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ABSTRACT

HIGH-QUALITY AUTOMATIC PROGRAM REPAIR

SEPTEMBER 2022

MANISH MOTWANI

B.Tech (Hons.), INTERNATIONAL INSTITUTE OF

INFORMATION TECHNOLOGY, HYDERABAD

M.S., UNIVERSITY OF MASSACHUSSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Yuriy Brun

Software developers spend significant time and e�ort fixing bugs. Automatic

program repair promises to significantly reduce bug-fixing costs. Program repair

requires: fault localization — identifying program elements that cause the bug, patch

generation — identifying modifications to those program elements to attempt to repair

the bug, and patch validation — verifying that the modification actually repairs the

bug. Most automatic program repair techniques use the developer-written tests for

the repair process and produce seemingly good patches for 11–19% of the bugs in

real-world software. However, most of these patches are not correct, as they overfit

to the developer-written tests and break undertested functionality. The goal of this

dissertation is to address this patch overfitting problem.

We improve automatic program repair techniques by augmenting developer tests

with additional constraints from natural language software artifacts. While most

viii



existing techniques ignore such artifacts, we show that they can significantly improve

the quality of program repair. We make the following contributions: (1) Methodologies

to objectively evaluate repair techniques’ repair applicability and repair quality;

(2) Swami, a technique that uses natural language processing to improve the developer-

written tests by generating executable tests with oracles from software specifications;

(3) Blues, a technique that uses information-retrieval-based approach to identify

suspicious program statements using bug reports; (4) RAFL, an unsupervised technique

that uses rank-aggregation algorithms to combine multiple fault localization techniques;

and (5) An evaluation demonstrating that automatic program repair can improve

significantly when using both tests and bug reports, together.
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CHAPTER 1

INTRODUCTION

The global cost of software debugging has risen to $312 billion annually, and a

significant amount of developers’ time is spent on debugging and repairing software

defects [91, 285]. Automatic program repair (APR) research (e.g., [19, 39, 42, 53, 54,

123, 142, 143, 145, 150, 174, 177, 180, 190, 239, 264, 269, 273, 296, 299]) aims to address

this problem by devising techniques to automatically produce software patches to

fix defects with minimal or no human intervention. The goal of APR techniques

is to take a defective program and its specification (e.g., a suite of tests, some of

which that program fails, or a set of formally specified constraints, some of which

that program fails to satisfy) and produce a patched program that satisfies the

specification. As developers typically write tests more often than formal specifications

for their programs, APR techniques predominantly use developer-written test suites

as program specifications to fix defects. This dissertation focuses on such test-

suite-based APR techniques. Unfortunately, the patches produced by the test-suite-

based APR techniques can repair some functionality encoded by the tests, while

simultaneously breaking other, undertested functionality [252]. Thus, quality of the

resulting patches is a critical concern, which prevents the wide-scale adoption of

APR by practitioners. For example, companies such as Facebook and Bloomberg

have only recently started to experiment using APR [126, 183, 249] to fix defects

impacting their business. Recent results evaluating the quality of patches produced

by APR techniques suggest that patch overfitting — patches that pass a particular set

of test cases supplied to the program repair tool but fail to generalize to the desired
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specification — is common [146,176,227,252]. This makes developers lose trust in the

APR techniques deterring their wide-scale adoption in practice [200]. The goal of this

dissertation is to improve the quality of APR techniques.

This chapter is organized as follows. Section 1.1 provides a brief background on

APR. Section 1.2 describes the three open research problems in APR that I address

in this dissertation. Section 1.3 describes the five thrusts in which I divide this

dissertation work along with the significance of the contributions made. Finally,

Section 1.4 describes the outline of this dissertation.

1.1 Background: Automatic Program Repair
Test-suite-based APR techniques typically start with a program version and a

suite of tests, some of which that program passes and some of which it fails, and then

modify the program version until finding a set of modifications (a patch) that makes

the program pass all the tests in that suite. Figure 1.1 shows the high-level program

repair process that consists of the following three steps.

1. Fault localization: The goal of this step is to identify defective program

elements (e.g., classes, methods, or statements) that cause the software defect.

Automated fault localization (FL) used in APR typically uses static and runtime

information about the program to identify program elements that may be the

root cause of the defect.

2. Patch generation: This is the core algorithm of an APR technique. APR

techniques use various algorithms to generate possible modifications that can

be applied to the defective program elements that results in producing multiple

candidate patches that could potentially fix the defect.

3. Patch validation: This step involves modifying a defective program by applying

the automatically produced patch and validating its correctness against the
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Figure 1.1: The three-step process of automatic program repair. The first
step (fault localization) involves identifying program elements (e.g., classes, methods,
or statements) that are causing the bug, the second step (patch generation) involves
producing a patch (program modification) that when applied to the defective program
elements would fix the defect, and the third step (patch validation) involves patching
the defective program with a candidate patch and validating patched program against
the test suite. If all tests pass, the candidate patch is reported as a repair and the
process terminates otherwise, an attempt is made to produce new patch until the
search space is exhausted or a timeout occurs.

developer-written test suite. If the patched program passes all the tests, the

corresponding patch is reported as a plausible patch (patch that passes at least

all tests used in the repair process). However, such a patch may overfit the tests

and break other, under-tested functionality and therefore may not necessarily

be a correct patch.

The method used for each of these steps can significantly a�ect the repair technique’s

success. Further, based on the kind of patch generation algorithm used, APR techniques

can be categorized into the following three categories:

1. Heuristic- and template-based repair techniques. These repair techniques

(e.g., GenProg [150], SimFix [111], Prophet [177], AE [282], HDRepair [145],

ErrDoc [269], JAID [39], Qlose [53], and Par [123], among others) use certain

heuristics or pre-defined templates to find a valid patch by iteratively exploring
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a search space of candidate patches. For example, GenProg produces candidate

patches by inserting, deleting, or replacing code at the abstract syntax tree level.

SimFix mines code change operations from existing human-written patches and

similar code snippets to build two search spaces. It then uses specific heuristics

to produce candidate patches from the intersection of the two search spaces.

2. Semantics-, synthesis-, and constraint-based repair techniques. These

repair techniques (e.g., Nopol [299], Semfix [204], DirectFix [189], Angelix [190],

S3 [143], JFIX [142], etc.) use constraint solving and program synthesis to

synthesize patches to satisfy semantics constraints extracted via symbolic

execution and provided test suites. For example, Nopol repairs defective

conditional statements by using the test cases to generate Satisfiability Modulo

Theory (SMT) constraints that describe the desired program behavior on those

test cases and uses an SMT solver to generate patched conditional expressions.

