomputed and redisplayed these logs, giving
near-instant feedback on how changes to the code affected the print statements, even if the changes
did not affect the test result. The author felt this information significantly simplified the debugging
task.

CTSolstice is unobtrusive: During this debugging process, the author never experienced a notice-
able slowdown in Eclipse’s operation and never observed a stale or wrong test result.

Solstice Continuous Testing Case Study

To further investigate how developers interact with Solstice continuous analysis tools, we con-
ducted a case study using the Solstice continuous testing plug-in. This case study investigates the
following research questions:

RQ1: What is the perceived overhead for Solstice continuous analysis tools?
RQ2: Do developers like using Solstice continuous analysis tools?

The remainder of the section explains our case study methodology, presents the results, and dis-
cusses threats to validity.
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Strongly Strongly
Agree Agree Neutral Disagree Disagree

Solstice continuous testing
Test results were always up to date. 1 4 0 0 0
I liked using continuous testing. 2 2 1 0 0

Figure 3.10: Exit survey summary for the user study subjects who used Solstice continuous testing.

Methodology

Each subject implemented a graph library using test-driven development (TDD). The subject was
given skeleton .java files for the library, containing a complete Javadoc specification and a com-
prehensive test suite of 93 tests. The method bodies were all empty, other than throwing a Run-

timeException to indicate that they have not been implemented. Accordingly, all tests failed
initially. The subject’s task was to implement the library according to the specification and to
make all tests pass. The subjects were asked not to change the specification and not to change,
add, or remove tests, but they could configure Eclipse as they wished and could use the Internet
throughout the task.

For the case study, we recruited 10 graduate students at the University of Washington who were
unfamiliar with our research3. Half of these subjects were randomly assigned to use JUnit (base
treatment) and the remaining half were assigned to use the Solstice Continuous Testing plug-in.
Subjects had varying Java (1 to 12 years), JUnit (none to 4 years), and TDD (none to 4 years)
experience.

All sessions were conducted in a computer lab4 at the University of Washington. After a 5-
minute introduction that explained the purpose of the study, each subject completed a tutorial to
learn the tool they would be using during the session. Then, each subject implemented as much of
the graph library as possible within 60 minutes. We recorded the computer screen and snapshotted
the subject’s codebase each time it was compiled. Finally, we conducted a written exit survey,
asking the subjects about their experience.

3Subjects were recruited through a standard IRB-approved process. Participation in the study was compensated
with a $20 gift card.

4Computer specs: Intel i5-750: 2.67 GHz quad core CPU, network drive, 4 GB memory, connected to a 30-inch
display.
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Results

The test suite executed in under one second (unless the subject implemented methods that took
unreasonably long). This short test suite execution time is appropriate for a small library and
allowed us to answer RQ1; a long-running test suite would have masked the tool’s overhead. All
subjects agreed that the continuous testing results were always up to date (Figure 3.10). In addition
to the Likert-scale questions in Figure 3.10, the exit survey also had a free-from question that
asked the subjects to comment on their experience with the Solstice continuous testing plug-in.
For example, one subject commented: “I really liked the fast feedback [from continuous testing].”
Although the computers were running screen-recording software, two Eclipse instances, and a
web browser, when asked during the exit survey if test results had been up to date, all five of the
subjects agreed the results were up to date and none complained about lag nor any other evidence
of overhead.

During the case study, we observed how developers interacted with Solstice continuous testing.
After the tutorial, three developers (out of five) started using the tool as we expected, by repeating
the following steps:

1. select a failure from the Test Failures view,
2. investigate the corresponding trace in the Trace view and navigate to the code locations using

hyperlinks,
3. make the required code changes, and
4. verify that the failure is fixed (or discover that it is not) by looking at the updated results in the

Test Failures view.

One subject had issues with using the two different views: she switched from the Trace view to
the Javadoc view, forgot to switch back, and was confused by not being able to see the trace for
the selected test failure. The last subject simply ignored the whole workflow as he was not used
to using tools that provide continuous feedback. Figure 3.10 shows that all but one of the subjects
liked using Solstice continuous testing. One subject commented: “I really enjoyed [using Solstice
continuous testing]! . . . [Getting continuous feedback] in a real language like Java was pretty cool.”

In addition to our qualitative results, we analyzed the recorded development history of each
subject. 84 test failures were fixed by at least one developer from each treatment group. The
Solstice continuous testing group fixed 52 of these failures faster, whereas the JUnit group fixed
38 faster. On average, JUnit subjects fixed 62 whereas Solstice continuous testing subjects fixed
49 test failures. As the size of our study was small, none of these results is statistically significant
(all p > 0.05) according to the Mann-Whitney U test.



37

-300 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

Development time (seconds)

Testing

PMD

FindBugs

Data race

Compilable edits

Figure 3.11: Availability of Solstice analyses for one of the case study participants. The x-axis represents
the development time in seconds. The vertical lines represent developer edits that yielded compilable code.
Solid lines on analyses rows represent the times that the corresponding analysis would have shown up-to-
date results during development. (Figure 3.12 summarizes this data across all participants.)

In answering RQ2, we conclude that Solstice continuous analyses tools are easy to use, intu-
itive, and unobtrusive. While our small-scale study has not shown directly the benefits of contin-
uous analysis tools, previous research has done so [71, 87, 128, 65], and reverifying this claim is
outside the scope of this work.

Availability of Results for Long-Running Analyses

Our case study used a fast analysis: the time to execute the test suite was under a second. However,
executing continuously is beneficial for all analyses, even long-running ones. Executing continu-
ously reduces the cognitive load, since the developer neither has to decide when to run the analysis
nor predict when there will be a long enough break in activity to complete the analysis. The contin-
uous analysis eliminates or reduces wait time when the developer desires the analysis results. As
discussed in Section 3.2.3, even potentially-stale analysis results have value. Thus, every analysis
should be run continuously, under reasonable assumptions: the analysis process is run at low prior-
ity to avoid slowing down the developer’s IDE, electrical power is less costly than the developer’s
time, and the UI that presents the results is non-obtrusive.

Given that any amount of increased availability of analysis results is beneficial, we ask how
often would those analysis results be available. This section investigates our case study data in a
quantitative experiment to estimate the availability of results from long-running Solstice continu-
ous analyses. We focus on the following research question:

RQ3: How does the run time of an Ao affect the availability of its results to the corresponding Ac?

Using the development history (snapshots) of case study participants, we computed the percent
availability and the average staleness of each of the four Solstice analyses of Section 3.5.2. Percent



38

availability is the ratio of the total time the analysis results are up to date to the the total develop-
ment time. Average staleness is the average value for how stale the currently-displayed results are
(how long it has been since they were up to date), where up-to-date results are treated as 0 seconds
stale.

Analysis Ao Run time Availability Avg. Staleness

Testing 0.01 s. 99.7% 0.003 s.
PMD 25 s. 61.2% 10.9 s.
FindBugs 74 s. 33.7% 108.6 s.
Data race 293 s. 5.7% 1124 s.

Figure 3.12: Ao run time, percent availability, and average stale-
ness of each Solstice continuous analysis, averaged over all case
study participant data. The results suggest that even a continuous
long-running analysis can provide value during development.

We assume immediately-interrupting
and display-stale (recall Section 3.2)
implementations. The number of de-
velopment snapshots is equal to the
number of edits that yielded a com-
pilable project. The analysis results
become up to date if the developer
pauses longer than εa +TAo , where:

εa: the continuous analysis result delay (Definition 5).
TAo : underlying Ao run time.

εa and TAo values are taken from Figure 3.5. The analysis results become stale immediately at the
beginning of the next snapshot.

Figure 3.11 shows the developer edits and the availability of each analysis as a timeline, for
one of the case study participants. We did this computation for each case study participant. We
provide similar figures for the other participants, and the raw data at https://bitbucket.org/
kivancmuslu/solstice/downloads/analysis_availability.zip.

Figure 3.12 shows percent availability and average staleness of each Solstice analysis, averaged
over all case study participants. Although the run time of an Ao has a negative effect on the
availability of the corresponding Ac, long-running Solstice analyses would still be beneficial during
development. Data race detection results are up to date 5% of the time.

Threats to Validity

We assess our evaluation activities in terms of simple characterizations of internal and external va-
lidity. Internal validity refers to the completeness and the correctness of the data collected through
the case studies. External validity refers to the generalizability of our results to other settings.

As in other research, the possibility of a defect in the tools is a threat to internal validity. Seeing
incorrect information could confuse and slow down developers. However, we received no negative
feedback about correctness.

The selection of the subject program, a simple graph library, poses a threat to external validity.

https://bitbucket.org/kivancmuslu/solstice/downloads/analysis_availability.zip
https://bitbucket.org/kivancmuslu/solstice/downloads/analysis_availability.zip
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Case study results for this data structure may not generalize to other software.

The selection of the offline analysis, testing, poses another threat to external validity. Case
study results on how developers interact with continuous testing may not generalize to other con-
tinuous analysis tools. However, we believe the specific internal offline analysis does not affect the
developer’s interaction with the continuous analysis tool.

Finally, the fact that all our subjects were PhD students poses another threat to external validity.
Case study results for a particular developer population may not generalize to other developer pop-
ulations. However, none of the subjects knew Solstice continuous testing before the case study and
their experiences with JUnit, Eclipse, and Java varied. Most subjects had professional experience
through internships in industry.

3.5.4 Alternate Implementation Strategies

There are ways other than maintaining a copy codebase to convert offline analyses into continuous
ones. Very fast offline analyses can run in the IDE’s UI thread. While technically such an analysis
would block the developer, the developer would never notice the blocking because of its speed.
Most analyses are not fast enough for this approach to be feasible.

It is possible to reduce the running time of an offline analysis by making it incremental [124].
An incremental code analysis takes as input the analysis result on an earlier snapshot of the code
and the edits made since that snapshot. Examples include differential static analyses [93], differen-
tial symbolic execution [122], and incremental checking of data structure invariants [136]. When
the differences are small, incremental analyses can be significantly faster. With this speed increase,
incremental analyses may be used continuously by blocking the developer whenever the analysis
runs. Incremental code compilation [88] is one popular incremental, continuous analysis integrated
into many IDEs. However, many analyses cannot be made incremental efficiently because small
code changes may force these analyses to explore large, distant parts of the code. Further, making
an analysis incremental can be challenging, requiring a complete analysis redesign. The process is
similar to asking someone to write an efficient, greedy algorithm that solves a problem for which
only an inefficient algorithm that requires global information is known.

While many analyses cannot be made incremental or efficient enough to run continuously while
blocking the developer, those that can still benefit from being built using Codebase Analysis. An
impure analysis is freed from the burden of maintaining a copy codebase, as Codebase Analysis
maintains the copy codebase and lets the analyses own it exclusively. Codebase Analysis allows
long-running analyses to execute on a recent snapshot and produce results that may be slightly
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stale, whereas other approaches would not.

Codebase Analysis uses a step-based execution model to execute Ao on the copy codebase.
Codebase Analysis could instead use a build tool, such as Apache Maven or Ant, letting an analysis
author declare how Ao runs via build files. Although using a build tool might further simplify the
Ac implementation, it would also limit Ac to the capabilities of the build tool. Step-based execution
permits the analysis author to implement Ac using arbitrary Java code or to define Ac as a one-step
analysis that executes a build tool.

It is possible to implement memory-change-triggered continuous analysis tools by combining
a file-change continuous analysis framework such as Incremental Project Builders with tools that
automatically save changes periodically such as the Smart Save plug-in [137]. However, running
an analysis on a separate codebase has additional benefits. First, the developer never experiences
any unwanted side-effects, such as crashes or code modifications due to impurity, of the analysis.
Second, for longer-running analyses, when there is a conflicting developer edit, Codebase Anal-
ysis can let the analysis finish its execution on the copy codebase and produce correct — albeit
potentially stale — results.

3.6 Contributions

While useful to developers, continuous analyses are rare because building them is difficult. We
classified the major design decisions in building continuous analysis tools, and identified the major
challenges of building continuous analyses as isolation and currency. We designed Codebase
Analysis, which solves these challenges by maintaining an in-sync copy of the developer’s code
and giving continuous analyses exclusive access to this copy codebase. We further introduced a
step-based execution model that improves Codebase Analysis’s currency. We have built Solstice, a
Codebase Analysis prototype for Eclipse, and used it to build four open-source, publicly-available
continuous analysis Eclipse plug-ins. We have used these plug-ins to evaluate Codebase Analysis’s
effectiveness and usability.

We have evaluated Codebase Analysis (1) on performance benchmarks, showing that Solstice-
based tools have negligible overhead and have access to the up-to-date code with less than 2.5
milliseconds delay, (2) by building continuous analysis tools, demonstrating that Codebase Anal-
ysis and Solstice can be used for a variety of continuous tools including testing, heuristic defect
finding, and data race detection and that the effort necessary to build new continuous analysis tools
is low (each tool required on average 710 LoC and 20 hours of implementation effort), and (3) with
case studies with developers that show that Solstice-based tools are intuitive and easy-to-use.
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Codebase Analysis provides a simple alternative to redesigning offline analysis logic to work
continuously. Overall, the cost of converting an offline analysis to a continuous one with Code-
base Analysis is low. Further, the benefits of continuous analysis tools greatly outweigh the cost
of building them with Codebase Analysis. We believe that Codebase Analysis, and our imple-
mentation, will enable developers to quickly and easily build continuous tools, and will greatly
increase the availability of such tools to developers. These tools will reduce the interruptions de-
velopers face and the delay before developers learn the effects of their changes, and consequently
will positively impact software quality and the developer experience.
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Chapter 4

SPECULATIVE ANALYSIS:
BRINGING KNOWLEDGE OF FUTURE

Developers interact with tools to automate or simplify common tasks. For example, ver-
sion control systems (VCSs) simplify collaboration with other developers and integrated devel-
opment environments (IDEs), such as Eclipse and Visual Studio, provide tools for refactoring,
auto-complete, and correction of compilation errors. These tools have two goals: increasing de-
veloper speed and reducing developer mistakes. These tools are widely used: they are the most
frequent developer actions, provided by the JDT plug-in, after common text editing commands
such as delete, save, and paste [112].

Unfortunately, users of these tools are provided with little or no information about their conse-
quences. For example, if a developer wants to understand whether her recent changes conflict with
another developer’s uncommitted changes, she might commit her changes to a temporary branch
and ask the other developer to attempt merging these changes with her local copy. As another
example, whenever there is a compilation error in an Eclipse project, Eclipse offers Quick Fix

proposals: transformations that may resolve the error. However, some of these proposals may not
resolve the compilation error and may even introduce new errors. When this happens, a developer
may waste time undoing the proposal or trying other proposals, and may even give up on Quick
Fix.

Although the previous chapter focused on continuous analysis of developers’ current codebase,
Codebase Analysis (Chapter 3) supports impure analyses that run on variants of the current code-
base (cf. Section 3.3.1). This chapter focuses on speculative analysis [19], which explores potential
future states of a program to compute the consequences of likely developer actions and presents
the pre-computed consequences to the developer when the developer starts doing the correspond-
ing action. A speculative analysis generates likely future states of a codebase by applying potential
developer actions, and evaluates and compares these likely future states based on a metric. Code-
base Analysis supports all speculative analyses since any speculative analysis can be formulated
as an impure analysis.

The rest of this chapter applies speculative analysis in the context of Eclipse Quick Fixes.
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Its aim is to improve Quick Fix by informing developers of the consequences of each proposal,
specifically of the proposal’s effect on the number of compilation errors. As a proof-of-concept,
we have built an Eclipse plug-in, Quick Fix Scout, that computes which compilation errors are re-
solved by each proposal.1 When a user invokes Quick Fix, Quick Fix Scout augments the standard
dialog with additional, relevant proposals, and sorts the proposals with respect to the number of
compilation errors they resolve.

This chapter makes the following contributions:

• A novel application of speculative analysis for automatically computing the consequences of
Quick Fix recommendations.
• An open-source, publicly-available tool — Quick Fix Scout: http://quick-fix-scout.
googlecode.com — that communicates the consequences of a Quick Fix proposal to the
developer.
• A case study that shows that 93% of the time developers apply one of the top three proposals

in the reordered dialog (Section 4.4.1).
• A controlled experiment with 20 users that demonstrates that Quick Fix Scout allows de-

velopers to remove compilation errors 10% faster, compared to using traditional Quick Fix
(Section 4.4.2).

The rest of the chapter is organized as follows. Section 4.1 explains the problem with Eclipse’s
Quick Fix. Section 4.2 presents the design of the speculative analysis for Eclipse Quick Fixes and
presents our tool, Quick Fix Scout. Section 4.3 introduces global best proposals — the additional
proposals Quick Fix Scout adds to the dialog. Section 4.4 details the case study and controlled
experiment design and results, and threats to the validity of these results. Finally, Section 4.5
concludes with the contributions.

4.1 Not Knowing the Consequences

Eclipse uses a fast, incremental compiler to identify and underline compilation errors with a “red
squiggly”. A developer who invokes Quick Fix at an error sees a pop-up dialog with a list of
actions each of which may fix the error. The Eclipse documentation notes that Quick Fix can be
used not only to provide suggestions but also as a shortcut for more expert users. 2

1Although the speculative-analysis-related concepts introduced in this chapter can utilize Codebase Analysis,
Quick Fix Scout does not utilize Solstice since this work was done before Codebase Analysis. For coherence,
the rest of this chapter is written as if Quick Fix Scout was implemented utilizing Solstice.

2http://wiki.eclipse.org/FAQ_What_is_a_Quick_Fix%3F

http://quick-fix-scout.googlecode.com
http://quick-fix-scout.googlecode.com
http://wiki.eclipse.org/FAQ_What_is_a_Quick_Fix%3F
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Figure 4.1: A Java program with two compilation er-
rors. There is only one logical error: the type sTRING
should be String.