3. Learning-based repair techniques. These techniques (e.g., CURE [113],

DeepFix [96], DeepRepair [289], SequenceR [40], CoCoNut [179], etc.) frame

the program repair as neural machine translation (NMT) problem (translating

defective program into patched program similar to translating one natural

language into another) and use modern deep-learning-based algorithms to

produce candidate patches. For example, CoCoNut uses a context-aware NMT

architecture that represents the defective program and its surrounding context

separately, to automatically fix defects in multiple programming languages.

These techniques require additional training data (i.e., the tuples of defective

program statements, context, and fixed program statements) to capture complex

relations between defective and patched programs.

Existing research in APR has mostly focused on devising novel patch generation

algorithms (e.g., heuristic-based [111,150,177,269,287], constraint-based [5,95,188,275],
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and learning-based [41, 96, 244]) aimed to produce more correct patches. Recently,

researchers have started investigating the e�ect of using di�erent FL technologies,

assumptions, and adaptations of FL techniques [11,110,132,178,263,304], and patch

validation methodologies [86, 268,277,297,305,311] on the performance of APR tools.

Unlike these existing methods, the methods presented in this dissertation aim to

improve APR by using information derived from natural-language software artifacts.

1.2 Problem Statement
Following are the three open research problems that I address in this dissertation.

1. Evaluating Repair Applicability: Improving APR requires knowing what

kinds of defects APR tools are capable of patching. There exist many independent

studies of multiple APR techniques that use di�erent defect benchmarks that are

all scattered. This problem aims to systematically reconcile these evaluations

to get a clear picture of what kinds of defects APR techniques can patch and

whether the patches produced are correct and acceptable to developers.

2. Evaluating Repair Quality: APR techniques produce many patches for

defects in large, real-world programs with millions of lines of code and thousands

of tests. However, studies show that even though these patches pass all the

tests used in the repair process, most patches are incorrect and unacceptable to

developers. Manually inspecting the correctness of these patches is infeasible

and is subjected to manual bias, especially when the inspectors are authors of

the repair tool who may not have a complete understanding of the program

under repair. Because of this, developers lose trust in using o�-the-shelf APR

tools. This problem aims to develop an automated, objective, and scalable

methodology to evaluate patch correctness that can provide more reliability to
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the developers using APR tools and enable researchers to objectively compare

the quality of multiple APR techniques.

3. Improving Repair Quality: As most patches produced by current APR

techniques are incorrect or plausible, this problem aims to improve the quality

of APR such that repair tools generate “correct” patches that are likely to be

acceptable to developers. Although it might be infeasible to produce patches

that are “guaranteed” to satisfy the developers’ expectations, finding methods

to generate and evaluate patches that are likely acceptable to developers is an

open problem.

Addressing these problems is perhaps the most important step toward real-life

adoption of APR. There are other open research problems in APR, such as extending

APR to patch complex defects that repair tools currently struggle to patch and

integrating APR into development workflow by ensuring reliability and without

disrupting the workflow significantly [88, 151]. I plan to work on these research

problems in the future.

1.3 Contributions
Most of the state-of-the-art program APR techniques use developer-written tests

to: (a) localize the defect typically using spectrum-based fault localization techniques,

which use the runtime information of passing and failing tests to localize the defective

program elements and (b) generate and validate the automatically produced candidate

patches based on the constraints imposed by the tests. While test suites provide an

easy-to-use (because they are executable) specification, software typically contains

many more artifacts that describe the desired correct software behavior. Many of

these artifacts, such as requirements specifications, code comments, and bug reports

use natural-language text to describe the bug and intended software behavior, and
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are therefore not directly used in the repair process. I hypothesize that if I can

derive executable constraints from such artifacts and equip APR techniques with these

additional constraints, it could further constraint the search space of the candidate

patches and would improve the quality of patches produced. The central goal of this

dissertation is to test this hypothesis. For that, I divide my dissertation work into the

following five thrusts:

1.3.1 Evaluating Repair Applicability (Chapter 2)

The goal of this thrust is to reconcile the scattered evaluations of program repair

techniques to identify what kind of defects repair techniques can patch, and whether

those defects are hard and important for developers. For this, I first develop an objective

and scalable methodology to evaluate repair applicability, i.e., the characteristics

of defects program repair techniques can patch. I then use my methodology to

evaluate state-of-the-art APR techniques on real-world defects, and perform rigorous

experiments to analyze the correlations between defect characteristics and the ability

of repair techniques to produce patches.

1.3.2 Evaluating Repair Quality (Chapter 3)

The goal of this thrust is to develop an automated, objective, and scalable

methodology to evaluate repair quality, i.e., the correctness of the patches produced

by APR techniques, and identify the potential factors that a�ect repair quality. For

this, I first develop a new methodology that uses high-quality held-out evaluation test

suites to measure repair quality. I then use my methodology to evaluate the quality of

state-of-the-art APR techniques on real-world defects. Further, I perform rigorous

statistical analyses to analyze various factors that could a�ect repair quality.
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1.3.3 Improving Developer-Written Tests Using Specifications (Chapter 4)

Most program repair techniques only use developer-written tests for the repair

process. As developer-written tests are often incomplete and miss testing all the

software functionality, it is one of the potential causes of producing patches that break

other, under-tested functionality. The goal of this thrust is to improve the developer-

written tests. I develop a technique that can automatically generate executable tests

from natural language software specifications. I evaluate my technique by generating

tests from the publicly accessible and reliable specifications of real-world software

and analyze the e�ectiveness of the generated tests using two large, independently

maintained, open-source software projects.

1.3.4 Improving Fault Localization Using Bug Reports (Chapter 5)

Modifying non-defective program statements placed before the defective ones in the

fault localization output used by repair tools to construct patches is another potential

cause of producing low quality patches. The goal of this thrust is to improve the

accuracy of automated FL used in APR such that repair techniques are more likely to

modify defective program statements for constructing candidate patches. For this, I

first develop a new FL technique that localizes defects by ranking suspicious program

statements using bug reports. Next, I develop an unsupervised technique to combine

the results of multiple FL techniques that may use di�erent bug information sources

such as bug reports and test suites. I use my combining FL technique to combine

test-suite-based and bug-report-based FL, and compare its e�ectiveness in localizing

defects in large, real-world programs.
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1.3.5 Improving Repair Quality Using Bug Reports and Tests Together

(Chapter 6)

For this thrust, I put together my combined FL technique and test suites, and then

use my repair quality evaluation methodology to test the hypothesis using real-world

defects and state-of-the-art APR techniques.