Figures 4.1–4.2 demonstrate a situation in
which Quick Fix falls short. Figure 4.1 shows
a program with two compilation errors due to a
single type mismatch between a variable decla-
ration and a use site. The variable name should
be declared to be of type String but is instead
declared as sTRING. Invoking Quick Fix at the
declaration error shows 12 proposals (the left
screenshot of Figure 4.2). The correct proposal — Change to ‘String’ — is the fourth choice in
the list. Ideally, Eclipse would provide the correct proposal as the first recommendation. Lower
positions in the list likely cause the user to spend more time studying the choices or to cancel Quick
Fix and address the error manually.

Invoking Quick Fix at the use-site of the error is even worse for the developer. The right
screenshot of Figure 4.2 shows the 15 Quick Fix proposals, none of which resolves either error.
Sophisticated users may realize this, cancel the invocation, and finish the change manually. Others
may apply a proposal and either quickly realize that this was a poor choice and undo it, or per-
form more actions attempting to resolve the error, creating successively more difficult situations to
recover from.

4.1.1 Visualizing Quick Fix consequences

Quick Fix Scout pre-computes the consequences of each proposal and visualizes this information
by augmenting the Quick Fix dialog in three ways:

1. To the left of each proposal, add the number of compilation errors that remain after the
proposal’s hypothetical application.

2. Sort the proposals with respect to the number of remaining compilation errors.
3. Color the proposals: green for proposals that reduce the number of compilation errors, black

for proposals that do not change the number of compilation errors, and red for proposals that
increase the number of compilation errors.

Figure 4.3 — the Quick Fix Scout equivalent of the left screenshot of Figure 4.2 — shows all these
augmentations, except the red coloring.

Section 4.3 discusses one additional feature of Quick Fix Scout: global best proposal, which
addresses the problem in the right screenshot of Figure 4.2. Changing sTRING to String (offered
only at the first error’s site) resolves both compilation errors. However, Quick Fix does not present
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Figure 4.2: Eclipse offers 12 Quick Fix proposals to resolve the type error (left) and 15 Quick Fix proposals
to resolve the assignment error (right) from Figure 4.1. None of the proposals offered for the assignment
error resolves either compilation error.

this proposal at the second error’s site, even though it is relevant. Quick Fix Scout addresses this
problem by providing the relevant proposal at both compilation error locations.

Figure 4.3: Quick Fix Scout sorts the 12 proposals offered by
Eclipse (shown in Figure 4.2) by the number of errors that the
proposal fixes.

Quick Fix Scout reorders and col-
ors the proposals based on the num-
ber of remaining compilation errors.
Since the primary intent of Quick Fix
is to resolve compilation errors, we
assume that a proposal that resolves
more compilation errors is likely to
be preferred by the developer. The
proposals that resolve the same num-
ber of compilation errors are sorted
using Quick Fix’s standard ordering.
This allowed us to measure the ef-
fects of the main criterion more ac-
curately when evaluating Quick Fix
Scout. The empirical data support the premise that developers prefer proposals that resolve the
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highest number of compilation errors. Case study participants (Section 4.4.1) who used Quick
Fix Scout selected a proposal that resolved the most compilation errors 90% of the time. Simi-
larly, controlled experiment participants (Section 4.4.2) who used Quick Fix Scout selected such
proposals 87% of the time, and those who used Quick Fix, 73% of the time.

4.2 Quick Fix Scout: Speculative Analysis of Eclipse Quick Fixes

Quick Fix Scout [107] is an Eclipse plug-in that speculatively applies each available Quick Fix
proposal and compiles the resulting program. Quick Fix Scout augments the Quick Fix dialog to
show how many compilation errors would remain after each proposal’s hypothetical application,
and sorts the proposals accordingly.

Next, Section 4.2.1 details the mechanism for computing Quick Fix proposals’ consequences.
Section 4.2.2 explains additional optimizations specific to Quick Fix Scout. Section 4.2.3 discusses
implementation limitations. Finally, Section 4.2.4 provides insight into generalizing the technique
and the implementation to other IDEs and recommendations.

4.2.1 Computing Quick Fix consequences

Quick Fix Scout uses the speculative analysis algorithm, described at a high level in Figure 4.4, to
compute the consequences of Quick Fix proposals. Implemented as an impure Solstice analysis,
Quick Fix Scout uses the copy codebase maintained by Codebase Replication. Whenever the
developer introduces a new compilation error or fixes an old one (line 2), Quick Fix Scout applies
each proposal to the copy (line 5), one at a time, saves and builds the copy (line 6), and associates
that proposal with the set of compilation errors that remain (line 7). Quick Fix Scout then undoes
the proposal to restore the copy’s state (line 8). Quick Fix Scout updates the Quick Fix dialog after
computing the consequences of all the proposals (line 10).

4.2.2 Optimizations for a responsive UI

Ideally, Quick Fix Scout computes the consequences of a new error’s proposals in the time between
when the developer introduces the error and invokes Quick Fix. Quick Fix Scout includes the
following optimizations and heuristics:

• It only recomputes consequences if a code change affects the compilation errors, as described
in Figure 4.4.
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1 while (true) {
2 waitUntilChangeInErrors();
3 for (Error err: copy.getErrors()) {
4 for (Proposal p: err.quickFixes()) {
5 copy.applyProposal(p);
6 copy.saveAndBuild();
7 results.add(p, copy.getErrors());
8 copy.applyProposal(p.getUndo());
9 }
10 publishResults();
11 }
12 }

Figure 4.4: A high-level description of the speculative analysis algorithm for computing the compilation
errors that remain after applying each Quick Fix proposal. The publishResults() method augments the Quick
Fix dialog with the proposal consequences.

• It uses a user-adjustable typing session length to identify atomic sets of changes. A series of
edits without a typing-session-length pause constitute an atomic set of edits. Quick Fix Scout
waits for an entire atomic session to complete before recomputing consequences. Thus, for
example, Quick Fix Scout ignores the temporary compilation errors that arise in the middle
of typing a complete token.
• It considers first the errors that are closest to the cursor in the currently open file.
• It caches the consequences (i.e., the remaining compilation errors) for each proposal and

uses the cache whenever Eclipse offers the same proposal at multiple locations.
• It updates the Quick Fix dialog incrementally, as results for errors (but not individual pro-

posals for each error) become available. This is shown in Figure 4.4.
In general, each proposal application is a small change and, even for large projects, Eclipse

can incrementally compile the updated project extremely quickly. Therefore, Quick Fix Scout’s
computation scales linearly with the number of proposals (which is proportional to the number
of compilation errors), and independently of the size of the project. During typical coding, at
any particular time, a project has several compilation errors with several proposals for each. The
total number of proposals is typically less than a couple hundreds. As a worst-case example, we
experimented with an 8K-line project with 50 compilation errors and 2,400 proposals. A 2.4GHz
Intel Core i5 (quad core) MacBook Pro with 8GB of RAM computed all the consequences in
10 seconds, on average (computed over 10 consecutive computations, after allowing Eclipse’s
incremental compiler to optimize). This suggests Quick Fix Scout can scale well to large projects.
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Finally, since each proposal is analyzed separately, the analysis can be parallelized, though we
have not yet implemented that functionality.

4.2.3 Current implementation limitations

There are at least four ways to invoke Quick Fix in Eclipse: (1) by pressing the keyboard shortcut,
(2) by selecting Quick Fix through the context menu, (3) by clicking on the icon on the left of
the screen, and (4) by hovering the mouse over the compilation error. Internally, the first three
methods create a Quick Fix dialog and the last method creates a Hover Dialog. The Hover Dialog is
handled by org.eclipse.jdt.ui plug-in and the Eclipse installation does not permit us to modify
this plug-in as we modified org.eclipse.jface.text. Though we have an implementation that
works in debug mode for the Hover Dialog, our installation fails when it includes a modified
jdt.ui. A future version of Eclipse will include a public API for reordering content assist type
recommendations (e.g., auto-complete and Quick Fix),3 which would simplify our implementation
and might remove this limitation.

For each proposal, the Eclipse API provides an undo change that rolls back the associated
proposal application. After analyzing each proposal, Quick Fix Scout uses this mechanism to return
the copy project to its initial state. The proposals “Change compilation unit to ‘typeName’ ” and
“Move ‘typeName’ to ‘packageName’ ” have a defect in their implementation: the corresponding
undos do not restore the project to its original state.4 We have reported both bugs to Eclipse
and they have been reproduced by the developers, but they have not yet been resolved. Quick
Fix Scout must either skip analyzing these two proposals or re-copy the copy project after their
analysis. Since re-copying can take considerable time for large projects, for performance reasons,
the current implementation skips the analysis of these proposals and produces no consequence
information for them, leaving the appropriate lines in the Quick Fix dialog unaugmented.

Quick Fix Scout uses an internal Eclipse API to apply proposals to the copy project. By default,
this API acts as a no-op for the proposals that require user interaction. Therefore, currently, Quick
Fix Scout does not compute the consequences of these proposals and leaves the appropriate lines
in the Quick Fix dialog unaugmented. However, to our best knowledge, there are only four such
proposals: Create class, interface, annotation, and enum ‘typeName’. These proposals do not
modify existing code, but instead create new code. Therefore, it is relatively simple for developers

3http://blog.deepakazad.com/2012/03/jdt-3842-m6-new-and-noteworthy.html

4 https://bugs.eclipse.org/bugs/show_bug.cgi?id=338983 and
https://bugs.eclipse.org/bugs/show_bug.cgi?id=339181

http://blog.deepakazad.com/2012/03/jdt-3842-m6-new-and-noteworthy.html
https://bugs.eclipse.org/bugs/show_bug.cgi?id=338983
https://bugs.eclipse.org/bugs/show_bug.cgi?id=339181
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to mentally predict their consequences.

4.2.4 Generalizing beyond Quick Fix

The ideas we demonstrated on Quick Fix Scout within Eclipse also apply to engines that produce
other types of recommendation, such as refactorings and automatic code completions, and to other
IDEs, such as NetBeans, IntelliJ, and Visual Studio.

Any recommendation may become obsolete when the code changes. Thus, most of the opti-
mizations and heuristics in Section 4.2.2 apply to other recommendations. For example, automatic
code completions that are closest to the current cursor position can be prioritized and computed
first.

Finally, Quick Fix Scout is an instantiation of speculative analysis: the future states are gen-
erated via Quick Fix proposals, and the consequences are represented by the number of remain-
ing compilation errors. By generating future states and representing consequences in other ways,
speculative analysis can generalize to other consequences and recommendation engines. For ex-
ample, refactoring suggestions can generate future states, and failing tests could represent the con-
sequences.

4.3 Global Best Quick Fixes

Quick Fix Scout helps developers to quickly locate the best local proposals — the proposals that
resolve the most compilation errors — by sorting them to the top in the Quick Fix dialog. However,
sometimes, Eclipse offers the best proposal to fix an error at a different location than the error itself
(recall Section 4.1). Quick Fix Scout’s speculative analysis handles such situations because the
analysis is global and applies to all compilation errors and proposals in the project, thus computing
the information necessary to offer the global best proposal at all the relevant locations [108]. Fig-
ure 4.5 (the Quick Fix Scout equivalent of the right screenshot of Figure 4.2) shows a global best
proposal at the top of the dialog. That proposal is suggested by Eclipse at a different compilation
error location, and is not displayed by the original Quick Fix.

For global best proposals, Quick Fix Scout adds the following context information:

1. The location of the error where Eclipse offers the proposal
(Motivation.java:5:17 in Figure 4.5).

2. The remote context that will be modified (‘sTRING’ is added to the original message Change
to ‘String’ in Figure 4.5).
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Figure 4.5: Quick Fix Scout computes the global best proposal
for each compilation error and adds it to the Quick Fix dia-
log for that error. The addition of the associated error loca-
tion (Motivation.java:5:17) and the associated error context
(‘sTRING’) distinguish global best proposals from normal pro-
posals. If the global best proposal is already one of the local
proposals, Quick Fix Scout makes no additions.

While this context information is
not necessary for local proposals, it
is useful when the proposal is dis-
played at a different location than
the error to which it directly applies.
For example, a developer may in-
terpret Change to ‘String’ incor-
rectly, without knowing what token,
and on what line, will be changed to
‘String’.

As a consequence of the above
process, global best proposals are
only shown if they resolve the local
error, among other errors. While it is
possible to augment the dialogs of all
errors with the proposal that resolves
the most errors in the project overall,
we believe that showing a fix for an
unrelated error might confuse devel-
opers. However, if invoked on a loca-
tion without a warning or a compilation error, Quick Fix Scout does show the proposal that resolves
the most errors (Figure 4.6).

Figure 4.6: If invoked on a location without a warn-
ing or a compilation error, Quick Fix Scout shows the
proposals that resolve the most errors whereas the de-
fault implementation would only inform the user that
there are no available proposals for that location.

One of the controlled experiment (Sec-
tion 4.4.2) participants articulated the useful-
ness of global best proposals:

“[Global best proposals] were
great, because honestly the source
of error is often not at the [location
where I invoke Quick Fix].”

4.4 Evaluation

Our evaluation was based on two activities. First, over a roughly one-year period, we distributed
a version of Quick Fix Scout to a collection of 13 friendly users (including the project team) and
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gathered information about their Quick Fix and Quick Fix Scout behavior in their normal workflow
(Section 4.4.1). Second, we ran a controlled experiment with a within-participants mixed design
across 20 participants, asking them to resolve various compilation errors on code they had not
previously seen (Section 4.4.2).

The friendly users selected, at their discretion, to use either Quick Fix or Quick Fix Scout
during each logged session. The design of the controlled experiment determined the situations in
which participants used Quick Fix and Quick Fix Scout.

For both activities, we acquired data with an instrumented version of the tool. The tool logs:

• whether Quick Fix or Quick Fix Scout is is running,
• the proposals offered by Quick Fix or Quick Fix Scout,
• whether the user selected a Quick Fix proposal or canceled the invocation,
• which proposal the user selected, if any, and
• how long it took the user to either make a selection or cancel the invocation.

The tool also tracks information that lets us detect some situations in which a user applies a pro-
posal but soon after undoes that proposal.

4.4.1 Case study: friendly users

The goal of our informal case study was to understand how Quick Fix is used “in the wild” by
developers. We wished to investigate the following questions:

• Does the ordering of the displayed proposals affect which proposal is selected?
• Does the number of proposals displayed affect which proposal is selected?
• Does the kind of proposal displayed affect which proposal is selected?

Case study design

Over approximately one year, 13 developers — including the project team — ran our tool and
allowed us to view its logs. For each Eclipse session, each participant was free to use either the
standard Quick Fix or our Quick Fix Scout; all sessions were logged.

Case study results

Figure 4.7 shows that users selected the first (top) proposal 70% of the time, one of the top two
proposals 90% of the time, and one of the top three proposals 93% of the time. For Quick Fix Scout
sessions, the percentages are slightly higher, at 78%, 93%, and 95%. Given the small difference,
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Standard Quick Fix Quick Fix Scout
User # completed QF selection rate # completed QF selection rate
ID sessions 1st 2nd 3rd top 3 sessions 1st 2nd 3rd top 3
1 4 100% 0% 0% 100% 1 100% 0% 0% 100%
2 0 — 1 100% 0% 0% 100%
3? 45 64% 16% 13% 93% 362 81% 15% 2% 98%
4 167 78% 20% 1% 99% 0 —
5 17 47% 24% 0% 71% 0 —
6? 25 40% 24% 8% 72% 22 55% 27% 0% 82%
7? 82 70% 22% 2% 94% 28 68% 18% 0% 86%
8 9 67% 22% 11% 71% 0 —
9 7 71% 0% 0% 71% 10 60% 10% 10% 80%
10 6 33% 17% 33% 83% 0 —
11 0 — 0 —
12 6 17% 0% 17% 34% 0 —
13 0 — 2 50% 0% 0% 50%
All 368 69% 20% 4% 93% 426 78% 15% 2% 95%

Figure 4.7: Case study information. A ? in the User ID indicates the participant is a collaborator for Quick
Fix Scout. Completed sessions are the number of times the user invoked Quick Fix and selected a proposal.
For each of the first three proposals in the Quick Fix menu, we report how often that proposal was selected.
For example, user 9 never selected the second or third offered proposal from a standard Quick Fix menu, but
did so when using Quick Fix Scout.

and that three of the participants are from the project team, this data does not confirm a hypothesis
that Quick Fix Scout is different from Quick Fix in this dimension.

For the completed sessions, Quick Fix offered as many as 72 (mean=5.7, median=2) proposals.
For the canceled sessions, Quick Fix offered as many as 80 (mean=6.4, median=4) proposals. In
contrast, for the completed sessions, Quick Fix Scout offered as many as 38 (mean=4.2, median=2)
proposals. For the canceled sessions, Quick Fix Scout offered as many as 27 (mean=5.1, median=3)
proposals. These data may suggest that when a user does not find an expected or a useful proposal
easily, the invocation is more likely to be canceled. To investigate this further, we looked for a
correlation between the number of proposals offered in the dialog and the session completion rate.
We found no such correlation, further suggesting that as long as the correct proposal is located
near the top of the list, the number of proposals shown might not have an effect on developers’
decisions.

Eclipse documentation categorizes the Quick Fixes (see the column headings in Figure 4.8).5

5http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-
java-editor-quickfix.htm

http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-java-editor-quickfix.htm
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-java-editor-quickfix.htm
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User Exception Fields & Package Build Path
ID Types Handling Methods Constructors Variables Other Unknown Declaration Imports Problems
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 26% 22% 29% 11% 9% 1% 3% 0% 0% 0%
4 2% 65% 11% 10% 1% 5% 2% 0% 4% 0%
5 94% 0% 0% 0% 6% 0% 0% 0% 0% 0%
6 51% 19% 17% 0% 2% 0% 6% 0% 4% 0%
7 49% 0% 13% 9% 14% 7% 3% 5% 0% 1%
8 44% 0% 0% 11% 33% 11% 0% 0% 0% 0%
9 59% 18% 6% 6% 12% 0% 0% 0% 0% 0%
10 67% 0% 0% 0% 33% 0% 0% 0% 0% 0%
11 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
12 0% 0% 83% 0% 17% 0% 0% 0% 0% 0%
13 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
All 30% 27% 21% 10% 8% 3% 3% 3% 1% 1%

Figure 4.8: Proposal types and their selection ratios during the case study. The proposals whose type was
unclear are listed as “Unknown”.

Five out of the nine proposal types represent 92% of all selected proposal types.

Figure 4.9 presents the most-frequently selected proposals and their selection ratios. Except
for one user, these six proposals constitute about 80% of the selected proposals. Note the simi-
larity in selection ratio between the proposals “Import . . . ”, “Add Throws Declaration”, and “Add
Unimplemented Methods” and their types “Types”, “Exception Handling”, and “Constructor” re-
spectively. The “Change to . . . ” proposal falls into “Methods” and “Fields & Variable”, depending
on its recipient.

Though there is some variation between participants, the results suggest that all proposals do

not have the same importance: there are a few proposals that are favored by the developers. This
observation can be explained by the nature of these proposals. For example, the “Import . . . ”
proposal is offered whenever the developer declares an unresolvable type. If the developer makes
this mistake intentionally, most of the time, she either wants to import that type or create a new type
with that name. Therefore, there is a high probability that one of these proposal will be selected.
“Add throws declaration” and “Surround with Try/Catch” are two proposals that are always offered
for exception-handling-related compilation errors. When there is an exception-handling error, it is
very likely that the developer will either propagate that exception or handle it immediately, which
suggests that one of these proposals will be selected.

The imbalance in proposal selection rate can be used to improve Quick Fix by prioritizing
proposals with respect to the user’s history. Bruch et al. [18] have already done this for auto-
complete.
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User Add Throws Create Add Unimplemented Surround with
ID Import . . . Declaration Method . . . Change to . . . Methods Try/Catch Total
1 100% 0% 0% 0% 0% 0% 100%
2 100% 0% 0% 0% 0% 0% 100%
3 24% 21% 21% 10% 7% 0% 83%
4 2% 47% 11% 1% 8% 14% 83%
5 76% 0% 0% 6% 0% 0% 82%
6 34% 11% 2% 26% 0% 6% 79%
7 37% 0% 11% 7% 9% 0% 64%
8 44% 0% 0% 33% 11% 0% 88%
9 53% 18% 0% 24% 6% 0% 100%
10 50% 0% 0% 50% 0% 0% 100%
11 0% 0% 0% 0% 0% 0% 0%
12 0% 0% 0% 83% 0% 0% 83%
13 0% 0% 0% 0% 0% 0% 0%
All 25% 23% 15% 10% 7% 4% 84%

Figure 4.9: Most-frequently selected proposals and their selection ratios for the case study. Proposals that
are selected less than 3% overall (represented by the “All” row) are excluded.

4.4.2 Controlled experiment: graduate students

The goal of our controlled experiment was to determine whether users behave differently when
using Quick Fix and when using Quick Fix Scout.

Each participant performed two sets of tasks — α and β task sets — of 12 tasks each. Each
task presented the participant with a program that contained at least two compilation errors and
required the participant to resolve all the compilation errors. The non-compilable program states
were chosen randomly from the real development snapshots captured during the case studies from
Section 4.4.1. For 6 of the tasks in each task set, we manually seeded each task with either 1 or
2 additional mutation errors, such as changing a field type or a method signature. The mutations
introduced an average of 2.8 extra compilation errors per task.

Our study answers two research questions:

RQ 1: Does the additional information provided by Quick Fix Scout — specifically, the count
of remaining compilation errors, and the coloring and reordering of proposals — allow users to
remove compilation errors more quickly?

RQ 2: Does Quick Fix Scout affect the way users choose and use Quick Fix proposals?

Controlled experiment design

We recruited 20 participants, all graduate students who were familiar with Quick Fix but had never
used Quick Fix Scout.6

6 Approved human subject materials were used; participants were offered a $20 gift card.
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We used a within-participants mixed design. We considered two factors: the tool or treatment
factor (Quick Fix vs. Quick Fix Scout), and the task factor (α vs. β task sets). To reduce the
confounding effects from developer differences and learning effects, we defined four blocks —
the cross-product of the two factors. We used a balanced randomized block protocol, randomly
selecting which participants perform which block with a guarantee that each block is performed
an equal number of times. (We rejected a full within-participants factorial design because of the
learning effects we would anticipate if a participant performed the same set of tasks twice using
Quick Fix and then Quick Fix Scout or vice versa.)

Each participant received a brief tutorial about Quick Fix Scout, performed the two blocks
(task sets), and took a concluding survey comparing Quick Fix Scout and Quick Fix around the
two blocks. The two blocks differed in both the tool/treatment factor (from Quick Fix to Quick Fix
Scout, or vice versa) and also the task factor (from the α task set to the β task set, or vice versa).

To answer RQ 1, we measured the time it took participants to complete tasks. In addition to the
time per task group (α and β), we calculated per-task time by using the screen casts. The beginning
of a task is defined to be the time when the participant opens the related project for the first time
and the end of a task is defined to be the time when the participant resolved all compilation errors
in the task and was satisfied with the implementation.

To answer RQ 2, we measured whether the user selected a proposal after invoking the Quick
Fix menu or canceled the menu, how long it took the user to make that decision, which proposal
the user selected, and whether the user undid a selected proposal.

Controlled experiment results treatment 1st 2nd all
type treatment treatment treatments

α QF 27m 19m 23m
QFS 17m 15m 16m

β QF 31m 22m 27m
QFS 36m 21m 29m

QF 29m 20m 25m
QFS 26m 18m 22m

Figure 4.10: Mean time to remove compilation
errors, in minutes.

We used R to perform a 4-way blocked MANOVA
test utilizing all independent and dependent vari-
ables. This minimizes the risk of a type 1 statistical
error. All independent variables (user, Quick Fix
vs. Quick Fix Scout, task, and order of task) had
statistically significant effects, so we examined the
analysis-of-variance results of the MANOVA test.

RQ 1 Participants completed tasks 10% faster, on average, when using Quick Fix Scout than
Quick Fix (Figure 4.10). However, this result was not statistically significant (p=.11).
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Figure 4.11: Median, minimum, and maximum time spent to complete each task by participants in seconds
with and without Quick Fix Scout. The first 12 tasks make up the α set and the last 12 tasks make up the β

set. The tasks with seeded errors are followed by an asterisk. Outliers are represented as small circles.

All the other independent variables did have statistically significant effects on task completion
time: user (p=5×10−7), task (p=2×10−16), and order (p=3×10−6).

Even the task group had an effect (p=3×10−5): tasks in the β group were harder, and in fact
five participants could not complete all tasks in β. We had not anticipated any difference between
the task groups. Future work should investigate how the β tasks differ from the α tasks and why
Quick Fix Scout caused a slight (but not statistically significant) slowdown on the β tasks. Per-task
descriptive statistics appear in Figure 4.11.

There is a learning bias (p=4×10−8): the participants completed a task set 22% faster if it
was their second task set. Possible explanations for this bias include participants getting used to
resolving compilation errors and participants becoming familiar with the code (since multiple tasks
were drawn from the same development projects).

RQ 2 Figure 4.12 summarizes the data we collected regarding user behavior with respect to
Quick Fix.
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# invocations undone +invs. avg. time 1st prop. 2nd prop. 3rd prop. BP GBP
treatment (invs.) invs. rate rate +invs. -invs. rate rate rate rate rate

α
QF 554 17% 58% 3.0s 6.8s 79% 18% 0% 76%

QFS 449 10% 68% 4.6s 8.8s 79% 16% 0% 90% 79%

β
QF 572 13% 56% 4.3s 7.9s 73% 20% 2% 71%

QFS 631 17% 55% 4.4s 6.8s 71% 22% 2% 85% 67%
QF 1116 15% 57% 3.7s 7.4s 76% 19% 1% 73%

QFS 1080 14% 60% 4.5s 7.4s 75% 19% 1% 87% 75%

Figure 4.12: Quick Fix and Quick Fix Scout invocation duration and proposal selection rate results. In-
vocations that were immediately undone by the participant are excluded. + and - invocations are ones for
which the participant selected and did not select a proposal, respectively. For each treatment, we report the
rates with which participants chose the 1st, 2nd, and 3rd proposal, as well as the best (BP) and global best
proposals (GBP). Best proposals are defined as the proposals that resolve the highest number of compilation
errors for a given Quick Fix invocation.

Question Both Quick Fix Scout Quick Fix Neither

Quick Fix (Scout) is helpful when resolving compilation errors. 19 1 0 0
There was no performance issues before Quick Fix dialog is updated. 10 1 2 7
For some tasks, I undid a proposal when using Quick Fix (Scout). 12 1 7 0
I manually resolved errors more often with Quick Fix (Scout). 2 0 10 8

Figure 4.13: The four-question survey, and a summary of the participants’ responses, administered at the
end of each participant’s experiment session.

Use of Quick Fix Scout improved the best proposal selection rate by 14% (p=10−8). This
increase and the frequent (75%) usage of global best proposals suggest that the participants were
resolving more compilation errors per Quick Fix invocation with Quick Fix Scout. Though the
difference between the total number of Quick Fix invocations is low (36) between treatments, we
believe that the Quick Fix Scout increased usefulness of completed Quick Fix invocations, which
helped the participants to save time overall. One participant noted:

“With [Quick Fix Scout] I had a much better idea of what the error was. . . I found
[Quick Fix] to be more vague. . . ”

Use of Quick Fix Scout increased by .8 seconds the time spent selecting a proposal (p=.004).
Possible explanations include that (1) the Quick Fix Scout dialog contains extra information that
the participants took extra time to process, and (2) Quick Fix Scout may take time to compute
causing the participants to wait for the information to appear. Explanation (1) also explains the
overall productivity improvement. If the participant gets enough information from the dialog, she
could resolve the error without having to investigate the related code. Supporting this hypothesis,
half of the participants agreed that they needed to type more manually — instead of using Quick
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Fix proposals — to resolve compilation errors when not using Quick Fix Scout (Figure 4.13).
Use of Quick Fix Scout had no other statistically significant effects. This stability between

treatments strengthens our hypothesis that Quick Fix Scout did not change the way participants
used Quick Fix, rather the extra information provided by Quick Fix Scout increased participants’
understanding of the code and helped them make better decisions. One participant noted:

“It was pretty apparent after using regular Quick Fix second, that [Quick Fix] Scout
sped things up. I got frustrated as I’d have to scan from error to error to fix a problem
rather than just go to the first error I saw. What’s more, I had to spend more time
staring at the [Quick Fix dialog] often to find that there was nothing relevant.”

The data, the analysis, and the qualitative insights from the case study and controlled experi-
ment participants suggest that RQ 2 holds: Quick Fix Scout indeed changes the way in which users
choose and use Quick Fix proposals. We have not teased out which aspects of Quick Fix Scout
have the most influence.

4.4.3 Threats to Validity

We assess our evaluation activities in terms of simple characterizations of internal and external va-
lidity. Internal validity refers to the completeness and the correctness of the data collected through
the experiments. External validity refers to the generalizability of our results to other settings.

One threat to internal validity is that, due to implementation difficulties, we log all Quick Fix
invocations except those invoked through the Hover Dialog. We tried to limit this threat by rejecting
participants who indicated that they consistently use Hover Dialog for invoking Quick Fix and by
mentioning this restriction to accepted participants, recommending that they invoke Quick Fix in a
different way. So the data we logged about invocations is accurate, although it may be incomplete.

Another threat to internal validity is in our computation of which proposal resolves the most
errors. Since the developer might complete a Quick Fix invocation before the speculation compu-
tation completes, and because some proposals are omitted a priori (for example, a “Create class”
proposal), we may not always log the number of compilation errors that would remain for every
Quick Fix proposal. In some cases, these omitted proposals could resolve more compilation errors
than the ones we identify as resolving the most errors. In our case study, only 6% of all completed
Quick Fix invocations are completed before the speculative analysis finishes. Further, in our case
study, none of the users selected instances of the a priori omitted proposals.

In addition to common external validity threats (such as having students rather than professional
developers as participants), a key threat is the decisions we made about which programs to use in
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the controlled experiment:
• Using small programs with multiple compilation errors.
• Using snapshots from the case study participants to populate our tasks in the controlled

experiment.
• Adding seeded errors to half of the snapshots using mutation operators, as well as using a

specific set of mutation operators.
Although there are strong motivations for each of these decisions in our experimental design,

they could still, in principle, lead to inaccurate conclusions about how Quick Fix Scout would work
if it were broadly distributed and used.

4.5 Contributions

Quick Fix Scout is an enhancement of Eclipse’s standard Quick Fix that computes and reports to
the user the number of compilation errors that would remain in the program for each Quick Fix pro-
posal. Our prototype Eclipse plug-in addresses issues ranging from challenges in the user interface
(additional information must be presented in roughly the same space used by the Quick Fix dialog)
to challenges in keeping a background copy of the developer’s code in sync with the dynamically
changing code (Quick Fix Scout uses a copy to speculatively apply the proposals). We evaluated
Quick Fix Scout in two ways: an informal case study of how a set of friendly users use both
Quick Fix and Quick Fix Scout in their own work, and a 20-user, within-subjects, mixed-design
controlled experiment that compares Quick Fix and Quick Fix Scout. Users fixed compilation
errors 10% faster, on average, when using Quick Fix Scout, although this improvement was not
statistically significant.

The use of speculative analysis in software development is promising but full of technical chal-
lenges. Not having access to Codebase Analysis (Chapter 3), the design and the implementation
of Quick Fix Scout was over-complicated due to creating and maintaining the copy codebases, and
handling concurrent and conflicting developer edits. The final prototype suffers a bug that makes
the copy codebases go out-of-sync for an unknown reason, occasionally. We estimate7 the wasted
effort due to these non-essential difficulties as 2,000 (15%) lines of unnecessary code. The diffi-
culties we faced while designing and implementing Quick Fix Scout led to the design of Codebase
Replication (Chapter 2) and Codebase Analysis — the core techniques of this dissertation.

7We computed the size of the final codebase and investigated the VCS logs.
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Chapter 5

CODEBASE MANIPULATION:
SIMPLIFYING INFORMATION RETRIEVAL FROM THE HISTORY

Most software development uses version control to enable collaboration and to create a devel-
opment history. The version control history is useful for many tasks, such as localizing changes
that caused regression failures, identifying developers responsible for specific code, and examining
recent changes. However, each of these tasks is best performed at a different granularity of history.
For example, to localize the cause of a regression, an analysis tool needs access to a history of all
compilable revisions. Meanwhile, for manual inspection, the developer may want to see only the
changes relevant to a particular method or class.

Today’s approaches generate inflexible histories, each of which works well for only a sub-
set of software engineering tasks. Manually-managed histories are coarse-grained and can help
a developer overview recent changes; however, manual commits often tangle changes made for
multiple development tasks, such as fixing a defect and refactoring code, which makes the history
too coarse-grained and poorly suited for searching for the cause of a regression failure. By con-
trast, automatically-managed approaches record all developer actions [98, 117, 153] and lead to
fine-grained histories that are well-suited for studying developer behavior [116, 146], but poorly
suited for manual examination.

This chapter presents Codebase Manipulation, a technique for automatically managing multi-

grained views of a development history. With Codebase Manipulation, a single history is flexible
enough to serve many development tasks. Extending the way Codebase Replication (Chapter 2)
detects the developer edits and provides corresponding development snapshots by applying these
edits to the copy codebase, Codebase Manipulation automatically records a fine-grained devel-
opment history. On top of this fine-grained history, Codebase Manipulation applies granularity
transformations to represent the history in multi-grained views. Codebase Manipulation’s granu-
larity transformations improve the effectiveness of manual and automated analyses that rely on the
development history.

Codebase Manipulation’s granularity transformations are built on three primitive operations:

Collapse: Combine several edits into a single edit.

Expand: Split a previously collapsed edit into its parts.
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Swap: Change the order of two edits.

Building on these basic operations, Codebase Manipulation can transform a fine-grained develop-
ment history into histories of many desirable granularities, such as file-level changes, compilable
code, coherent edits, and other custom granularities. Transforming the history into the appropriate
granularity improves its utility for certain software engineering tasks.

The main contributions of this chapter are:

• Identifying the problem: modern development history management’s inflexible granularity

poses an obstacle for history-based information retrieval.
• Identifying the collapse, expand, and swap operations as the primitive building blocks of all

high-level granularity transformations.
• The design of Codebase Manipulation, a technique to produce multi-grained development

history views.
• Bread, an open-source, publicly-available implementation of Codebase Manipulation for the

Eclipse IDE: https://bitbucket.org/kivancmuslu/chronos.
• Untangler, an analysis that enables developers to craft cohesive commits, each representing

a high-level development task. Untangler helps rewrite part of the development history into
cohesive commits by applying multiple levels of granularity transformations. Untangler is
available as open source: https://bitbucket.org/LukeSwart/untangler.
• Bisector, a history bisection algorithm that pinpoints the cause of a regression failure by

using the compilable code granularity history, and an open-source implementation: https:

//bitbucket.org/kivancmuslu/chronos-test-bisection.

Section 5.4 shows that Codebase Manipulation effectively creates the multi-grained views nec-
essary for three different development tasks. Section 5.5 shows that our prototype’s overhead is
negligible.