Significance: APR has already shown e�ectiveness in real-world scenarios, but

producing correct patches is one of the remaining hurdles preventing wide deployment

in industry [88]. This dissertation makes progress towards addressing this challenge

by developing (1) automated, objective, and scalable methods to evaluate APR along

the dimensions of repair applicability and quality, (2) a new technique to improve

test-suites used by APR techniques, (3) a new FL technique suitable for APR that

uses bug reports to localize defects, (4) a new FL technique suitable for APR that

combines information from bug reports and test suites demonstrating that it localizes

defects better than underlying techniques that use only bug reports or only tests, and

(5) demonstrating that with this new FL, APR techniques can patch more defects

correctly. This dissertation presents the first APR techniques that use both bug

reports and tests.

1.4 Dissertation Outline
This dissertation is structured as follows. Chapter 2 describes a study to evaluate

APR applicability. Chapter 3 describes a study to evaluate APR quality, and analyzing

factors that could a�ect repair quality. Chapter 4 describes a technique to generate

executable tests with oracles from natural-language software specifications. Chapter 5

describes techniques to improve FL using bug reports. Chapter 6 describes how using

both tests and bug reports improves APR. Chapter 7 places the presented work in

the context of related research. Chapter 8 summarizes the contributions, and presents

future directions for the research.
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CHAPTER 2

APPLICABILITY OF AUTOMATIC PROGRAM REPAIR
ON REAL-WORLD DEFECTS

2.1 Introduction
APR techniques have been evaluated in terms of how many defects they produce a

patch for (e.g., [122,123,147,227]), how quickly they produce patches (e.g., [147,282]),

and the quality of the patches they produce, such as developer-judged correctness [177,

184,227], how many independent tests the patched programs pass [29,112,252], how

maintainable the patches are [83], and how likely developers are to accept them [123].

However, prior work has not studied the defect characteristics that make APR more

applicable. Researchers have stressed the need to identify the classes of defects for

which repair techniques work well [195].

In this chapter, we present a methodology to evaluate the kinds of defects for

which APR techniques produce patches, answering the question of whether existing

techniques can patch important defects, or defects that are hard for developers to

repair. The same way work on evaluating patch quality [29, 184, 216, 227, 252] has

led to work on improving repair quality [122,175,177], this work can lead to work on

improving the applicability of APR to patch defects that they currently struggle to

patch.

This chapter is organized as follows. Section 2.2 describes a methodology to

characterize defects’ importance and di�culty followed by the statistical tests to

measure the association between defect characteristics and the ability of repair

techniques to patch defects. Section 2.3 describes the repair techniques and defect
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benchmarks we use for applying our methodology. Section 2.4 describes the evaluation

and key findings in terms of the research questions we ask and Section 2.5 discusses

their implications. Section 2.6 addresses the threats to validity of our study and

Section 2.7 summarizes our contributions.

2.2 Characterizing Defect Importance and Di�culty
Classifying how di�cult a defect is to repair, and how important repairing a defect

is to a project is a complex and subjective task. There is neither a single measure

of di�culty nor of importance. To identify aspects of defects related to di�culty

and importance, we first analyzed eight popular bug tracking systems [254], three

popular open-source project hosting platforms with bug tracking systems, and two

benchmarks of software defects (that include source code, test suites, and developer-

written patches) [119,149].

We used constructivist grounded theory [31] with coding and constant comparison

that is specifically designed for reasoning about and categorizing concepts without

preconceived abstractions of the involved data [37]. In other words, we started out

without having strong preconceived notions of what data found in bug tracking systems,

open-source project hosting platforms, and defect benchmarks are likely to be relevant

to defect di�culty and importance, and we used the appropriate grounded theory for

identifying such data and classifying them into abstractions. This methodology has

been previously recommended for use in information systems research [187]. Two of

the researchers, called coders, independently analyzed all concrete parameters available

in the bug tracking systems, open-source project hosting platforms, and the defect

benchmarks (specifically focusing on the test suites and developer-written patches

available in these benchmarks). The coders selected which pieces of data may be

relevant to how di�cult or important the defect is to repair. For example, concrete

parameter priority was associated with the importance of defect while # of lines in the
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minimized patch for a defect was associated with di�culty. Coders also identified other

data such as number of triggering and relevant tests available for a defect and number

of project versions a�ected by a defect that they felt may be interesting to correlate

with automated repair techniques’ ability to repair the defect. The two coders then

compared their coding and reconciled the di�erences. Reconciling sometimes required

looking at example defects to gain a further insight into the semantics of the concrete

parameters.

Next, the coders, again independently, grouped similar concrete parameters (e.g.,

identical parameters for which di�erent bug tracking systems use di�erent names, or

closely related concrete parameters) into abstract parameters. For example concrete

parameters such as components, linked entities, a�ects versions and fix versions were

grouped together to form an abstract parameter versions. Again, the coders reconciled

their coding. The coders iterated between identifying concrete and abstract parameters

until their findings saturated and no more parameters were identified. At the end of

analysis, we had created eleven abstract parameters.

Finally, the coders, again independently, categorized the abstract parameters

by grouping closely related parameters, and then reconciled their coding. We call

these categories defect characteristics. For example, abstract parameters File count,

Line Count and Reproducibility were grouped together to form a defect characteristic

Complexity. Similarly abstract parameters Statement coverage, Triggering test count

and Relevant test count were grouped together to form the defect characteristic Test-

E�ectiveness. We came up with five such defect characteristics using eleven abstract

parameters.

The eight popular bug tracking systems we used are Bugzilla, JIRA, IBM Rational

ClearQuest, Mantis, Trac, Redmine, HP ALM Quality Center, and FogBugz [254].