The rest of this chapter is organized as follows. Section 5.1 formally defines Codebase Ma-
nipulation concepts. Section 5.2 details the Codebase Manipulation technique, and Section 5.3
describes our prototype. Section 5.4 evaluates Codebase Manipulation’s expressiveness, and Sec-
tion 5.5 evaluates performance. Finally Section 5.6 summarizes our contributions.

5.1 Definitions

Our goal is to simplify development history information retrieval by automatically recording a sin-
gle, fine-grained version control history and by providing automated granularity transformations
to make the history available at multiple granularities. To aid in understanding Codebase Manipu-

https://bitbucket.org/kivancmuslu/chronos
https://bitbucket.org/LukeSwart/untangler
https://bitbucket.org/kivancmuslu/chronos-test-bisection
https://bitbucket.org/kivancmuslu/chronos-test-bisection
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lation’s high-level granularity transformations, we first explain how Codebase Manipulation repre-
sents the development history and how Codebase Manipulation’s primitives operate on that history.

This section defines the representation and primitives, and Section 5.2 details the high-level
granularity transformation algorithms. For brevity, the definitions ignore file creation and deletion;
they can be extended to handle these actions. The algorithms assume the code is stored in an array,
indexed by filepath and an in-file offset, so ‘s[filepath]’ is a character array of the contents of the
file filepath, and ‘s[filepath][4]’ is the 5th character of the file filepath. Appending is represented
by the + operator.

Definition 7 (Snapshot). A snapshot s is a single developer’s view of a program at a point in time,
including the current contents of unsaved editor buffers. Unsaved editor buffers have priority: if
a file on disk differs from the editor buffer for that file, the snapshot contains the contents of the
editor buffer.

An edit can either be atomic or compound. An atomic edit encodes how one chuck of text
in a file can be replaced with another chuck; either the original or the final chunk of text may be
empty. A compound edit is a sequence of edits, each of which is either atomic or compound. A
development history is an edit that can be applied to the empty snapshot, /0. And two development
histories views of each other if when applied to /0, they produce the same snapshot.

Definition 8 (Edit). An edit may be atomic or compound.

(Atomic edit). Let S be the set of all snapshots. An atomic edit is a 4-tuple r =
〈
filepath , offset ,

length , text
〉
. We treat r as a function: r : S→ S. r(s) is the same as s except that in r(s), the length

characters in s in the file filepath starting at position offset are replaced by text.1

(Compound edit). Let S be the set of all snapshots. For all n≥ 0, a compound edit is a sequence of
edits e= 〈e1,e2, . . . ,en,〉. We treat e as a function e : S→ S such that e(s)= en(en−1(. . .(e2(e1(s))))).

For example, the atomic edit e1 =
〈
foo.txt , 0 , 0 , “public”

〉
adds the word “public” at the

beginning of foo.txt. After that, the atomic edit e2 =
〈
foo.txt , 1 , 5 , “rivate”

〉
replaces “ublic”

with “rivate”, constructing the word “private”; and after that, the atomic edit e3 =
〈
foo.txt , 0 , 7 ,

“”
〉

deletes the word “private”. An example compound edit is 〈e1,〈e2,e3〉〉.

1Other definitions for the atomic edit are possible. For example, instead of using character offsets to indicate where
to change the text, an atomic edit could specify the surrounding text. Using such a definition would change the
examples in this dissertation, but not the concepts it presents.



63

Definition 9 (Applicability). Let S be the set of all snapshots. An atomic edit r =
〈
filepath , offset ,

length , text
〉

is applicable to a snapshot s ∈ S if the file filepath has at least length+offset charac-
ters. A compound edit e = 〈e1,e2, . . . ,en〉 is applicable to a snapshot s ∈ S if e1,e2, . . . ,en can be
applied in sequence to s. More formally, e is applicable to s iff e1 is applicable to s, e2 is applicable
to e1(s), . . . , and en is applicable to en−1(en−2(. . .(e2(e1(s))))).

If an edit e is not applicable to a snapshot s, e(s) is undefined.

Definition 10 (Development history). A development history is a compound edit that is applicable
to the empty snapshot, /0.

Definition 11 (Development history view). Let h,h′ be two development histories. Then we call
h′ a view of h (and h a view of h′) iff h( /0) = h′( /0).

There are three history manipulation primitives: collapse, expand, and swap. Collapse replaces
a sequence of edits by a compound edit that consists of that sequence. Expand is the reverse of
collapse; it replaces a compound edit by the sequence of its component parts. Swap swaps the lo-
cation of two edits. These three primitives are sufficient to express all of Codebase Manipulation’s
high-level granularity transformations.

Definition 12 (Collapse). For all compound edits e=
〈
. . . , ei−1 , ei , . . . , e j, e j+1 , . . .

〉
, collapse(e,

i−1, j−1) returns
〈
. . . , ei−1 , 〈ei , . . . , e j〉 , e j+1 , . . .

〉
.

For example, collapse(
〈〈

foo.txt , 0 , 0 , “public”
〉
,
〈
foo.txt , 1 , 5 , “rivate”

〉
,
〈
foo.txt , 0 , 7 ,

“”
〉〉
,0,1) =

〈〈〈
foo.txt , 0 , 0 , “public”

〉
,
〈
foo.txt , 1 , 5 , “rivate”

〉〉
,
〈
foo.txt , 0 , 7 , “”

〉〉
.

Definition 13 (Expand). For all compound edits e =
〈
. . . , ei−1 , 〈ei , . . .e j〉 , e j+1 , . . .

〉
, expand(e,

i−1) returns
〈
. . . , ei−1 , ei , . . . , e j , e j+1 , . . .

〉
.

Definition 14 (Swap). For all development histories h = 〈. . . ,ei, . . . ,e j, . . .〉, swap(h, i− 1, j− 1)
returns 〈. . . ,e′j, . . . ,e′i, . . . ,〉 if the resulting sequence of edits is applicable to an empty snapshot /0;
otherwise, it returns h unmodified. When the edit that comes later in the history (e j) depends on an
edit between the reordered edits (ei, . . . ,e j), the edits between the reordered edits (e′i, . . . ,e

′
j) might

need to be modified to ensure that the resulting history reaches the same snapshot after applying
the edit that comes earlier in the history (e′i). Algorithm 1 details swap. Our algorithm uses the
operational transform [142] to compute how two adjacent edits should be swapped.
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Algorithm 1 Swaps the locations of two edits in the input history. Returns the resulting history if
successful.

1: procedure SWAP(h : history, i1 : int, i2 : int)
2: high : int←MAX(i1, i2); low : int←MIN(i1, i2)
3: return MOVE(MOVE(h,high, low), low+1,high)
4: end procedure

Moves the edit at position from to position to. Returns the resulting history if successful.
5: procedure MOVE(h : history, from : int, to : int)
6: h ′ : history← h . Copy history.
7: if from = to then return h ′

8: end if
9: low : int← MIN(from, to); high : int← MAX(from, to)

10: for i : int← low, high−1 do
11: if from > to then . Edit needs to move backwards.
12: index : int← high+ low− i
13: else . Edit needs to move forwards.
14: index : int← i
15: end if
16: h ′← SWAPADJACENT(h ′, index)
17: end for
18: if ISHISTORY(h ′) then return h ′

19: else return h
20: end if
21: end procedure

Swaps h[index] and h[index+1], transforming as necessary.
22: procedure SWAPADJACENT(h : history, index : int)
23: . e1 (resp. e2) is the modified version of h[index+1]

(resp. h[index]) defined by the operational transform.
24: 〈e1,e2〉 ← OT(h[index],h[index+1])
25: return h[0, index−2]+ [e1,e2]+h[index+1, len(h)−1]
26: end procedure

Definition 15 (Granularity transformation). Let H be the set of all development histories. A granu-
larity transformation is a function g : H→H that takes a development history and produces another
development history by applying a series of collapse, expand, and swap operations. In other words,
g is a sequence of history manipulation primitives.

For simplicity of exposition, this dissertation gives algorithms for development histories with
a single linear branch of development. Our work generalizes to multiple developers working con-
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currently and to using branches.

5.2 Codebase Manipulation: Multi-Grained Views of a History

Different development tasks require accessing the development history at different granularities.
Finding the cause of a regression failure is best on a history of compilable snapshots. Studying
fine-grained change patterns [116] or backtracking [154] requires the finest possible granularity.
Understanding how a defect was fixed requires seeing two snapshots: one before the defect repair
began and one after the repair completed. Manually examining the history may require the history
as a developer created it.

In addition to different granularities, the above tasks sometimes require the development history
to be restructured. For example, understanding a defect fix may require reordering the history to
move unrelated changes performed during the fix, so the developer can ignore them.

Current approaches to maintaining development histories are inflexible. Manually-recorded
version control histories are coarse-grained, while automatically-recorded histories that record
all developer actions are extremely fine-grained but do not offer tools to change the granular-
ity [98, 117, 153]. Codebase Manipulation mitigates the inflexibility of current development his-
tories by (1) automatically recording a fine-grained development history and (2) providing the
developer with tools to manipulate the granularity of the history. Using the algorithms described
in this section, a developer who wishes to find the cause of a regression failure can convert an
automatically-recorded history into one of only compilable edits and use history bisection (see
Section 5.4.2) on that history. Then, to manually inspect the evolution of a class, the developer can
convert the history into one that groups together changes based on the file it affected. Finally, to
better understand the development workflow, the developer can group all contiguous edits together.

Some development tasks require the developer to view the history at multiple granularities.
Codebase Manipulation supports these tasks by allowing the developer to repeatedly manipulate
the granularity of the history, ensuring that all history manipulations are reversible.

Codebase Manipulation expresses two fundamental granularity transformations, GROUPCON-
SECUTIVE and GROUP, using the three history manipulation primitives defined in Section 3.1.

If the history does not require reordering, the developer can use GROUPCONSECUTIVE (Al-
gorithm 2) to collapse consecutive edits. The developer specifies which consecutive edits should
be collapsed by implementing a DECIDER routine, which returns one of three values: new indi-
cates that the current edit should start a new group; current indicates that the current edit should
be combined with the previous one; expand indicates that the current edit belongs to multiple
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Algorithm 2 Returns a view of the input history where consecutive edits (as determined by DE-
CIDER) are collapsed.

. DECIDER: (snapshot,edit)→{current,new,expand}
1: procedure GROUPCONSECUTIVE(h : history,DECIDER)
2: counter← 1
3: procedure ARRANGER(s,e)
4: decision← DECIDER(s,e)
5: if decision = expand then . multi-group edit.
6: return 〈“arbitrary”,“non-singleton”,“set”〉
7: else if decision = new then . Create a new group.
8: counter← counter+1
9: end if

10: return 〈“Group”+ counter〉
11: end procedure
12: return GROUP(h,ARRANGER)
13: end procedure

groups and should be expanded. GROUPCONSECUTIVE processes the input history sequentially
and passes each edit and the corresponding snapshot to the DECIDER.

If the history requires reordering, the developer can use the more generic GROUP (Algorithm 3).
The developer implements the logic for ARRANGER, which returns the set of group names that an
edit belongs to. If the ARRANGER returns multiple group names, indicating that the edit belongs to
multiple groups, GROUP attempts to expand the current edit (lines 7–12). If GROUP successfully
processes a history, edits belonging to the same group are collapsed, each into its own compound
edit.

GROUP and GROUPCONSECUTIVE are powerful and enable expressing interesting history
transformations, including producing the following histories:

Compilable code. A compilable code history consists only of edits that produce compiling
snapshots. This history view is useful for analyses that only apply to compilable code, e.g., history
bisection of test failures (Section 5.4.2). GROUPCOMPILABLE (Algorithm 4) groups consecutive
edits of a history into a compilable code history.

File-level change. A file-level change history groups together all changes to each file, and
separates changes to different files. This history view is useful for manual inspection, and many
version control systems provide diff commands that create a view similar to this history. GROUP-
FILES (Algorithm 5) rewrites a history into a file-level change history.

Coherent-edit change. A coherent-edit change history groups together consecutive changes
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Algorithm 3 Returns a view of the input history that brings together edits for which ARRANGER

returns the same value.
1: procedure GROUP(h : history,ARRANGER : (snapshot,edit)→ Set(string))
2: intervals : {string→ 〈int, int〉} ← Empty map. . From group name to first and last edits in group.
3: h ′ : history← h; snapshot : snapshot← /0; i : int← 0 . i : Index up to which h ′ has been processed.
4: while i < len(h ′) do
5: edit : edit← h ′[i]; snapshot ′ : snapshot← edit(snapshot)
6: edit_groups : string[ ]← ARRANGER(snapshot ′,edit) . Compute the group edit belongs to.
7: if size(edit_groups)> 1 then . edit belongs to multiple groups, try expanding it.
8: h ′′← EXPAND(h ′, i)
9: if h ′′ = h ′ then Print “History cannot be grouped.”; return h . Expand failed, return h.

10: end if
11: h ′← h ′′; continue
12: end if
13: 〈h ′, intervals〉= MOVETOGROUP(h ′, intervals, i,edit_groups[0])
14: snapshot← snapshot ′; i← i+1
15: end while
16: for all 〈gname, interval〉 ∈ intervals do . Collapse each interval.
17: 〈s,e〉 ← interval; h ′← COLLAPSE(h ′,s,e)
18: end for
19: return h ′

20: end procedure

Moves the edit at i to the end of the given edit group.
21: procedure MOVETOGROUP(h : history, intervals, i : int,gname)
22: interval : 〈int, int〉 ← intervals[gname]
23: if interval = null then intervals[gname]← 〈i, i〉 . Edit creates a new group.
24: else . Move the edit to the end of an existing interval.
25: 〈s,e〉 ← interval; intervals[gname]← 〈s,e+1〉
26: if i 6= e+1 then . Move the edit.
27: h ′←MOVE(h, i,e+1)
28: if h = h ′ then Print “History cannot be grouped.”; return h . Move failed, return h.
29: end if
30: for all 〈gname, interval ′〉 ∈ intervals do . Shift all intervals that are later in the history.
31: 〈s ′,e ′〉 ← interval ′

32: if s ′ ≥ e+1 then intervals[gname]← 〈s ′+1,e ′+1〉 . Shift the interval.
33: end if
34: end for
35: end if
36: end if
37: return 〈h ′, intervals〉
38: end procedure
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Algorithm 4 GroupCompilable: Returns a view of the input history such that the snapshot pro-
duced by each edit compiles.

. COMPILE: snapshot→ bool
1: procedure GROUPCOMPILABLE(h : history,COMPILE)
2: procedure DECIDER(s : snapshot,e : edit)
3: if COMPILE(s) then return new
4: else return current
5: end if
6: end procedure
7: return GROUPCONSECUTIVE(h,DECIDER)
8: end procedure

Algorithm 5 GroupFiles: Returns a view of the input history grouping all of each file’s edits
together.

1: procedure GROUPFILES(h : history)
2: procedure ARRANGER(s : snapshot,e : edit)
3: return EDITTOFILENAMES(e)
4: end procedure
5: return GROUP(h,ARRANGER)
6: end procedure

Recursively searches the input edit and returns the file names of all files that are affected by this edit.
7: procedure EDITTOFILENAMES(e : edit)
8: if e is an atomic edit then

〈
file_path , _ , _ , _

〉
← e; return {file_path}

9: end if
10: result : Set(string)← /0

11: for all edit ∈ e do . e is a compound edit.
12: result← result ∪ EDITTOFILENAMES(edit)
13: end for
14: return result
15: end procedure

that occur together spatially in the source code. GROUPCOHERENT (Algorithm 6) rewrites a his-
tory into a coherent-edit change history by detecting contiguous edits. This history view is useful
for manual inspection and for certain backtracking and workflow analyses.

5.3 Bread: Codebase Manipulation for Eclipse

We have implemented Bread, a Codebase Manipulation prototype for the Eclipse IDE. Bread au-
tomatically records a fine-grained development history and enables the developer to access multi-
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Algorithm 6 GroupCoherent: Returns a view of the input history grouping all contiguous consec-
utive edits together.

1: procedure GROUPCOHERENT(h : history)
2: counter : int← 1
3: regions : {string→ 〈string, int, int〉} ← Empty map. . Maps group name to file region; see line 33
4: procedure ARRANGER(s : snapshot,e : edit)
5: 〈edit_groups,regions ′,counter ′〉 ← PROCESSEDIT(e,regions,counter) . See line 34
6: if len(edit_groups) = 1 then . e belongs to a unique group. Update states.
7: regions← regions ′; counter← counter ′

8: end if
9: return edit_groups

10: end procedure
11: h ′← h . Group h ′ until all intervals are separated.
12: while true do
13: h ′′← GROUP(h ′,ARRANGER)
14: if h ′′ = h ′ then return h . GROUP failed. Return h
15: end if
16: h ′← h ′′

17: if REGIONCOMBINES(regions) then . Reset.
18: counter← 1; regions← Empty map.
19: else return h ′

20: end if
21: end while
22: end procedure

23: Returns true if any two regions in the input map intersect with each other.
24: . region : 〈string, int, int〉
25: procedure REGIONCOMBINES(regions : string→ region)
26: return {∃ 〈_ ,reg1〉,〈_ ,reg2〉 ∈ regions | reg1 6= reg2 ∧ COMBINES(reg1,reg2)}
27: end procedure

28: Returns true if the input intervals intersect with each other.
29: procedure COMBINES(i1 : 〈string, int, int〉, i2 : 〈string, int, int〉)
30: 〈 f1 : string,s1 : int,e1 : int〉 ← i1; 〈 f2 : string,s2 : int,e2 : int〉 ← i2
31: return ( f1 = f2) and ((s1 ≥ s2−1 and s1 ≤ e2−1) or (e1 ≥ s2−1 and e1 ≤ e2−1))
32: end procedure

grained views of that history. Bread removes the burden of manual development history creation,
improves existing historical analyses, and simplifies the implementation of new historical analyses.
Bread satisfies the following requirements:

Complete history: Bread should record every developer action (including ones that the developer
undoes) and the resultant code changes.
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Algorithm 6 (continued) ProcessEdit: computes which groups the input edit e belongs to. Returns
a triple: (1) the group names that e belongs to, (2) the next state of regions, and (3) the next value
of the counter c.
33: . regions : string→〈string, int, int〉maps from group name to file region. A file region 〈file, start index,

end index〉 is a group of contiguous consecutive edits.
34: procedure PROCESSEDIT(e : edit,regions,c : int)
35: result : Set(string)← /0; regions ′← regions . Copy regions.
36: if e is an atomic edit then
37:

〈
file_path , offset , length , text

〉
← e

38: elength← len(text)− length; eend← offset+ elength
39: for all 〈gname,region〉 ∈ regions ′ do
40: 〈fpath,start,end〉 ← region
41: if COMBINES(〈file_path,offset,eend〉,region) then . Edit combines with the region.
42: end ′← end+ elength; result← result ∪ {gname}
43: regions ′[gname]← 〈fpath,start,end ′〉
44: else if file_path = fpath and eend < start then . Move region forward or backward.
45: start ′← start+ elength; end ′← end+ elength
46: regions ′[gname]← 〈fpath,start ′,end ′〉
47: end if
48: end for
49: if len(result) = 0 then . e belongs to a new group.
50: gname← “Group”+ c; c← c+1
51: regions ′[gname]← 〈file_path,offset,eend〉; result← result ∪ {gname}
52: end if
53: return 〈result,regions ′,c〉
54: end if
55: . e is a sequence of edits
56: for all edit ∈ e do
57: 〈edit_gnames,regions ′′,c〉 ← PROCESSEDIT(edit,regions ′,c)
58: result← result ∪ edit_gnames; regions ′← regions ′′

59: if len(result)> 1 then . Edit belongs to multiple groups. No need to continue.
60: return 〈result,regions ′,c〉
61: end if
62: end for
63: return 〈result,regions ′,c〉
64: end procedure

Easy-to-use history: Bread’s multi-grained history views should be easy to use by the developer,
and by automated analysis tools.

Unobtrusive recording: Bread should not interfere with existing development tools. It should
neither slow down the developer’s IDE nor affect manually-managed version control histories.
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5.3.1 Bread design and implementation

Create fine-grained        history

Developer’s 
IDE

Developer actionsIDE Developer edits

Solstice Bread

Fine-grained 
history

S1 S2 S3
… SnS4

Untangler Fine-grained test bisection

History manipulation framework

…
…

File-level        changes
…

Compilable          code

…

Figure 5.1: Bread architecture. Bread (blue) extends Sol-
stice (black) to automatically maintain the fine-grained de-
velopment history. Bread’s history manipulation frame-
work offers multi-grained views of the fine-grained history
by rewriting the history into coarser granularities. The de-
veloper can inspect — manually or through an automated
analysis tool — the view that is the most suitable for the
underlying task.

Bread is an open-source Eclipse plug-in,
publicly available at: https://bitbucket.

org/kivancmuslu/chronos. Bread automati-
cally records the fine-grained history into
a Git repository. Each developer action,
even one that does not alter the source
code, results in a commit, with the log
message storing information on the ac-
tion itself. Bread is built on top of Sol-
stice [111] (Section 3.4), an Eclipse plug-
in for Codebase Replication [105, 106]
(Chapter 2) that facilitates IDE interac-
tions (Figure 5.1). Solstice maintains a
copy of the developer’s code in paral-
lel to the developer’s work, detects all
code changes, and provides Bread with
observer patterns for the changes.

Bread satisfies the complete-history requirement by detecting every developer action within
Eclipse via the Eclipse’s API, and recording all such actions and every textual change to the source
code.

Bread satisfies the easy-to-use requirement by providing a history manipulation framework
to automatically transform the recorded development history into coarser granularities. The con-
verted histories are themselves Git repositories, which can be inspected manually and interface
with automated tools. (Section 5.4 evaluates how well Codebase Manipulation and Bread satisfy
this requirement.)

Bread satisfies the unobtrusive-recording requirement by storing its fine-grained Git repository
in a unique folder on the filesystem. The developer may continue to use any version control system,
including Git, to create a manual history in parallel, and tools can access both the codebase and the
manual history. Git is fast enough that Bread’s overhead is negligible. (Section 5.4 evaluates how
well Bread satisfies this requirement.)

https://bitbucket.org/kivancmuslu/chronos
https://bitbucket.org/kivancmuslu/chronos
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5.3.2 Bread Limitations

Bread is susceptible to Solstice’s design limitations. Solstice detects source code changes through
the IDE API; if the source code is changed outside the IDE, Bread will not record these changes
immediately. Developers rarely edit outside of their preferred IDE, but to mitigate this limitation,
each time the IDE is opened, Bread checks for any changes to the source code that may have
taken place and creates an edit containing these external changes. Bread could have avoided this
limitation by using OS-level, file-system listeners to detect changes to the source code. However,
this approach would prevent Bread from detecting changes that are not written to the file system,
such as unsaved changes in editor buffers. Additionally, Solstice detects some developer actions
initiated via tools as typing actions, and therefore Bread records them as such. For example, Bread
records Eclipse refactorings as a series of text replace operations to the source code. Thus, Bread
is complete in its recording, but inherits Solstice’s limitations in recognizing how some actions are
initiated. Improvements to Solstice would be immediately reflected in Bread.

5.4 Expressiveness Evaluation

We evaluated Bread’s usability in terms of the expressiveness of the histories it can create. We
identified three common development use cases that benefit from Codebase Manipulation’s multi-
grained views. First, developers often perform multiple tasks on a project concurrently, such as
fixing bugs, adding features, refactoring, and improving documentation. While the history reflects
these tasks being performed concurrently, developers may wish to untangle the changes relevant
to each task. This, for example, simplifies later undoing one of the tasks without affecting the
other tasks. Bread’s multi-grain history supports this use case, and we have built Untangler, a tool
that uses Bread to help developers untangle changes (Section 5.4.1). Second, developers often use
program analyses that rely on development histories. The granularity of the history may affect the
analysis, and Bread’s granularity manipulation capabilities support this use case. We have built
fine-grained test bisection, a tool that demonstrates this feature (Section 5.4.2). Third, developers
often manually examine a project’s history to understand the project’s evolution. Bread supports
this use case by enabling the developer to change the history’s granularity to improve evolution
understanding (Section 5.4.3).

5.4.1 Untangling Code Changes

Rewriting development histories to improve usability can be helpful for maintenance tasks. De-
velopers often tangle multiple tasks during development. For example, while fixing a defect, a
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developer may observe a need for a refactoring, a new feature, or improved documentation; the
developer may implement those changes in the middle of the defect fix. This causes the manually-
created version control history to tangle changes relevant to multiple tasks, which later makes it
difficult to understand the changes individually, such as to undo one of them.

Some VCSs provide a staging area and rebase commands to simplify untangling changes at the
time they are created or before they are shared with others. However, these features cannot be used
after the fact and do not address interactions between the changes, e.g., if adding a feature adds a
line of code that fixing a defect removes. Heuristics can help guide untangling large edits but also
fail to capture interactions between the changes [72, 92].

To address this problem, we have built Untangler, a new interactive analysis tool that helps
developers reorganize and rewrite a history into one that brings together changes relevant to par-
ticular development tasks. Untangler can work with fine-grained development histories, such
as the ones automatically recorded by Bread, or with manually-created version control histo-
ries that Untangler decomposes into a fine-grained history. Untangler is open-source: https:

//bitbucket.org/LukeSwart/untangler.

Unlike prior work, Untangler (Algorithm 7) does not rely on heuristics on top of joined diffs of
a set of changes. Instead, it is an interactive history rewriting process that uses a history.

Untangler uses Codebase Manipulation to first rewrite the history into a coherent-edit change
history and then into a file-level change history. Then, Untangler creates an empty target history in
which the untangled edits will be stored. Finally, Untangler interactively allows the developer to
expand and collapse edits. Once a developer is satisfied with a set of edits, committing those edits
adds them to the target history and removes them from the editable view.

Case study: To explore the capabilities of Untangler, a developer (who is the author of this disser-
tation) used Bread to record a history while building a Java graph library via test-driven develop-
ment. The developer also maintained a manual development history, aiming to create a snapshot
whenever a high-level task was complete. The developer started from skeleton code with a Javadoc
specification and 95 failing tests. At the end of the implementation, the manual development his-
tory had 6 snapshots, and the Bread history had 7,132 snapshots.

The library requires directed and undirected edges and graphs. In the manual history, the de-
veloper implemented both directed and undirected edges within the first edit. In the second edit,
the developer realized that these implementations shared significant common code and refactored
the edge implementation into an abstract class with the common functionality. In the third edit, the
developer implemented both graph implementations, and then again, in the fourth edit, refactored

https://bitbucket.org/LukeSwart/untangler
https://bitbucket.org/LukeSwart/untangler
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Algorithm 7 Untangler first computes the coherent-edit and file-level-change views of the fine-
grained history and then allows the developer to expand, collapse, and commit changes to create
the history the developer wants.

1: procedure UNTANGLER(h : history)
2: h_coherent : history← GROUPCOHERENT(h); h_file : history← GROUPFILES(h_coherent)
3: h ′ : history← h_file . Copy file-level-change view.
4: repeat
5: . Visualize edits in h ′. The developer makes a choice (c : {Exit, Expand, Collapse, Commit})

and selects a list of edits associated with this choice. idxes are edit indices, in sorted order.
6: 〈c, idxes〉 ← INTERACT(h ′)
7: if c = Expand then . Expand each of the selected edits.
8: offset : int← 0
9: for all index : int ∈ idxes do

10: shifted_index : int← index+offset; offset← offset+ len(h ′[shifted_index])−1
11: h ′← EXPAND(h ′,shifted_index)
12: end for
13: else if c = Collapse then . Make the edits contiguous in the history.
14: h ′′←MOVEALL(h ′, idxes[1, len(idxes)−1], idxes[0])
15: if h ′ = h ′′ then Display “Cannot collapse selected edits.” . Move failed.
16: else h ′← h ′′; h ′← COLLAPSE(h ′, idxes[0], idxes[0]+ len(idxes)−1)
17: end if
18: else if c = Commit then . Move edits to beginning
19: h ′′←MOVEALL(h ′, idxes,0)
20: if h ′ = h ′′ then Display “Cannot commit selected edits.” . Move failed.
21: else
22: h ′← h ′′; s : snapshot← GETSNAPSHOT(h ′, len(idxes))
23: Sync and commit s. Remove edits at idxes from the view.
24: end if
25: end if
26: until c = Exit
27: end procedure
28: procedure MOVEALL(h : history, idxes : int[],after : int) . Moves edits at idxes after location after.
29: h ′← h . Copy history.
30: for i← 0, len(idxes)−1 do
31: h ′′←MOVE(h ′, idxes[i],after+ i)
32: if h ′ = h ′′ then return h
33: end if
34: h ′← h ′′

35: end for
36: return h ′

37: end procedure
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this duplication to group the common functionality. The fifth edit removed some unnecessary code
left over from the second edit. These five edits represent six high-level software engineering tasks:
implementing (1) the abstract edge class, (2) the undirected edge, (3) the directed edge, (4) the
abstract graph class, (5) the undirected graph representation, and (6) the directed graph representa-
tion. Using today’s state-of-the-art VCSs and research techniques, it is difficult to untangle the six
high-level tasks in the history.

Running Untangler on this history automatically proposed exactly the six high-level software
development tasks because each of them was a coherent edit. In this case, all the developer had
to do was commit each of the edits suggested by Untangler to produce an untangled history. In
other cases, the developer may need to expand and collapse edits, implicitly reordering them when
collapsing and committing. This anecdotal evidence demonstrates that Untangler can successfully
untangle development histories.

5.4.2 Fine-Grained Test Bisection

Automated history analysis can help some development tasks. For example, history bisection
of test failures (also known as test bisection) [61], identifies which edit introduced a regression
failure. It uses binary search and a test case on a VCS repository to find the first snapshot such
that the test fails. (More generally, history bisection can apply to any property of a snapshot,
beyond just test results.) However, the effectiveness of test bisection depends on the quality and
granularity of the history. Given a fine-grained history, test bisection returns a concise description
of the failure-introducing change. However, given a coarse, manually-created history, test bisection
can only identify a large change as responsible for introducing the test failure. Manually-created
development histories are unlikely to be optimal for test bisection. Existing approaches, such as
delta debugging [156, 157] improve and simplify test bisection results but can produce partial
edits that divide atomic developer actions. For example, these approaches may find that while a
refactoring does not break a test, half of that refactoring does, and this may mask another, later
cause of the failure.

To address this problem and to demonstrate another use of Bread, we built Bisector, a fine-
grained test bisection tool that uses the fine-grained development history to pinpoint real devel-
oper actions that cause regression failures. Bisector is available as an open-source tool: https:

//bitbucket.org/kivancmuslu/chronos-test-bisection. Fine-grained test bisection (Algorithm 8)
uses the rich information inside the fine-grained development history to compute the minimal cause
of the regression failure, exactly as it is introduced during development. Fine-grained test bisection

https://bitbucket.org/kivancmuslu/chronos-test-bisection
https://bitbucket.org/kivancmuslu/chronos-test-bisection
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guarantees to identify the most recent cause of the failure by bisecting the more-recent half of the
history first, regardless of the bisection results on the less-recent half and how many times the test
regresses during the fine-grained history. The latest regression failure is probably on code that is
most familiar to the developer. Building Bisector was easy: it took one developer three days and
required only 670 lines of Java.

Algorithm 8 Fine-grained test bisection (FGBISECT) improves test bisection by pinpointing the
cause of a regression failure exactly as it was introduced during development.

1: procedure FGBISECT(h : fine_grained_history, TESTRUNNER: {snapshot→ bool})
2: h ′ : history← GROUPCOMPILABLE(h)
3: return BISECT(h ′,TESTRUNNER,0, len(h ′)−1)
4: end procedure

5: . left : earliest known failure for the latest regression, right : latest known success.
6: procedure BISECT(h : history,TESTRUNNER : {snapshot→ bool}, left : int,right : int)
7: if left = right−1 then . Base case.
8: left_snap : snapshot← GETSNAPSHOT(h, left)
9: left_result : bool← TESTRUNNER(left_snap)

10: right_snap : snapshot← GETSNAPSHOT(h,right)
11: right_result : bool← TESTRUNNER(right_snap)
12: if left_result and not(right_result) then
13: return h[right]
14: end if
15: Print “Cannot bisect the test”
16: return null
17: end if
18: . Recursive case.
19: mid← (right+ left)/2 . Integer division, round down.
20: mid_snap : snapshot← GETSNAPSHOT(h,mid)
21: mid_result : bool← TESTRUNNER(mid_snap)
22: . Bisect the upper part of the history regardless of the current

result to find the latest regression.
23: upper_result : edit← BISECT(h, TESTRUNNER,mid,right)
24: if (mid_result = false) and (upper_result = null) then
25: return BISECT(h,TESTRUNNER, left,mid)
26: end if
27: return mid_result
28: end procedure

We used Bisector on the fine-grained history recorded while developing the Java graph library
from Section 5.4.1. Running test bisection — for each test — on the manual development history
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yielded no results. However, running Bisector on the Bread history yielded a bisectable test. The
test failure happened while the developer was in the middle of implementing the condition of an if

clause. The correct implementation has a negated condition, but the developer first implemented
the condition without the negation, causing a test failure. This example illustrates Bisector’s po-
tential to pinpoint test failures that developers introduce unintentionally.

5.4.3 Understanding Software Evolution

Understanding software evolution is an important and challenging software engineering task [8].
For example, understanding how a class evolves over time can help identify bugs [91]. But today,
the state-of-the-practice of understanding code element evolution is ad-hoc. Developers can use
version control to look at individual snapshots or diffs, use impact analysis to identify potential
consequences of an edit [4], and examine thin program slices to understand what parts of a program
affect an element [141]. However, these approaches focus on individual snapshots or pairs of
snapshots and fail to capture long-term evolution.

To address this challenge, we have designed the CodeEvolve algorithm (Algorithm 9). Using
Codebase Manipulation, CodeEvolve transforms the history into the compilable-code granularity
and then further transforms the history to contain only the edits relevant to the element of interest.2

5.5 Performance Evaluation

To evaluate if Bread is unobtrusive, we empirically measured Bread’s performance. We ran all
experiments on a modern laptop (Intel Core i7-4650U CPU, 8GB ram, SSD hard drive). We focus
on scalability, overhead on developer actions, and recording delay.

Scalability. Since code changes are as frequent as individual keystrokes, Bread must scale to
handle large histories.

Bread stores each code change as a Git changeset. To understand how well Git scales with
development history size, we designed an experiment that creates a random fine-grained develop-
ment history by invoking git commit after each single-character edit. The experiment creates 50
random files of 100–200 lines with each line of 40–80 characters. The experiment measures the
time it takes to execute git commit after each edit. Just like Bread, the experiment calls garbage
collection (git gc) as soon as the number of loose Git objects reaches 300. The garbage collection

2Identification of these edits requires AST differencing (ASTDIFF in Algorithm 9), such as the Diff/TS algo-
rithm [70].



78

Algorithm 9 CodeEvolve: Returns a finest-grain view of the input history such that the snapshot
produced by each edit modifies at least one of the code elements of interest.