The three popular open-source project hosting platforms with bug tracking systems

we used are Sourceforge, GitHub, and Google code (although the latter is no longer
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active). Finally, the two benchmarks of software defects we used are a 185-C-defect

ManyBugs [149] and a 357-Java-defect Defects4J [119] benchmarks. For completeness

and reproducibility of our research, we include a complete list and description of the

concrete parameters we found for each of the bug tracking systems, project-hosting

platforms, and defect benchmarks in Figure A.1 in Appendix A. Note that the names

of the parameters bug tracking systems use are not always intuitive, and sometimes

inconsistent between systems. For example, Google code uses the terms “open” and

“closed” for timestamps of when an issue was open or closed. GitHub uses these terms

as binary labels. Google code uses the parameter “status” to encode these labels. We

do not include a detailed description of what information each parameter encodes

and how it encodes it, but this information is available from the underlying bug

tracking systems and project-hosting platforms. The complete mapping of concrete

parameters to abstract parameters, and, in turn, to the defect characteristics is shown

in Figure A.2 in Appendix A.

Sections 2.2.2–2.2.6 describe the five defect characteristics and the eleven abstract

parameters that map onto them. But first, Section 2.2.1 describes the statistical tests

we use to determine whether the abstract parameters correlate with repairability — the

APR techniques’ ability to produce patches.

2.2.1 Statistical Tests

Ten out of the eleven abstract parameters are numerical. For most parameters,

the number of unique values is small and the magnitude of their di�erence may not

be indicative. Therefore, we rely on non-parametric statistics and do not assume that

the underlying values of a parameter should be interpreted as equidistant from one

another. Specifically, for each technique and for each of the ten numerical abstract

parameters, we split the distribution of that parameter’s values into two distribution

samples: (1) the distribution of the parameter’s values for the defects for which the
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technique produces a patch, and (2) the distribution of the parameter’s values for the

defects for which the technique does not produce a patch. We use the non-parametric

Mann-Whitney U test to determine if the two distribution samples are statistically

significantly di�erent. That is, the test computes a p value that indicates whether the

null hypothesis that the two distribution samples are statistically indistinguishable (i.e.,

they are drawn from the same distribution) should be rejected. We use the standard

convention of p Æ 0.01 to mean the di�erence is strongly statistically significant,

0.01 < p Æ 0.05 to mean the di�erence is statistically significant, 0.05 < p Æ 0.1

to mean the di�erence is weakly statistically significant, and p > 0.1 to mean the

di�erence is not statistically significant. We measure the strength of the association

between the abstract parameter and the technique’s ability to produce a patch using the

rank-biserial correlation coe�cient, a special case of Somers’ d. A defect’s repairability

with respect to a technique — whether the technique produces a patch for this defect —

is a dichotomous variable, and in such situations, Somers’ d is a recommended measure

of the non-parametric e�ect size for ordinal data; Somers’ d is also asymmetric with

the presumed cause and e�ect variables, which is the case in our study [79, 203].

We use the standard mapping from Somers’ d (which can take on values between

-1 and 1) to the adjectives very weak (|d| < 0.1), weak (0.1 Æ |d| < 0.2), moderate

(0.2 Æ |d| < 0.3), and strong (0.3 Æ |d|) [152]. We further compute the 95% confidence

interval for Somers’ d (referred to as 95% CI). We consider an association to be

statistically and practically significant if it is at least weakly statistically significant

and if the 95% CI for Somers’ d is entirely positive or entirely negative. For the

eleventh abstract parameter, developer-written patch characteristics, we use a logistic

regression to fit a model for repairability and determine which characteristics have

the strongest e�ect on repairability (Section 2.2.6).
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2.2.2 Defect Importance

Our analysis of the eleven issue tracking systems (eight bug trackers and three

project-hosting platforms) identified three common abstract parameters related to

importance: priority, project versions a�ected, and time to fix the defect.

Priority of the defect. The priority of a defect is included in nine out of the

eleven issue tracking systems. Di�erent issue tracking systems use di�erent ordinal

scales to measure the priority. We mapped these di�erent scales to our own scale that

varies from 1 (lowest priority) to 5 (highest priority). Our study determines if there is

a significant association between priority and repairability using the non-parametric

Mann-Whitney U test and measures the strength of the association using a rank-

biserial correlation coe�cient Somers’ d. In other words, as described in Section 2.2.1,

we compare the distribution of priorities of defects patched by an APR technique to

the distribution of priorities of defects not patched by an APR technique. We use the

Mann-Whitney U test to test if the distributions are statistically significantly di�erent,

and we measure the magnitude of that di�erence using Somers’ d.

Does the defect a�ect more than one project version? The number of

project versions a defect a�ects is included in three out of the eleven issue tracking

systems. Our study uses the Mann-Whitney U test to check for a significant association

with repairability, and it measures the strength of the association using Somers’ d.

Time taken to fix the defect. The time between when a defect was reported

and when it was resolved is included in eight out of the eleven issue tracking systems.

For those systems that did not have any concrete parameters to indicate the time when

defect was resolved, we approximated it by computing the time between timestamps

of when the issue was entered into an issue tracking system, and the last commit for

the issue. Our study determines if there is a significant association between time to

fix and repairability using the Mann-Whitney U test, and it measures the strength of

the association using Somers’ d. Note that time to fix a defect could be considered
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as a parameter for importance or di�culty, but based on our analysis of defects

and experience of commits made by developers, associating this parameter to the

importance characteristic seem more accurate.

2.2.3 Defect Complexity

Our study considers two defect complexity measures: number of files edited by

the developer-written patch, and number of non-blank, non-comment lines of code in

that patch. These patches are manually minimized in the Defects4J benchmark to

remove all changes that do not contribute to the patch’s goal [119], but are not in the

ManyBugs benchmark. We partially minimized the ManyBugs patches by removing

all blank and comment lines to reduce the potential bias due to over-approximating

the number of files and lines of code. We employed the diffstat tool to automatically

compute the number of source code lines a�ected by the partially minimized patches.

Number of source files edited by the developer-written patch. A defect

that requires editing multiple source files might be harder to localize and generally more

di�cult to repair. Our study investigates the e�ect of the number of source files edited

by a patch on a defect’s repairability. It determines if there is a significant association

between the number of files edited and repairability using the Mann-Whitney U test.

It measures the strength of the association using Somers’ d.

Number of non-blank, non-comment lines of code in developer-written

patch. Our study also investigates if defects with larger developer-written patches, in

terms of lines of code, are more di�cult for automated repair techniques to repair.