1: procedure CODEEVOLVE(h : fine_grained_history, INCLUDENODE : ASTNode→ bool,COMPILER :
snapshot→ AST)

2: prev_ast : AST← empty AST
3: procedure DECIDER(s : snapshot,e : edit)
4: ast : AST← COMPILER(s)
5: . Diff the current and the previous AST.
6: 〈added,modified,removed : ASTNode[]〉 ← ASTDIFF(prev_ast,ast)
7: prev_ast← ast
8: . Return true if the AST diff wrt the previous AST contains a node of interest.
9: affected← added ∪ modified ∪ removed; return {∃ n ∈ affected | INCLUDENODE(n)}

10: end procedure
11: h← GROUPCOMPILABLE(h); h← GROUPCONSECUTIVE(h,DECIDER)
12: . Compute frames (snapshots) of interest.
13: current_ frame : snapshot← /0; frames : snapshot[]← Empty array.
14: for all e : edit ∈ h ′ do
15: current_ frame← e(current_ frame); frames← frames+[current_ frame]
16: end for
17: Visualize frames.
18: end procedure

duration is excluded from the results because Git supports garbage collection in parallel with other
Git operations, and Bread uses idle CPU cycles for garbage collection.

The average time overhead of recording edits was 37% over 367K edits. Even after 350K edits,
Git takes less than 15 ms to record each edit. We conclude that Git scales well with respect to
development workloads. The 37% overhead is a worst case scenario of continuously typing of the
367K characters. Future work can further improve scalability by splitting the history into multiple
internal repositories.

Having found that Git scales reasonably well, we next explored Bread’s overhead on developer
actions.

Developer Action Overhead. As Bread tracks all developer changes at the buffer level, it listens
to each keystroke. To be unobtrusive, the overhead experienced by the developer must be close
to zero so that Bread does not adversely affect the developer. Figure 5.2 shows, for the most
common developer actions, the IDE overhead that Bread introduces when the action is initiated
programmatically. One of the most common developer actions is editing a file with keystrokes.
Figure 5.2 represents such text edits as size 1. IDEs also support complex operations, such as
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Operation Initial File IDE Over- Recording Operation Initial File IDE Over- Recording
Name Size Size (chars) head (ms) Delay (ms) Name Size Size (chars) head (ms) Delay (ms)

Text
Insert

1

0 2.0 4.0

Text
Delete

1

1 0.9 4.4
100 2.1 9.5 101 2.0 7.6

1,000 2.0 10.5 1,001 2.0 7.4
10,000 4.3 9.6 10,001 3.6 8.5

100

0 2.1 9.9

100

1 1.1 7.5
100 1.9 10.1 101 1.9 7.6

1,000 2.0 10.5 1,001 1.9 7.4
10,000 3.6 9.6 10,001 3.6 7.8

Text
Edit

1
100 1.8 10.0 File

Add

1
1,000

1.6 13.2
1,000 2.0 10.1 100 268.0 1,363.0

10,000 3.5 10.8 1,000 5,819.2 46,008.5

100
100 1.8 10.8 File

Remove

1
1,000

1.6 9.3
1,000 1.9 10.6 100 202.3 850.0

10,000 3.6 10.9 1,000 4,138.4 16,801.5
Text Edit Summary < 4.5 < 11.0 File Edit Summary grows linearly with size

Figure 5.2: Bread’s overhead for developer edits. “IDE Overhead” measures the overhead imposed on the
responsiveness of the IDE, and “Recording Delay” measures the delay before the fine-grained development
history is up-to-date. Text operations are means over 20,000 executions. File operations are means over 200
executions.

refactoring, auto-complete, copy-and-paste, etc., which are represented as edits of size 100. The
results show that the overhead is independent of the edit size, and even for large files (10,000
characters), the overhead is no more than 4.5 ms.

Manually adding and removing files in an Eclipse project are represented as 1-, 100-, and
1,000-sized file operations. File operations of size 1 are manual file generation, copy, and removal,
and file operations of size 100 and 1,000 represent copying, removing, or importing a directory or
an entire Eclipse project. The results suggest that the overhead for file operations increases linearly
with operation size, as expected. Removals are faster than additions, and even for large operations,
the overhead never exceeds a few seconds. Since Eclipse already takes several seconds to import a
project with 1,000 files, the results suggest that Bread introduces negligible IDE overhead.

Recording Delay. To keep the automatically-recorded history up-to-date, the delay between when
the developer makes a code change and when Bread records it should be negligible. An excellent
typist types 80 words per minute, which implies a 150-ms delay between consecutive keystrokes.
Software development is slower than transcribing text, so a delay to record code changes of less
than 150 ms should satisfy the unobtrusive recording requirement.

Figure 5.2 shows the delay Bread incurs while recording code changes for the most common
developer operations. Except for importing and deleting large Eclipse projects, recording delay
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is less than 11 ms. Since importing and deleting large Eclipse projects is fairly rare, and these
operations already take several seconds for Eclipse to execute, we conclude that Bread records the
history with negligible delay.

5.6 Contributions

Development histories are necessary for software engineering tasks, but their inflexible granularity
hinders their utility. This chapter introduced multi-grained views that lets the developer access
the history in the most optimal granularity for the current task. The granularity of these views
are not known in advance, which necessitates the underlying technique to create and maintain a
fine-grained development history. Codebase Replication (Chapter 2) trivializes how Codebase Ma-
nipulation records this fine-grained history by detecting all developer edits and applying these edits
to the copy codebase, which provides access to the corresponding development snapshots. On top
of this fine-grained history, Codebase Manipulation applies high-level history transformations to
rewrite the history’s granularity to make it more suitable for specific tasks. We have demonstrated
that Codebase Manipulation is highly expressive by designing three tools that use Codebase Ma-
nipulation to aid untangling concurrent code changes, localize causes of regression failures, and
understanding code evolution. Bread, an implementation of Codebase Manipulation, demonstrates
that our approach is highly efficient and has negligible overhead. We publicly released all our
source code. Overall, these results show promise that Codebase Manipulation can improve in-
formation retrieval tools that use the development history and can make histories more usable for
manual inspection.
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Chapter 6

RELATED WORK

This chapter puts the dissertation in the context of related research by discussing continuous
analyses and continuous analyses frameworks (Section 6.1), speculative analyses (Section 6.2)
fine-grained development history frameworks and tools built on these frameworks (Section 6.3),
and use of replication to achieve different goals (Section 6.4).

6.1 Continuous Analyses

This section places Codebase Analysis in the context of related research. Section 6.1.1 discusses
other approaches to building continuous analysis tools and Section 6.1.2 discusses existing contin-
uous analysis tools and their benefits.

6.1.1 Building Continuous Analysis Tools

As we have described, an ε-continuous analysis exhibits both currency and isolation. Codebase
Analysis simplifies building such analyses. Alternatively, developers can build such tools by using
IDEs’ APIs to listen to source code edits. For example, Eclipse’s IResourceChangeListener [41]
and IDocumentListener [40] APIs broadcast file-level and memory-level changes, respectively.
Eclipse’s Java incremental compiler [46] and reconciler compiler [45] use these APIs; however,
these analyses are written by the IDE developers, and building ε-continuous analyses using these
primitive APIs is prohibitively difficult for third-party developers.

Some specialized development domains make building a limited set of continuous analyses
simple. For example, a spreadsheet can be thought of as an IDE for data-intensive programs that
reruns these programs on every code or data update. VisiProg [71, 87] proposed to extend this
paradigm to general programming languages, but Codebase Analysis is the first implementation
that provides isolation and currency. As another example, live programming [17, 149, 23], which
eases development by executing a fast-running program on a specific input as that program is being
developed, is a special case of continuous analysis.

The rest of this section discusses alternate ways of creating continuous analysis tools and com-
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pares them to Codebase Analysis. None of the existing approaches provides both isolation and
currency, although some provide one or the other.

Methods that Yield Limited Currency but Lack Isolation

IDEs provide higher-level frameworks than the primitive listeners described earlier. For exam-
ple, to simplify implementing build-triggered continuous analyses, Eclipse provides Incremental
Project Builders [42]. This mechanism can be used to execute an analysis on the on-disk version
of the program every time the incremental compiler runs. (Note that when auto-build is enabled
in Eclipse, the code builds every time it is saved to disk, so build-trigger becomes equivalent to
file-change-trigger.) This mechanism enables building analyses that have some currency, although
Codebase Analysis’ memory-change access provides better currency by enabling the analyses to
run on a more recent version of the program than one that has been saved to disk. Further, unlike
Codebase Analysis, this mechanism does not allow for analysis isolation. The analyses run on the
developer’s on-disk copy, meaning that an impure analysis’s changes directly alter the developer’s
code, and a developer’s concurrent changes may affect the analysis.

IDEs also provide frameworks that simplify building a limited set of continuous analyses with
memory-change currency. For example, Eclipse’s Xtext [152] simplifies extending Eclipse to han-
dle new languages. Xtext provides parsing, compilation, auto-complete, quick fix, and refactoring
support, but is limited to building language extensions. Meanwhile Codebase Analysis provides
memory-change currency for arbitrary source or binary code analyses. Similarly to Incremental
Project Builders, and unlike Codebase Analysis, Xtext does not allow for analysis isolation as a
developer’s concurrent changes may affect the analysis. Further, Xtext does not support impure
analyses.

Methods that Yield Limited Isolation but Lack Currency

Integration servers, such as Jenkins [82], can enable certain kinds of continuous analyses. An in-
tegration server maintains an isolated copy of the program under development and automatically
fetches new changes, builds the program, runs static and dynamic analyses, and generates sum-
maries for developers and project managers. However, integration servers lack currency, as they
cannot be memory-change- or file-change-triggered; typically they are triggered periodically or by
events such as a commit. Modern collaboration portals, such as github.com, bitbucket.org, and
googlecode.com, integrate awareness analyses and create interfaces for developers to get feedback
on the state of their programs. This is also a step toward making analyses continuous, as the portals

github.com
bitbucket.org
googlecode.com
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can automate the running of analyses and can analyze multiple developers’ codebases and notify
developers of analysis results. However, this mechanism also lacks currency as the analyses cannot
be triggered by memory changes, file changes, or even most version control operations.

IDEs provide APIs that serialize accesses to the codebase, which can ensure partial isolation.
For example, Eclipse provides a Jobs API [48] that enables third-party developers to schedule jobs
that access the codebase. There is no isolation: these jobs either block each other and the developer
edits, or they occur concurrently on the same codebase. In contrast, Codebase Analysis can run
an analysis on the copy codebase while letting the developer work, achieving true isolation, and
providing native support for impure continuous analyses.

6.1.2 Existing Continuous Analysis Tools

Continuous analysis tools help developers by reducing the notification delay of code changes’ ef-
fects on analysis results. For example, continuous testing [128, 129, 130] executes a program’s
test suite as the program is being developed. In a study, continuous testing made developers three
times as likely to finish programming tasks by a deadline [129] and reduced the time needed to
finish a task by 10–15% [128]. Similarly, continuous data testing greatly reduced data entry er-
rors [110], and continuous compilation made developers twice as likely to finish programming
tasks by a deadline [129]. Some continuous analyses [21, 22, 69, 109] can be speculative [19] by
predicting developers’ likely future actions and executing them in the background to inform devel-
opers’ decision making. Such tools have the potential to further increase the benefits of continuous
analyses.

Figure 6.1 lists previous continuous analysis tools of which we are aware. Although IDEs
provide frameworks and APIs to simplify the creation of continuous analyses, Figure 6.1 shows that
most existing third-party IDE-integrated continuous analysis tools are not ε-continuous, lacking
either in isolation or currency. From the sixteen file-change-triggered and build-triggered tools in
Figure 6.1, we selected the seven with evidence of development or maintenance within the last year
and contacted their developers to ask if they had considered making their analyses run whenever
the in-memory code changes or compiles. We received responses from the developers of four
of the seven tools, GoClipse, InPlace Activator, TSLint, and TypeScript (TSLint and TypeScript
are developed by an overlapping set of developers). All the developers thought making analyses
continuous was a good idea, with one remarking that this would be hard to do, another that he
didn’t have enough time to implement this feature, and the third pointing out that part of the tool
already has this continuous behavior, although not all of the tool’s analyses are continuous. We
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Currency Isolation
Tool Trigger Interruption Staleness
Quick Fix Scout [109] consequences of Eclipse quick fixes Memory-change? Immediately interrupt Immediately remove Full
Eclipse reconciler compiler [45] Memory-change? Immediately interrupt Immediately remove Developer
JKind [83] Eclipse plug-in for JKind language Memory-change Immediately interrupt Immediately remove Developer
eVHDL [54] Eclipse plug-in for VHDL language Memory-change Immediately interrupt Immediately remove Developer
Scribble [135] Eclipse plug-in for Scribble language Memory-change Immediately interrupt Immediately remove Developer
wNesC [150] Eclipse plug-in for NesC language Memory-change Immediately interrupt Immediately remove Developer
OcaIDE [118] Eclipse plug-in for OCaml language Memory-change Immediately interrupt Never remove Developer
WitchDoctor [56] auto-completes manual refactorings Memory-change Never interrupt Immediately remove Developer
NCrunch [115] runs tests and computes coverage Memory-change Unknown† Immediately remove Full
DocMLET [38] Eclipse plug-in for LATEX language Memory-change Unknown† Immediately remove Developer
dLabPro [37] Eclipse plug-in for dLabPro language Memory-change Unknown† Immediately remove Developer
Embedded CAL [52] embeds CAL language into Java Memory-change Unknown† Immediately remove Developer
Eclipse continuous testing [130] Memory-change Unknown† Immediately remove Developer
Sureassert UC [143] runs tests and computes coverage Memory-change Unknown† Immediately remove Developer
Blueprint [17] searches code examples from the Internet Memory-change Unknown† Unknown† Unknown†

Forms/3 [149] evaluates and visualizes the source code Memory-change Unknown† Unknown† Unknown†

Lighthouse [96] summarizes overall development effort File-change Unknown† Immediately remove Developer
WeCode [69] detects collaboration conflicts File-change Unknown† Unknown† Full
Eclipse incremental compiler [46] Other (build) Immediately interrupt Immediately remove Developer
FindBugs [55] defect detector Other (build) Immediately interrupt Immediately remove Developer
Checkstyle [43] detects code style violations Other (build) Never interrupt Immediately remove Developer
Infinitest [78] runs tests Other (build) Never interrupt Never remove Developer
TypeScript [145] Eclipse plug-in for TypeScript language Other (build)� Never interrupt Immediately remove Developer
TSLint [144] lints type script code Other (build) Never interrupt Immediately remove Developer
SConsolidator [134] Eclipse plug-in for SCons build system Other (build) Unknown† Immediately remove Developer
JUnitLoop [85] runs test Other (build) Unknown† Immediately remove Developer
InPlace Activator [79] activates and updates source plug-ins Other (build) Unknown† Immediately remove Developer
GoClipse [66] Eclipse plug-in for Go language Other (build) Unknown† Immediately remove Developer
EclipseFP [51] Eclipse plug-in for Haskell language Other (build) Unknown† Immediately remove Developer
JDE [81] Eclipse plug-in for BlackBerry Java language Other (build) Unknown† Immediately remove Developer
CAL [25] Eclipse plug-in for CAL language Other (build) Unknown† Immediately remove Developer
JSON Schema Validation [84] validates JSON files Other (build) Unknown† Immediately remove Developer
Metrics [47] such as cyclomatic complexity Other (build) Unknown† Unknown† Unknown†

Visual Studio continuous testing [34] Other (build) Unknown† Unknown† Unknown†

CDT [110] detects likely database update errors Other (database) Never interrupt Never remove Developer
Crystal [21] detects collaboration conflicts Periodic (10 m) Never interrupt Never remove Full
APE [3] Eclipse plug-in for AnsProg programming environment Manual� N/A N/A N/A
ML-Dev [104] Eclipse plug-in for Standard ML language Manual� N/A N/A N/A
EMFText [53] Eclipse plug-in for Ecore metamodel Manual� N/A N/A N/A
Bio-PEPA [9] Eclipse plug-in for Bio-PEPA language Manual5 N/A N/A N/A
Hibernate Synchronizer [73] Eclipse plug-in for Hibernate framework Manual5 N/A N/A N/A
n-gram-based code completion [74] Unknown† Unknown† Unknown† Unknown†

? The analysis is 0.5 seconds delayed. For other analyses, the documentation does not describe a delay.
† The publications and tool documentation do not give adequate information to categorize the tool.
� In addition to the main analysis listed in the table, the plug-in includes secondary memory-change-triggered continuous analyses.
5 In addition to the main analysis listed in the table, the plug-in includes secondary file-change-triggered continuous analyses.

Figure 6.1: Previous continuous analysis tools, categorized according to the design dimensions of Sec-
tion 3.2. The first six tools are ε-continuous. The continuous IDE plug-ins for language extensions provide
parsing, compilation, auto-complete, quick fix, and/or refactoring support. “Developer” isolation means that
the developer is isolated from the changes made by an impure analysis, but the analysis is not isolated from
the developer’s changes; this is adequate for building only pure ε-continuous analysis tools. For IDEs that
support auto-build, build-triggered analyses are equivalent to file-change-triggered analyses.
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conclude that developers prefer to build ε-continuous tools for at least some analyses, but that the
effort required to build such tools prevents their development.

Building an ε-continuous analysis without Codebase Analysis is prohibitively difficult and re-
sults in poor designs. As an example, an earlier Eclipse continuous testing plug-in [130] is ε-
continuous, but making it ε-continuous required hacking into the core Eclipse plug-ins, so it does
not work with subsequent versions of Eclipse. As another example, to achieve isolation, Quick
Fix Scout [109] embeds and maintains its own copy codebase in the developer’s workspace, sig-
nificantly complicating its design and implementation. Further, embedding replication logic inside
the analysis makes it difficult to debug the replication logic, as bugs that break the synchroniza-
tion between the copy codebase and the developer’s codebase are difficult to isolate. In contrast, as
Section 3.5.2 has argued, Solstice makes it easier to write Eclipse-integrated analyses that maintain
isolation and currency.

6.2 Speculative Analysis

Speculative analyses are impure; a speculative analysis modifies the codebase before computing
its results. A continuous speculative analysis cannot run on the developer’s codebase since the
intermediate modifications done by this analysis would confuse the developer. To prevent such
confusion, a continuous speculative analysis either incrementally maintains a copy of the devel-
oper’s codebase or creates a copy of the developer’s codebase before each analysis execution.

Modern IDEs have limited support for impure analyses. For example, Eclipse provides working
copies [50], an AST node copy of a compilation unit. Using working copies, it is possible to make
modifications to a compilation unit, without changing the codebase. However, an offline impure
analysis needs to go through substantial modifications to create and modify these working copies,
rather than the codebase on the disk. Codebase Analysis supports impure analyses without changes
to the underlying offline analysis. The impure analysis runs on and modifies the copy codebase,
which has no effect on the developer’s codebase.

Previously, Brun et al. [21, 20, 22] created a speculative analysis for proactively detecting col-
laboration conflicts for decentralized VCSs, called Crystal. To compute pairwise collaboration
conflicts, Crystal [20] clones the developer’s VCS repository into a temporary location and period-
ically compares this copy repository with the other developers’ repositories. When two repositories
do not conflict, Crystal attempts to build and test the merged codebase, to compute build and test
conflicts. As an extension of this work, we built Beacon [7] for centralized VCSs and larger code-
bases. Guimarães and Silva [69] proposed a technique that continuously merges committed and
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uncommitted code to create a codebase, that approximates a software’s global state, which can be
built and analyzed to detect conflicts before check-in.

6.2.1 Speculative Analysis of Integrated Development Environment Recommendations

The interest in software recommendation systems — “software . . . that provides information items
estimated to be valuable for a software engineering task in a given context" [126] — has grown
over the past few years, with an increasing number of research results and tools, as well as an
ongoing workshop [75].

Work in recommendation systems includes: defining recommendations for new domains, such
as requirements elicitation [27] and team communication [151]; frameworks for defining recom-
mendation systems [99]; and techniques for choosing recommendations to include in a system,
such as data mining [133].

Some efforts that are more directly relevant to Quick Fix Scout also aim to improve IDE rec-
ommendations. Robbes and Lanza propose eight different ways to reorder code-completion rec-
ommendations; they evaluated these techniques on a realistic benchmark, and show that reordering
the matches based on historical usage provides the greatest improvement [125]. Bruch et al. re-
order and filter the Eclipse auto-complete dialog using mined historical data and developer usage
habits [18]. Recently, Perelman et al. showed that Visual Studio auto-complete (IntelliSense) can
be improved by using developer-supplied partial types, to search all APIs for auto-completions that
would transform the input type to the expected output type [121].

In contrast to the first two of these approaches, which rely on past usage patterns, Quick Fix
Scout reorders recommendations based on information about properties of the program that will
be created if a recommendation is selected. In contrast to the third approach, the developer need
not add any information to the program for Quick Fix Scout (or, of course, Quick Fix) to work.
In addition, we have recently shown how to improve IDE recommendations by considering the
interactions between existing recommendations [108].

In addition to industrial efforts related to Quick Fix,1 some research efforts address various
aspects of Quick Fix. For example, a paper on automatic refactoring in the face of problems such
as references to unavailable declarations mentions an experimental participant’s idea to augment
the system with invocations to Quick Fix [86]. As another example, a recommendation system
approach to increasing reuse also suggests integrating their system through Quick Fix [80].

1http://eclipse.org/recommenders

http://eclipse.org/recommenders
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Quick Fix Scout is built on speculative analysis: a technique that computes precise information
about likely future states of a program and presents this information to the developer so that she
can make better and more informed decisions [19]. Applying speculative analysis on collaborative
software development [21], Brun et al. built Crystal [20]: a tool that notifies developers as soon as
a conflict emerges. The biggest difference between Crystal and Quick Fix Scout is the granularity
of the speculation. For collaboration conflicts, it is acceptable if the developer is notified after the
conflict emerges since she would still be able to find the reason of the conflict and coordinate it.
As a result, Crystal does not have to work on the most recent copy of the project and might report
results with some delay. However, when a developer invokes Quick Fix, she needs the results
for the recent version of the project as the results from any previous version is not acceptable and
actionable. In addition, developers want to see the results as soon as the Quick Fix dialog is created
since it takes a couple of seconds for them to decide what to choose.

6.3 Fine-grained History Frameworks

The typical way to create development histories is by using version control systems (VCSs), such
as Subversion [32], Mercurial [101], and Git [59]. Unlike Codebase Manipulation, these systems
are manual and the history they provide has a fixed, typically coarse granularity. Developers may
change the filesystem state to earlier snapshots in the history, and may compare the differences
between two snapshots, but cannot easily alter the history to suit particular development tasks.

VCSs require the developer to manually create each snapshot. Developers frequently forget
to create snapshots, or simply do not know the best time to to so. As a result, the development
history is often coarse-grained or incomplete. For example, a single edit may include changes
relevant to multiple development tasks, and changes developers make but overwrite before creating
a snapshot are lost. This makes VCS histories suboptimal for many analyses or manual inspection.
Codebase Manipulation addresses these limitations by automatically recording the history of all

edits and providing the framework for rewriting this history into custom granularities better suited
for development tasks.

Some VCSs allow limited history rewriting [63, 102]. For example, git rebase can collapse,
expand, swap, and remove edits [64]. However, these tools are complex, prevent collaboration
because rewriting a shared history prevents subsequent sharing, and are irreversible and lead to
further history information loss. By contrast, Codebase Manipulation history transformations are
high-level, which hides all internal complexity, reversible, and keep intact the recorded history’s
integrity to enable collaboration.
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Development histories can also be created automatically by recording developer actions. Flu-
orite [153] stores fine-grained edits to visualize, replay, and query the development history, and
implements fine-grained selective undo [26]. Built on Fluorite, Azurite studies developers’ back-
tracking patterns [154] and also enables selective undo [155]. CodingSpectator [117] and Coding-
Tracker record and use the fine-grained development history to study refactoring practices [146],
development practices [117], and fine-grained change patterns [116]. Storyteller VCS uses the fine-
grained history to transfer knowledge from an experienced developer to an inexperienced one [98].
IDE++ [67, 68] maintains a fine-grained development history to improve development by analyz-
ing fine-grained code changes. Each of these tools focuses on particular development tasks or
research goals. As a result, these automatically recorded fine-grained histories are inflexible and
only suitable for the tasks that require their particular granularity. By contrast, Codebase Manip-
ulation is applicable to many tasks because it records a flexible history whose granularity can be
transformed to match each particular task.

To aid understanding how a history should be rewritten, heuristics can detect related changes to
help identify which changes in a large edit may need to be untangled. These heuristics include his-
torical code change patterns [92] and change couplings, data dependencies, and code metrics [72].
These approaches focus on detangling large edits, which is a problem of manually-recorded his-
tories, but are complementary to our Untangler tool (recall Section 5.4.1) and can help automate
selecting which edits Untangler should collapse. Meanwhile Codebase Manipulation provides ac-
cess to overwritten changes, potentially improving the effectiveness of these tools.

Development histories simplify some software engineering tasks. For example, Git’s anno-

tate [60] and blame [62] commands can help understand the context of an earlier change, and
test bisection [61] and delta debugging [156, 157] can help find the cause of a regression failure.
However, the history’s granularity affects the effectiveness of these tools. Codebase Manipulation
is complementary to these tools and can improve their effectiveness by transforming the granularity
into one most suitable for the task. Further, because Codebase Manipulation automatically records
every developer edit, it can create richer history views of more granularities than is possible with
manually-created histories, further improving tool effectiveness.

Mining software repositories research uses development histories to understand development
practices [21, 22, 158], to localize bugs [114, 97, 113, 119, 103, 100], and to help collaborative
teams work together [10]. However, performing analyses on manually-recorded histories may lead
to incorrect conclusions [11]. A history created by recording the edits at each save operation can be
used to visualize development and create development summaries [28] and to study the evolution
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of students’ projects [139]. These repositories are finer-grained and more complete than manually-
created ones and research on such repositories has, for example, identified a correlation between
static analysis warnings and test failures [140]. The histories created by Codebase Manipulation
are finer-grained, richer in terms of containing information about developer actions, and more
complete, as they include edits a developer may overwrite before saving a file. This potentially
creates better data sets for mining software repositories research.

6.4 Other Uses of Replication

Replication — the idea of using a copy of a resource such as code or data — is well-studied in
the context of storage and distributed systems research. Previous work uses replication to increase
fault tolerance and performance.

Redundant array of inexpensive disks (RAID) [30, 120] is a system that copies the data on
user’s hard drive into multiple disks to increase fault tolerance and performance. A RAID system
can detect and recover from disk failures. When accessing data, a RAID system reads it from
multiple disks. If there is a failure and all disks do not fail in the same way, retrieved values will
be inconsistent. A RAID system recovers by assuming that a value retrieved by the majority of the
disks is correct.

In distributed systems the Replicated State Machine [94, 132] approach is a widely used method
for implementing fault-tolerant services by replicating servers and ordering client requests that
execute on these servers. These systems (e.g., SMART [14]) use consensus protocols such as
Paxos [95] to order client requests. Apart from the replicated state machine approach, a lot of
distributed systems use replication and consensus protocols to achieve fault-tolerance and better
performance. These systems include Chubby [24] that uses Paxos to implement a coordination
service, Megastore [6] that uses Paxos to replicate primary user data across data centers in a high
performance storage system.

Codebase Replication creates and maintains a copy of the developer’s codebase to simplify
software development tasks. Similar to the previous research, this copy codebase is eventually
consistent with the developer’s codebase. However, Codebase Replication does not treat the de-
veloper’s codebase and the copy codebase equally. The flow of information is almost always from
the developer’s codebase to the copy codebase. The computations ran on the copy codebase do
not run on the developer’s codebase. The modifications on the copy codebase are not replicated
on the developer’s codebase. Codebase Replication can be extended to maintain multiple copies of
the codebase: one master and many slaves. In this extended design, Codebase Replication can use
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redundant copies to increase fault tolerance (e.g., if an analysis makes a copy inaccessible) or in-
crease performance (e.g., by running multiple analyses in parallel on multiple copies). Maintaining
perfect replicas to increase fault tolerance and performance is left as future work.
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Chapter 7

CONTRIBUTIONS

This dissertation shows how an incrementally maintained copy of the developer’s codebase can
enhance software development. The dissertation first introduces Codebase Replication, a frame-
work that creates and maintains a copy of the developer’s codebase. Codebase Replication lets
other frameworks run programs on the copy codebase without interrupting development. The dis-
sertation focuses on three frameworks built on Codebase Replication. First, a continuous analysis
framework like Codebase Analysis improves developers’ interaction with the current codebase
through continuous analysis feedback. By implementing four continuous analyses in less than
710 lines of code and 20 hours on average, we showed that Codebase Analysis makes it easy to
build IDE-integrated continuous analyses [105]. In a case study on 10 developers, we showed
that developers liked continuous feedback and Codebase Analysis continuous testing, and they did
not perceive additional overhead [106]. Second, speculative analyses can enhance development
by exploring potential future states of the software. Codebase Analysis is designed to support
speculative analyses. Applying speculative analysis in the context of Eclipse Quick Fixes, we im-
plemented Quick Fix Scout. In a controlled experiment, we showed that Quick Fix Scout speeds
up error-removal tasks by 10% [109]. Third, a history manipulation framework like Codebase
Manipulation simplifies information-retrieval tasks from the development history. We showed that
Codebase Manipulation can express three distinct tasks: untangling code changes, pinpointing
cause of regression failures, and understanding software evolution. We prototyped Codebase Ma-
nipulation in Bread. Bread maintains a fine-grained history in real time with low overhead. Using
Bread, we implemented Untangler for untangling code changes, and Bisector for pinpointing the
cause of regression bugs. Our initial experience with these tools suggests that Bread can simplify
information-retrieval tasks.



92

BIBLIOGRAPHY

[1] Apache Ant. http://ant.apache.org/. Accessed on January 29, 2015.

[2] Apache Maven. http://maven.apache.org/. Accessed on January 29, 2015.

[3] AnsProlog programming environment. https://github.com/robibbotson/APE/. Accessed on
February 13, 2015.

[4] Robert Arnold and Shawn Bohner. Software Change Impact Analysis. Wiley-IEEE Com-
puter Society Press, July 1996.

[5] Extended ASM, a byte code manipulator. Distributed as part of Annotation File Utilities.
http://types.cs.washington.edu/annotation-file-utilities/. Accessed on September 21, 2014.

[6] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James Larson,
Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore: Pro-
viding scalable, highly available storage for interactive services. In the 5th Conference on
Innovative Data Systems Research, CIDR’11, pages 223–234, Asilomar, CA, USA, January
2011.

[7] Beacon. http://blogs.msdn.com/b/msr_er/archive/2011/09/07/seif-project-crystal-receives-
acm-sigsoft-distinguished-paper-award.aspx, 2011.

[8] Keith H. Bennett and Vaclav Rajlich. Software maintenance and evolution: A roadmap. In
the Future of Software Engineering, pages 73–87, Limerick, Ireland, 2000.

[9] An Eclipse plug-in supporting the Bio-PEPA domain specific language. https://github.com/
Bio-PEPA/Bio-PEPA/. Accessed on February 13, 2015.

[10] Christian Bird, Nachiappan Nagappan, Premkumar Devanbu, Harald Gall, and Brendan
Murphy. Does distributed development affect software quality? An empirical case study
of Windows Vista. In the 31st International Conference on Software Engineering, ICSE’09,
pages 518–528, Vancouver, BC, Canada, May 2009.

[11] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. German, and
Prem Devanbu. The promises and perils of mining Git. In the 6th Working Conference on
Mining Software Repositories, MSR’09, pages 1–10, Vancouver, BC, Canada, May 2009.

http://ant.apache.org/
http://maven.apache.org/
https://github.com/robibbotson/APE/
http://types.cs.washington.edu/annotation-file-utilities/
http://blogs.msdn.com/b/msr_er/archive/2011/09/07/seif-project-crystal-receives-acm-sigsoft-distinguished-paper-award.aspx
http://blogs.msdn.com/b/msr_er/archive/2011/09/07/seif-project-crystal-receives-acm-sigsoft-distinguished-paper-award.aspx
https://github.com/Bio-PEPA/Bio-PEPA/
https://github.com/Bio-PEPA/Bio-PEPA/


93

[12] Barry W. Boehm. Software Engineering Economics. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1981.

[13] Caspar Boekhoudt. The Big Bang Theory of IDEs. Queue, 1(7):74–82, October 2003.

[14] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters, and Peng
Li. Paxos replicated state machines as the basis of a high-performance data store. In the
8th Symposium on Networked Systems Design and Implementation, NSDI’11, Boston, MA,
USA, March 2011.

[15] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William Cheung,
Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola, Jr. Code
Bubbles: Rethinking the user interface paradigm of integrated development environments.
In the 32nd International Conference on Software Engineering, ICSE’10, pages 455–464,
Cape Town, South Africa, May 2010.

[16] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William Cheung,
Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola, Jr. A re-
search demonstration of Code Bubbles. In the 32nd International Conference on Software
Engineering, ICSE’10, pages 293–296, Cape Town, South Africa, May 2010.

[17] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. Example-centric
programming: Integrating web search into the development environment. In the 28th Con-
ference on Human Factors in Computing Systems, CHI’10, pages 513–522, Atlanta, GA,
USA, April 2010.

[18] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from examples to improve
code completion systems. In the 7th joint meeting of the European Software Engineering
Conference and the Symposium on the Foundations of Software Engineering, ESEC/FSE’09,
pages 213–222, Amsterdam, The Netherlands, August 2009.

[19] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Speculative analysis: Ex-
ploring future states of software. In the Workshop on the Future of Software Engineering
Research, FoSER’10, pages 59–63, Santa Fe, NM, USA, November 2010.

[20] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Crystal: Precise and un-
obtrusive conflict warnings. In the 8th joint meeting of the European Software Engineering
Conference and the Symposium on the Foundations of Software Engineering Tool Demon-
stration Track, ESEC/FSE’11, pages 444–447, Szeged, Hungary, September 2011.

http://alum.mit.edu/www/brun/pubs/pubs/Brun11fse-tool-demo.pdf
http://alum.mit.edu/www/brun/pubs/pubs/Brun11fse-tool-demo.pdf


94

[21] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Proactive detection of
collaboration conflicts. In the 8th joint meeting of the European Software Engineering Con-
ference and the Symposium on the Foundations of Software Engineering, ESEC/FSE’11,
Szeged, Hungary, September 2011.

[22] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Early detection of collabo-
ration conflicts and risks. IEEE Transactions on Software Engineering (TSE), 39(10):1358–
1375, October 2013.

[23] M. M. Burnett, J. W. Atwood Jr., and Z. T. Welch. Implementing level 4 liveness in declar-
ative visual programming languages. In the Symposium on Visual Languages, VL’98, pages
126–133, September 1998.

[24] Mike Burrows. The Chubby lock service for loosely-coupled distributed systems. In the 7th
Symposium on Operating Systems Design and Implementation, OSDI’06, pages 335–350,
Seattle, WA, USA, November 2006.

[25] An Eclipse plug-in supporting the CAL domain specific language. https://github.com/
levans/Embedded-CAL/. Accessed on February 13, 2015.

[26] Aaron G. Cass and Chris S. T. Fernandes. Modeling dependencies for cascading selective
undo. In the 10th Conference on Human-Computer interaction, Rome, Italy, September
2005.

[27] Carlos Castro-Herrera, Chuan Duan, Jane Cleland-Huang, and Bamshad Mobasher. A rec-
ommender system for requirements elicitation in large-scale software projects. In the Sym-
posium on Applied Computing, SAC’09, pages 1419–1426, 2009.