Our study determines whether the number of lines of code has a significant association

with repairability using the Mann-Whitney U test, and it measures the strength of

the association using Somers’ d.
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2.2.4 Test E�ectiveness

Prior work [252] suggests that test e�ectiveness might have an e�ect on an

automated repair technique’s ability to generate a patch. Our study identified three

parameters related to test e�ectiveness: (1) the fraction of the lines in the files edited

by the developer-written patches that are executed by the test suite, (2) the number

of defect-triggering test cases, and (3) the number of relevant test cases (test cases

that execute at least one line of the developer-written patch). Our study determines,

for each parameter, if it has a significant association with repairability using the

Mann-Whitney U test, and it measures the strength of the association using Somers’ d.

2.2.5 Defect Independence

Our analysis of eleven issue tracking systems identified dependents as a common

abstract parameter related to di�culty: a defect whose repair depends on another

issue in the issue tracking system might be more di�cult to repair than a defect that

can be repaired independently. The information about defect dependents is included

in five out of the eleven issue tracking systems. Our study uses the Mann-Whitney

U test to check for a significant association with repairability, and it measures the

strength of the association using Somers’ d.

2.2.6 Developer-Written Patch Characteristics

The ManyBugs benchmark provides characteristics of the developer-written patches

for its defects [149]. The nine characteristics describe if the developer-written patch:

C1: changes one or more data structures or types

C2: changes one or more method signatures

C3: changes one or more arguments to one or more functions

C4: adds one or more function calls
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C5: changes one or more conditionals

C6: adds one or more new variables

C7: adds one or more if statements

C8: adds one or more loops

C9: adds one or more new functions

We consider each patch characteristic as a dichotomous variable and use a logistic

regression to fit a model for repairability. It determines the patch characteristics that

have the strongest e�ect on repairability.

2.3 Subjects of Investigation
This section details the subjects we investigated, in terms of the automated repair

techniques and the real-world defects characterized using the five defect characteristics

described in Sections 2.2.2–2.2.6.

2.3.1 Automated Program Repair Techniques

Our study considers seven state-of-the-art APR techniques.

GenProg [147,150,284] is a heuristics-based repair technique. Such techniques

create candidate patches, often using search-based approaches [97], and then validate

them, typically through testing. GenProg uses a genetic programming heuristic [133]

to search through the space of possible patches, mutating lines executed by failing

test cases, either deleting them, inserting lines of code from elsewhere in the program,

or both to create new potential patches, and crossover operators to combine patches.

GenProg uses the test suite to select the best-fit patch candidates and continues

evolving them until it either finds a patch that passes all tests, or until a specified

timeout. GenProg targets general defects without focusing on a specific class. GenProg

18



was originally designed for C programs [147,150,284], but has been reimplemented

for Java [184]. This study di�erentiates these two implementations as GenProgC and

GenProgJ.

TrpAutoRepair [224] (also published under the name RSRepair in “The strength

of random search on automated program repair” by Yuhua Qi, Xiaoguang Mao, Yan

Lei, Ziying Dai, and Chengsong Wang in the 2014 International Conference on Software

Engineering; we refer to the original name in this study) uses random search instead

of GenProg’s genetic programming to traverse the search space of candidate patches

for C programs. It uses heuristics to select the most informative test cases first, and

stops running the suite once a test fails. TrpAutoRepair limits its patches to a single

edit. It is more e�cient than GenProg in terms of time and test case evaluations [224].

Similarly to GenProg, TrpAutoRepair targets general defects without focusing on a

specific class.

AE [282] is a deterministic repair technique that uses heuristic computation

of program equivalence to prune the space of possible repairs, selectively choosing

which tests to use to validate intermediate patch candidates. AE uses the same

change operators as GenProg and TrpAutoRepair, but rather than using a genetic

or randomized search algorithm, AE exhaustively searches through the space of all

non-equivalent k-distance edits. AE targets C programs, and, again, targets general

defects without focusing on a specific class.

Kali [227] is a simple heuristics-based repair technique that only deletes lines

of code. It was originally designed to show that even this simple approach can

sometimes produce patches that pass the available tests, but it has been shown that at

times, these patches are of high quality [184,227]. Kali was originally designed for C

programs [227], but has been reimplemented for Java [184]. This study di�erentiates

these two implementations as KaliC and KaliJ. Kali targets defects that can be patched

strictly by removing functionality.
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SPR (staged program repair) [175] is a heuristics-based repair technique that uses

a set of predefined, parameterized transformation schemas designed to generate repairs

for specific defect classes. SPR targets defects that can be repaired by inserting or

modifying conditional statements, initializing variables, replacing one variable with

another, replacing one invoked function with another, replacing one constant with

another, or inserts a statement from elsewhere in the program. Many of the schemas

generate conditions by first computing constraints over specific variable values needed

for a repair and then synthesizing logical expressions to satisfy those constraints. SPR

uses the test suite to validate the patches, targets C programs, and has been shown to

find higher-quality patches than GenProg [175].

Prophet [177] explores single-edit potential patches, similarly to TrpAutoRepair,

and SPR’s transformation schemas. It prioritizes the schemas using models inferred

from successful developer-written patches from open-source development. The class of

defects Prophet targets is the same as SPR’s. Prophet targets C programs and has

been shown to find higher-quality patches than GenProgC, AE, SPR, and KaliC [177].

Nopol [59] is a synthesis-based technique that targets repairing conditional

statements in Java programs. Using the test cases, Nopol generates Satisfiability

Modulo Theory (SMT) constraints that describe the desired behavior on those test

cases and uses an SMT solver to generate a conditional. Nopol fixes defects such as

forgotten null pointer checks.

Repairability Information: ManyBugs and Defects4J benchmarks (described

next in Section 2.3.2) have been used to evaluate APR in the past [149,150,175,177,

184,227]. GenProgC, TrpAutoRepair, and AE have been applied to all 185 ManyBugs

defects [149]. SPR, Prophet, and KaliC have each been applied to a 105-defect subset

of the 185-defect ManyBugs benchmark [175,177,227]. Nopol, GenProgJ, and KaliJ

have been applied to 224 Defects4J defects [184]. In our evaluation, we use these

results for the 409 defects, in terms of which techniques can produce a patch for which
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defects. Figure 2.1 summarizes these results. Combined, the techniques repair 56%

and 49% of C defects from the two sets of C defects and 21% of the Java defects,

denoted by the “tC” and “tJava” rows. We believe the di�erence in these numbers

is due in part to the fact that we study more techniques that target C. Additionally,

the first C-targeting techniques [284] predate the Java-targeting ones, and the first

versions of ManyBugs [147] predate the first version of Defects4J [119], so researchers

have had more time to improve their techniques for ManyBugs than for Defects4J.