[28] Jacky Chan, Alan Chu, and Elisa Baniassad. Supporting empirical studies by non-intrusive
collection and visualization of fine-grained revision history. In the 5th Eclipse Technology
Exchange Workshop, eTX’07, pages 60–64, Montreal, QC, Canada, October 2007.

[29] Check synchronization. http://www.cs.umd.edu/class/fall2004/cmsc433/checkSync.html.
Accessed on September 21, 2014.

[30] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A. Patterson.
RAID: High-performance, reliable secondary storage. Computing Surveys, 26(2):145–185,
June 1994.

[31] Code recommenders. http://www.eclipse.org/recommenders/. Accessed on September 21,
2014.

http://alum.mit.edu/www/brun/pubs/pubs/Brun13tse.pdf
http://alum.mit.edu/www/brun/pubs/pubs/Brun13tse.pdf
https://github.com/levans/Embedded-CAL/
https://github.com/levans/Embedded-CAL/
http://www.cs.umd.edu/class/fall2004/cmsc433/checkSync.html
http://www.eclipse.org/recommenders/


95

[32] Ben Collins-Sussman. The Subversion project: Building a better CVS. Linux Journal,
2002(94):3, February 2002.

[33] Continuous analysis. http://www.klocwork.com/products/documentation/current/
Continuous_analysis. Accessed on January 26, 2015.

[34] Continuous testing for Visual Studio. http://ox.no/software/continuoustesting/. Accessed
on September 21, 2014.

[35] Crossword Sage. http://sourceforge.net/projects/crosswordsage/. Accessed on September
21, 2014.

[36] Robert DeLine and Kael Rowan. Code Canvas: Zooming towards better development envi-
ronments. In the 32nd International Conference on Software Engineering, ICSE’10, pages
207–210, Cape Town, South Africa, May 2010.

[37] An Eclipse plug-in supporting the dLabPro domain specific language. https://github.com/
matthias-wolff/dLabPro-Plugin/. Accessed on February 13, 2015.

[38] An Eclipse plug-in supporting the LATEX domain specific language. https://github.com/
walware/docmlet/. Accessed on February 13, 2015.

[39] Eclipse. http://www.eclipse.org/. Accessed on September 21, 2014.

[40] Eclipse API: IDocumentListener. http://help.eclipse.org/topic/org.eclipse.platform.doc.isv/
reference/api/org/eclipse/jface/text/IDocumentListener.html. Accessed on October 2, 2014.

[41] Eclipse API: IResourceChangeListener. http://help.eclipse.org/topic/org.eclipse.platform.
doc.isv/reference/api/org/eclipse/core/resources/IResourceChangeListener.html. Accessed
on October 2, 2014.

[42] Eclipse project builders and natures. http://www.eclipse.org/articles/Article-Builders/
builders.html. Accessed on September 21, 2014.

[43] Eclipse-Checkstyle integration. http://eclipse-cs.sourceforge.net/. Accessed on September
21, 2014.

[44] Eclipse: How do I use a model reconciler? https://wiki.eclipse.org/FAQ_How_do_I_use_
a_model_reconciler%3F. Accessed on January 31, 2015.

[45] Eclipse: Java compile errors/warnings preferences. http://help.eclipse.org/topic/org.eclipse.
jdt.doc.user/reference/preferences/java/compiler/ref-preferences-errors-warnings.htm. Ac-
cessed on September 21, 2014.

http://www.klocwork.com/products/documentation/current/Continuous_analysis
http://www.klocwork.com/products/documentation/current/Continuous_analysis
http://ox.no/software/continuoustesting/
http://sourceforge.net/projects/crosswordsage/
https://github.com/matthias-wolff/dLabPro-Plugin/
https://github.com/matthias-wolff/dLabPro-Plugin/
https://github.com/walware/docmlet/
https://github.com/walware/docmlet/
http://www.eclipse.org/
http://help.eclipse.org/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/jface/text/IDocumentListener.html
http://help.eclipse.org/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/jface/text/IDocumentListener.html
http://help.eclipse.org/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/core/resources/IResourceChangeListener.html
http://help.eclipse.org/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/core/resources/IResourceChangeListener.html
http://www.eclipse.org/articles/Article-Builders/builders.html
http://www.eclipse.org/articles/Article-Builders/builders.html
http://eclipse-cs.sourceforge.net/
https://wiki.eclipse.org/FAQ_How_do_I_use_a_model_reconciler%3F
https://wiki.eclipse.org/FAQ_How_do_I_use_a_model_reconciler%3F
http://help.eclipse.org/topic/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-errors-warnings.htm
http://help.eclipse.org/topic/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-errors-warnings.htm


96

[46] Eclipse: JDT core component. http://www.eclipse.org/jdt/core/index.php. Accessed on
September 21, 2014.

[47] Eclipse Metrics plug-in. http://sourceforge.net/projects/metrics/. Accessed on September
21, 2014.

[48] Eclipse: The jobs API. http://www.eclipse.org/articles/Article-Concurrency/jobs-api.html.
Accessed on September 21, 2014.

[49] Eclipse: Views. http://help.eclipse.org/topic/org.eclipse.platform.doc.isv/reference/
extension-points/org_eclipse_ui_views.html. Accessed on September 21, 2014.

[50] Eclipse: What is a working copy? http://wiki.eclipse.org/FAQ_What_is_a_working_copy%
3F. Accessed on September 21, 2014.

[51] An Eclipse plug-in supporting the Haskell domain specific language. https://github.com/
JPMoresmau/eclipsefp/. Accessed on February 13, 2015.

[52] Embedded CAL. https://github.com/levans/Embedded-CAL/. Accessed on February 13,
2015.

[53] An Eclipse plug-in supporting the Ecore metamodel. https://github.com/DevBoost/
EMFText/. Accessed on February 13, 2015.

[54] eVHDL: Eclipse plug-in for developing VHDL code. https://github.com/HepaxCodex/
eVHDL/. Accessed on October 2, 2014.

[55] FindBugs. http://findbugs.sourceforge.net/. Accessed on September 21, 2014.

[56] Stephen R. Foster, William G. Griswold, and Sorin Lerner. WitchDoctor: IDE support for
real-time auto-completion of refactorings. In the 34th International Conference on Software
Engineering, ICSE’12, pages 222–232, Zurich, Switzerland, June 2012.

[57] Xi Ge, Quinton L. DuBose, and Emerson Murphy-Hill. Reconciling manual and automatic
refactoring. In the 34th International Conference on Software Engineering, ICSE’12, pages
211–221, Zurich, Switzerland, June 2012.

[58] Xi Ge and Emerson Murphy-Hill. BeneFactor: A flexible refactoring tool for Eclipse. In the
2nd Conference on Object-Oriented Programming Systems, Languages, and Applications,
OOPSLA’11, pages 19–20, Portland, OR, USA, October 2011.

[59] Git. http://www.git-scm.com/. Accessed on September 21, 2014.

http://www.eclipse.org/jdt/core/index.php
http://sourceforge.net/projects/metrics/
http://www.eclipse.org/articles/Article-Concurrency/jobs-api.html
http://help.eclipse.org/topic/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_views.html
http://help.eclipse.org/topic/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_views.html
http://wiki.eclipse.org/FAQ_What_is_a_working_copy%3F
http://wiki.eclipse.org/FAQ_What_is_a_working_copy%3F
https://github.com/JPMoresmau/eclipsefp/
https://github.com/JPMoresmau/eclipsefp/
https://github.com/levans/Embedded-CAL/
https://github.com/DevBoost/EMFText/
https://github.com/DevBoost/EMFText/
https://github.com/HepaxCodex/eVHDL/
https://github.com/HepaxCodex/eVHDL/
http://findbugs.sourceforge.net/
http://www.git-scm.com/


97

[60] Git annotate. https://www.kernel.org/pub/software/scm/git/docs/git-annotate.html. Ac-
cessed on September 21, 2014.

[61] Git bisect. https://www.kernel.org/pub/software/scm/git/docs/git-bisect.html. Accessed on
September 21, 2014.

[62] Git blame. https://www.kernel.org/pub/software/scm/git/docs/git-blame.html. Accessed on
September 21, 2014.

[63] Git: History rewriting. http://git-scm.com/book/en/Git-Tools-Rewriting-History. Accessed
on September 21, 2014.

[64] Git: Rebase. http://www.git-scm.com/book/en/Git-Branching-Rebasing. Accessed on
September 21, 2014.

[65] David Samuel Glasser. Test factoring with amock: Generating readable unit tests from
system tests. Master’s thesis, Massachusetts Institute of Technology, Boston, MA, USA,
August 2007.

[66] An Eclipse plug-in supporting the Go domain specific language. https://github.com/
GoClipse/goclipse/. Accessed on February 13, 2015.

[67] Zhongxian Gu. Capturing and exploiting fine-grained IDE interactions. In the 34th Interna-
tional Conference on Software Engineering, ICSE’12, pages 1630–1631, Zurich, Switzer-
land, June 2012.

[68] Zhongxian Gu. Toward Effective Debugging by Capturing and Reusing Knowledge. PhD
thesis, University of California, Davis, Davis, CA, USA, 2013.

[69] Mário Luís Guimarães and António Rito Silva. Improving early detection of software merge
conflicts. In the 34th International Conference on Software Engineering, ICSE’12, pages
342–352, Zurich, Switzerland, June 2012.

[70] Masatomo Hashimoto and Akira Mori. Diff/TS: A tool for fine-grained structural change
analysis. In the 15th Working Conference on Reverse Engineering, WCRE’08, pages
279–288, Antwerp, Belgium, October 2008.

[71] Peter Henderson and Mark Weiser. Continuous execution: The VisiProg environment. In
the 8th International Conference on Software Engineering, ICSE’85, pages 68–74, London,
England, August 1985.

https://www.kernel.org/pub/software/scm/git/docs/git-annotate.html
https://www.kernel.org/pub/software/scm/git/docs/git-bisect.html
https://www.kernel.org/pub/software/scm/git/docs/git-blame.html
http://git-scm.com/book/en/Git-Tools-Rewriting-History
http://www.git-scm.com/book/en/Git-Branching-Rebasing
https://github.com/GoClipse/goclipse/
https://github.com/GoClipse/goclipse/


98

[72] Kim Herzig and Andreas Zeller. The impact of tangled code changes. In the 6th Working
Conference on Mining Software Repositories, MSR’09, pages 121–130, San Francisco, CA,
USA, May 2013.

[73] Hibernate Synchronizer. https://github.com/jhudson8/hibernate-synchronizer/. Accessed on
February 13, 2015.

[74] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the
naturalness of software. In the 34th International Conference on Software Engineering,
ICSE’12, pages 837–847, Zurich, Switzerland, June 2012.

[75] Reid Holmes, Martin Robillard, Rob Walker, Tom Zimmermann, and Walid Maalej. Inter-
national workshops on recommendation systems for software engineering (RSSE). https:
//sites.google.com/site/rsseresearch, 2012.

[76] David Hovemeyer and William Pugh. Finding bugs is easy. In the 19th Conference on
Object-Oriented Programming Systems, Languages, and Applications, OOPSLA’04, pages
132–136, Vancouver, BC, Canada, October 2004.

[77] Hudson. http://hudson-ci.org/. Accessed on September 21, 2014.

[78] Infinitest. http://infinitest.github.io/. Accessed on September 21, 2014.

[79] InPlace Activator. https://github.com/eirikg/no.javatime.inplace/. Accessed on February 13,
2015.

[80] Werner Janjic, Dietmar Stoll, Philipp Bostan, and Colin Atkinson. Lowering the barrier to
reuse through test-driven search. In the Workshop on Search-Driven Development-Users,
Infrastructure, Tools and Evaluation, SUITE’09, pages 21–24, 2009.

[81] An Eclipse plug-in supporting the Blackberry Java domain specific language. https://github.
com/blackberry/Eclipse-JDE/. Accessed on February 13, 2015.

[82] Jenkins. http://jenkins-ci.org/. Accessed on September 21, 2014.

[83] Lustre plug-in for Eclipse with JKind analysis support. https://github.com/agacek/jkind-
xtext/. Accessed on October 2, 2014.

[84] JSON Schema Validation. https://github.com/sabina-jung/JSON-Schema-Validation-
Eclipse/. Accessed on February 13, 2015.

[85] JUnitLoop. https://github.com/DevBoost/JUnitLoop/. Accessed on February 13, 2015.

https://github.com/jhudson8/hibernate-synchronizer/
https://sites.google.com/site/rsseresearch
https://sites.google.com/site/rsseresearch
http://hudson-ci.org/
http://infinitest.github.io/
https://github.com/eirikg/no.javatime.inplace/
https://github.com/blackberry/Eclipse-JDE/
https://github.com/blackberry/Eclipse-JDE/
http://jenkins-ci.org/
https://github.com/agacek/jkind-xtext/
https://github.com/agacek/jkind-xtext/
https://github.com/sabina-jung/JSON-Schema-Validation-Eclipse/
https://github.com/sabina-jung/JSON-Schema-Validation-Eclipse/
https://github.com/DevBoost/JUnitLoop/


99

[86] Puneet Kapur, Brad Cossette, and Robert J. Walker. Refactoring references for library mi-
gration. In the Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications, OOPSLA’10, pages 726–738, Reno/Tahoe NV, USA, October 2010.

[87] Raghu R. Karinthi and Mark Weiser. Incremental re-execution of programs. In Symposium
on Interpreters and Interpretive Techniques, SIIT’87, pages 38–44, St. Paul, MN, USA,
1987.

[88] Harry Katzan Jr. Batch, conversational, and incremental compilers. In the American Fed-
eration of Information Processing Societies, AFIPS’69, pages 47–56, Boston, MA, USA,
May 1969.

[89] Mik Kersten and Gail C. Murphy. Mylar: A degree-of-interest model for IDEs. In the
4th International Conference on Aspect-oriented Software Development, AOSD’05, pages
159–168, Chicago, IL, USA, March 2005.

[90] Mik Kersten and Gail C. Murphy. Using task context to improve programmer productivity.
In the 14th Symposium on the Foundations of Software Engineering, FSE’06, pages 1–11,
Portland, OR, USA, November 2006.

[91] Sunghun Kim, Thomas Zimmermann, E. James Whitehead Jr., and Andreas Zeller. Predict-
ing faults from cached history. In the 29th International Conference on Software Engineer-
ing, ICSE’07, pages 489–498, Minneapolis, MN, USA, May 2007.

[92] Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto. Hey! Are you
committing tangled changes? In the 22nd International Conference on Program Compre-
hension, ICPC’14, Hyderabad, India, June 2014.

[93] Shuvendu K. Lahiri, Kapil Vaswani, and Charles A. R. Hoare. Differential static analysis:
Opportunities, applications, and challenges. In the Workshop on the Future of Software
Engineering Research, FoSER’10, pages 201–204, Santa Fe, NM, USA, November 2010.

[94] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of ACM, 21(7):558–565, July 1978.

[95] Leslie Lamport. The part-time parliament. Transactions on Computer Systems,
16(2):133–169, May 1998.

[96] Lighthouse. https://github.com/uci-sdcl/lighthouse/. Accessed on February 13, 2015.

https://github.com/uci-sdcl/lighthouse/


100

[97] Benjamin Livshits and Thomas Zimmermann. DynaMine: Finding common error patterns
by mining software revision histories. In the 10th the European Software Engineering Con-
ference, held jointly with the 13th Symposium on the Foundations of Software Engineering,
ESEC/FSE’05, pages 296–305, Lisbon, Portugal, September 2005.

[98] Mark Mahoney. The Storyteller version control system: Tackling version control, code
comments, and team learning. In the 3rd Conference on Systems, Programming, Languages
and Applications: Software for Humanity, SPLASH’12, pages 17–18, Tucson, AZ, USA,
October 2012.

[99] Felipe Martins Melo and Álvaro Pereira Jr. A component-based open-source framework
for general-purpose recommender systems. In the 14th Symposium on Component Based
Software Engineering, CBSE’11, pages 67–72, 2011.

[100] Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, and Ayşe Bener. Defect
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takes. Kıvanç graduated from Kabataş Erkek Lisesi (high school) in Spring 2005. He was the
5th best student, over more than 1.8 million students, in the University Entrance Exams (ÖSS) the
same year. He received his BSc in Computer Engineering with the valedictorian award from Koç
University in July 2010, and his MSc and PhD in Computer Science & Engineering from the Uni-
versity of Washington (Seattle, WA, USA) in December 2012 and June 2015, respectively. Kıvanç
was an intern at Microsoft Research, Redmond during Summer 2011 and Summer 2013 working
in ESE group and mentored by Christian Bird, Judith Bishop, Tom Zimmermann, Nachiappan Na-
gappan, and Jacek Czerwonka. Kıvanç was an intern at Facebook Palo Alto during Summer 2012
mentored by Damien Sereni. This fall, Kıvanç will be joining Microsoft’s TSE team to empower
Microsoft developers to build better and faster software.


	List of Figures
	Introduction
	Codebase Replication
	Codebase Analysis: Providing Continuous Analysis Feedback
	Definitions
	Key Design Dimensions for a Continuous Analysis Tool
	Codebase Analysis
	Solstice: Codebase Analysis for the Eclipse IDE
	Evaluation
	Contributions

	Speculative Analysis: Bringing Knowledge of Future
	Not Knowing the Consequences
	Quick Fix Scout: Speculative Analysis of Eclipse Quick Fixes
	Global Best Quick Fixes
	Evaluation
	Contributions

	Codebase Manipulation: Simplifying Information Retrieval from the History
	Definitions
	Codebase Manipulation: Multi-Grained Views of a History
	Bread: Codebase Manipulation for Eclipse
	Expressiveness Evaluation
	Performance Evaluation
	Contributions

	Related Work
	Continuous Analyses
	Speculative Analysis 
	Fine-grained History Frameworks
	Other Uses of Replication

	Contributions
	Bibliography