Further, research studying the quality of repair has identified, via manual analysis

and judgment, which subset of the defects have correct patches (and which are

“plausible but incorrect”) for GenProgC, TrpAutoRepair, and AE [227], SPR, Prophet,

and KaliC [177], and GenProgJ, Nopol, and KaliJ [184]. We use these data to analyze

how defect characteristics correlate with repair quality. Because far fewer of the defects

are automatically repaired correctly than plausibly, we expect the statistical power of

these measurements to be less significant.

2.3.2 Defect Benchmarks

We use two benchmarks of defects for this study, ManyBugs and Defects4J.

The ManyBugs benchmark [149] consists of 185 defect scenarios, summarized

in the top of Figure 2.2. Each scenario consists of a version of source code from one

of nine large, open-source software systems, a set of project tests that fail on that

version, a set of tests that pass on that version, and another version from a later point

in the repository that passes all the tests. These defect properties allow for some

defects to actually be features that modify system behavior. Out of 185 defects in

ManyBugs, 29 defects were features and the remaining 156 defects were bugs. For 122

of the defects, ManyBugs includes accurate links to the project’s bug tracking system

or forums (though 8 of those links are no longer accessible), describing the defect.
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ManyBugs
technique patched unpatched patched %
GenProgC 87 98 47%
TrpAutoRepair 97 88 52%
AE 86 99 46%
tttC 104 81 56%

ManyBugs (105-defect subset)
KaliC 27 78 26%
SPR 46 59 44%
Prophet 43 62 41%
tttC 52 53 49%

Defects4J
GenProgJ 27 197 12%
KaliJ 22 202 10%
Nopol 35 189 16%
tttJava 47 177 21%

Figure 2.1: Automated repair techniques we use to study repair applicability. The
techniques that have been evaluated on the entire 185-defect ManyBugs patched 56%
of those C defects; the techniques that have been evaluated on the 105-defect subset of
ManyBugs patched 49% of those C defects; the techniques that have been evaluated
on 224-defect Defects4J patched 21% of those Java defects. The “tC” and “tJava”
rows give the numbers and ratios of defects for which at least one of the C- and
Java-targeting techniques could generate a patch.

The Defects4J benchmark [119] consists of 357 defect scenarios, summarized in

the bottom of Figure 2.2. Similarly to ManyBugs, each scenario includes a version of

source code with a defect, and a version with that defect repaired by a developer. The

benchmark also includes, for each defect, a developer-written test suite that includes

at least one triggering test. As the repairability information in Section 2.3.1 describes,

224 of these defects have been used for APR, and so we consider that 224-defect subset.

Of these, 205 have links to the project’s bug tracking system. We found that 4 out of

the 224 defects were features and the remaining 220 defects were bugs.

Characterizing the ManyBugs and Defects4J Data: The defect benchmarks

we study provide partial information for some of the defects, e.g., only some of the

defects contain a link to an issue in the issue tracking system. We next describe the
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ManyBugs
program kLoC defects program description
fbc 97 3 legacy language compiler
gmp 145 2 multi-precision math library
gzip 491 5 data compression utility
libtiff 77 24 image processing library
lighttpd 62 9 web server
php 1,099 104 web programming language
python 407 15 general-purpose language
valgrind 793 15 dynamic debugging tool
wireshark 2,814 8 network packet analyzer
total 5,985 185

Defects4J
JFreeChart 96 26 chart drawing library
Closure 90 133 compiler
Commons Lang 22 65 Apache core library
Commons Math 85 106 Apache math and stat library
Joda-Time 28 27 date and time library
total 321 357

Figure 2.2: Defect benchmarks used to study repair applicability. We use the ManyBugs
and Defects4J benchmarks. The 185 ManyBugs defects come from nine open-source
software systems [149], and the 357 Defects4J defects come from five open-source
software systems [119]. The Closure defects are excluded from our study because
prior studies have not used them to evaluate automated repair techniques [184].

information we were able to obtain for these defects, to approximate the idealized

methodology described in Section 2.2.

Recall that each defect in the ManyBugs and Defects4J benchmarks corresponds

to a pair of commits in a version control system, but not necessarily to an issue in an

issue tracking system. For each defect in Defects4J, we tried to manually determine

the corresponding issue in the issue tracking system by cross-referencing the commit

logs and commit IDs with the commit information in the issue tracking system. For

ManyBugs, the information about the issues in the issue tracking system which are

associated with a defect was available for 122 out of the 185 defects (though 8 are no

longer accessible because either the URL did not resolve or the issue was private). For
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Defects4J, this information was available for 205 out of the 224 defects. We annotated

each defect with a link to the issue tracking system, with the abstract parameters

recorded in the issue tracking system. The abstract parameters recorded were obtained

from di�erent concrete parameters depending on the issue tracking system used by a

given project. Also, information about some of the abstract parameters was not found

in some of the issue tracking systems. Hence we couldn’t annotate all the defects

with all the abstract parameters. Figure B.1 in Appendix B shows the details about

information available for annotating the defects with parameters obtained from issue

tracking systems.

For the abstract parameters that were obtained from the two defect benchmarks,

we were able to annotate all defects with line count, file count, triggering test count,

and relevant test count as this information was available with the benchmarks. The

triggering test count is the number of negative tests for a defect provided in ManyBugs

and number of triggering tests for a defect provided in Defects4J. The relevant test

count in Defects4J is the number of test cases that execute at least one statement in

at least one file edited by the developer-written patch. These are provided as relevant

tests for each defect in Defects4J. ManyBugs provides all test cases that are relevant

for the project, but these may not be specific to patched file(s). The relevant test

count for ManyBugs is the number of all tests relevant for the project.

We annotated each defect in Defects4J with the statement coverage ratio of the

test suite on the file(s) edited by the developer-written patch, using the coverage

utility provided by the Defects4J framework. For ManyBugs, we used the gcov tool

to compute this information for all the defects except for 52 defects that we could

not compile. Figure B.2 in Appendix B shows the number of defects that could be

annotated with each abstract parameter.

While analyzing the defects in ManyBugs and Defects4J, we found that some of

the defects were actually features. We classified all the defects and found that 29
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out of the 185 ManyBugs defects were features while the remaining 156 were bugs,

and that 4 out of the 224 Defects4J defects were features while the remaining 220

were bugs. To make this classification, we manually analyzed the issue description

and discussion in the issue tracking system (when this information was available) to

identify if the issue directly related to implementing new functionality, extending or

enhancing functionality, or conforming to a standard. For those issues that satisfied

that criterion, we then checked if the issue related to an unexpected output; if it

did, we classified it as a bug. We then analyzed the minimized, developer-written

source code changes made to resolve the issue for the issues not already classified

as bugs to verify that the changes were consistent with the issue description and

discussion, leading to the final classification as a feature. For issues without links to

an issue tracking system, we followed the same procedure using the developer-written

log messages and source code changes.

We considered two potential confounding factors that could a�ect repairability:

(1) the defect type (if the defect relates to a bug report or a feature request), and

(2) whether a defect links to an issue in an issue tracking system. The purpose

of this analysis was to determine if our study needs to control for these factors.

We used Fisher’s exact test to test for independence. Figure 2.3 shows that the

repairability results are not independent of the defect type for ManyBugs, and hence

our study controls for this factor by analyzing bug reports and feature requests

separately. Fisher’s exact test confirmed that there is no significant association

between repairability and whether a defect links to an issue in an issue tracking system

(p = 0.64 for ManyBugs; p = 1.0 for the Defects4J subject Chart, the only subject in

Defects4J with some missing issue links). Therefore, our study does not control for

this factor.

Our study uses the complexity of the developer-written patches as a proxy for

defect complexity, instead of inferring complexity from the issue tracking systems
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ManyBugs
defect type patched unpatched total
bug 105 51 156
feature 14 15 29
column total 119 66 185

Fisher’s exact test: p = 0.05
Defects4J

defect type patched unpatched total
bug 46 174 220
feature 1 3 4
column total 47 177 224

Fisher’s exact test: p = 1.00

Figure 2.3: The e�ect of a defect’s type (bug or feature) on its repairability.

for two reasons. First, a developer-written patch is available for every defect in the

ManyBugs and Defects4J benchmarks — by contrast, only 327 out of 409 defects have

a corresponding issue in an issue tracking system. Second, the defect complexity

recorded in an issue tracking system may be subjective or specific to the project. Note

that while a defect might, in theory, have an unbound number of valid fixes, we assume

that the developer-written fix is indicative of the complexity of the defect it fixes.

Benchmark extensions. As part of this work, we augmented ManyBugs and

Defects4J with extra information. We annotated every defect with the number of

lines of code in the minimized, developer-written patch, the number of files that

patch touches, the number of relevant test cases (test cases that execute at least one

statement in at least one file edited by the developer-written patch) as well as test cases

that trigger the defect and, the test suite coverage. We have also annotated the 114

ManyBugs and 205 Defects4J defects with links to their projects’ bug tracking systems

or forums with how much time passed between when the defect was reported and when

it was resolved, the priority of the defect, the number of project versions impacted

by the defect, and the number of dependent defects. These annotations enable our

evaluation, and can enable others to evaluate how defect characteristics correlate
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with the applicability of their repair techniques. The annotations are available at

https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData/.

2.4 Evaluating Repair Applicability and Key Findings
We consider nine automated repair tools that implement seven APR techniques

(recall Section 2.3.1) (two pairs of tools implement the same technique for di�erent

languages). Six of the techniques repair C programs: GenProg [147, 150, 284],

TrpAutoRepair [224], AE [282], Kali [227], SPR [175], and Prophet [177]. Three

of the techniques repair Java programs: Nopol [59], a Java reimplementation of

GenProg [184], and a Java reimplementation of Kali [184]. We use results from prior

evaluations of these techniques on the ManyBugs and Defects4J datasets. GenProg,

TrpAutoRepair, and AE have been applied to all 185 ManyBugs defects [149]. SPR,

Prophet, and Kali have each been applied to 105 (a strict subset of the 185) ManyBugs

defects [175,177,227]. Nopol, and the Java versions of GenProg and Kali have been

applied to 224 Defects4J defects [184].

We identify and compute eleven unique abstract parameters recorded in most bug

tracking systems and source code repositories that relate to five defect characteristics:

importance, independence, complexity, test e�ectiveness, and characteristics of the

developer-written patch. These parameters and characteristics form the basis of our

evaluation, comprising the dataset and methodology that creators of new Java and C

automated repair tools can use to evaluate their tools. We use the statistical tests

described in Section 2.2.1 to determine whether the abstract parameters correlate

with the automated repair techniques’ ability to produce patches.

Our evaluation answers six research questions:
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RQ1 Importance: Is an APR technique’s ability to produce a patch for a defect

correlated with that defect’s importance?

Answer: Java repair techniques are moderately more likely to produce patches for defects

of a higher priority, while C repair techniques’ ability to produce a patch for

a defect does not correlate with defect priority. Further, Java and C repair

techniques’ ability to produce a patch for a defect has little to no consistent

correlation with the time taken by developer(s) to fix that defect and the number

of software versions a�ected by that defect. This suggests that automated repair

is as likely to produce a patch for a defect that takes developers a long time to

fix as for a defect that developers fix quickly.

RQ2 Complexity: Is an APR technique’s ability to produce a patch for a defect

correlated with that defect’s complexity?

Answer: C repair techniques are less likely to produce patches for defects that required

developers to write more lines of code and edit more files to patch. However,

the observed negative correlations are not consistently strong for all techniques,

suggesting that automated repair can still produce patches for some complex

defects. Further, for Java repair techniques, we do not observe a statistically

significant relationship of this kind.

RQ3 Test e�ectiveness: Is an APR technique’s ability to produce a patch for a defect

correlated with the e�ectiveness of the test suite used to repair that defect?

Answer: Java repair techniques are less likely to produce patches for defects with more

triggering or more relevant tests, while C repair techniques’ ability to produce a

patch for a defect does not correlate with the number of triggering or relevant

tests. Further, Java and C repair techniques’ ability to produce a patch for a
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defect has little to no consistent correlation with the statement coverage of the

test suite used to repair that defect.

RQ4 Independence: Is an APR technique’s ability to produce a patch for a defect

correlated with that defect’s dependence on other defects?

Answer: Java repair techniques’ ability to produce a patch for a defect does not correlate

with that defect’s dependence on other defects. For the C repair techniques,

the data does not provide su�cient diversity to study the relationship between

repairability and defect independence.

RQ5 Characteristics of developers’ patches: What characteristics of the developer-

written patch are significantly associated with an APR technique’s ability to

produce a patch for that defect?

Answer: Java and C repair techniques struggle to produce patches for defects that required

developers to insert loops or new function calls, or change method signatures.

RQ6 Patch quality: What characteristics of defect are significantly associated with

an APR technique’s ability to produce a high-quality patch for that defect?

Answer: Only two of the considered repair techniques, Prophet and SPR, produce a

su�cient number of high-quality patches to evaluate. These techniques were

less likely to produce patches for more complex defects, and they were even less

likely to produce correct patches.

In the following sections, we describe the details about the results obtained for

each of the above research questions. Sections 2.4.1–2.4.6 present results for our six

research questions, Section 2.4.7 comments on feature synthesis.
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2.4.1 Defect Importance

RQ1: Is an APR technique’s ability to produce a patch for a defect correlated with

that defect’s importance?

We measure a defect’s importance using the defect’s priority value in the project’s

issue tracking system, the number of project versions the defect a�ects, and the time

from when the defect was reported until it was resolved (recall Section 2.2.2).

Priority of the defect. For 156 defects in ManyBugs that were classified as bugs,

23 defects had priority values: 20 have priority two, 1 has priority three, and 2 have

priority five. For 220 defects in Defects4J that were classified as bugs, 187 defects had

priority values: 2 have priority one, 54 have priority two, 117 have priority three, 9

have priority four, and 5 have priority five. Top of Figure 2.4 shows the distribution

of the priority values.

Figure 2.4 shows the results of the Somers’ d and the Mann-Whitney U tests

comparing the priority distributions of defects for which techniques do, and do not

produce patches. For the Java techniques, Somers’ d indicates moderate to strong

positive correlations between priority and repairability. For Nopol and tJava, the

Mann-Whitney U test indicates a statistically significant di�erence between the

distributions (p Æ 0.05) and the Somers’ d 95% CI is entirely positive. While we

observed a weakly significant, moderate positive correlation (p Æ 0.1) for GenProgJ

and KaliJ, our confounding factor analysis (Section 2.5.3) suggests that this observation

was due to a correlation between the priority and the number of relevant test cases.

For C techniques, we observe weak to moderate, both positive and negative

correlations. Because relatively few (23) of the C defects have priority values, the

Mann-Whitney U test does not find any statistically significant di�erences between the

priority distributions of defects for which techniques do, and do not produce patches.

Therefore we make no claims about a correlation between priority and C techniques’

ability to produce patches.
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Priority distribution
ManyBugs (23 defects) Defects4J (187 defects)
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ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC 0.100 [ ≠0.299, 0.499 ] 0.856 5 18
TrpAutoRepair 0.167 [ ≠0.147, 0.480 ] 0.348 9 14
AE ≠0.176 [ ≠0.341, ≠0.012 ] 0.539 6 17
tC 0.114 [ ≠0.165, 0.392 ] 0.342 11 12

ManyBugs (105-defect subset)
SPR ≠0.111 [ ≠0.541, 0.319 ] 0.753 9 5
KaliC ≠0.111 [ ≠0.541, 0.319 ] 0.753 9 5
Prophet ≠0.222 [ ≠0.472, 0.027 ] 0.505 5 9
tC ≠0.175 [ ≠0.679, 0.329 ] 0.780 10 4

Defects4J
GenProgJ 0.206 [ ≠0.037, 0.449 ] 0.088 20 167
Nopol 0.307 [ 0.133, 0.481 ] 0.002 28 159
KaliJ 0.223 [ ≠0.023, 0.468 ] 0.080 16 171
tttJava 0.216 [ 0.065, 0.367 ] 0.017 37 150

Figure 2.4: Correlation between defect priority and repair applicability. Priority data
are available for 23 ManyBugs and 187 Defects4J defects classified as bugs. Java
repair techniques are more likely to produce a patch for defects with a higher priority.
Insu�cient data for C defects prevent a statistically significant conclusion. The 95%
CI (confidence interval) column shows the range in which Somers’ d lies with a 95%
confidence. Rows for which both the Mann-Whitney U test produces a p value below
0.05 and the 95% CI does not span zero are bold. The data shown are only for defects
classified as bugs and with known priority values.

Does the defect a�ect more than one project version? For 156 defects in

ManyBugs that were classified as bugs, 101 defects had information on how many
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versions they a�ect. Of these, 91 a�ected a single version, 5 a�ected two versions, 1

a�ected 3 versions, 3 a�ected four versions, and 1 a�ected eight versions. For 220

defects in Defects4J that were classified as bugs, 165 defects had this information. Of

these, 50 a�ected a single version, 103 a�ected two versions, 5 a�ected three versions,

4 a�ected four versions, and 3 a�ected five versions. Top of Figure 2.5 shows the

distribution of the versions values.

Figure 2.5 shows the results of the Somers’ d and the Mann-Whitney U tests on the

versions distributions of defects for which techniques do, and do not produce patches.

We found no evidence of a relationship between a defect’s repairability and the number

of versions it depends on except for GenProgC and AE, which showed a significant

(p Æ 0.05) and weakly significant (p Æ 0.1), respectively, negative correlation with

the number of versions a�ected by a defect. For all other techniques, the results were

insignificant (p > 0.1 or the 95% CI spanned zero). We conclude that the number

of versions a�ected by a defect likely has negligible e�ect on automated repair’s

e�ectiveness producing a patch for that defect.

Time taken to fix the defect. For 156 defects in ManyBugs that were classified

as bugs, 95 defects had information about the time frame that passed between when

the defect was reported and when it was resolved. This time to fix the defect varied

from 43 minutes to 10.7 years. Out of these 95 defects, 48 have time to fix of less than

one month, 32 from one month to one year, and 15 greater than one year. For 220

defects in Defects4J that were classified as bugs, 199 had this information. The time

to fix varied from 1 minute 21 seconds to 4.0 years. Out of 220 defects, 140 have time

to fix of less than one month, 42 from one month to one year, and 17 greater than one

year. The defects with a low time to fix may exemplify a source of potential noise in

our data. While it is rare for the developer(s) to repair a defect in a minute and a

half, they will sometimes discover a defect, think about the correct way to repair it,

and even write relevant code before reporting the defect to the issue tracking system.
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Versions distribution
ManyBugs (101 defects) Defects4J (165 defects)
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ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC ≠0.143 [ ≠0.250, ≠0.037 ] 0.017 47 54
TrpAutoRepair ≠0.095 [ ≠0.215, 0.025 ] 0.134 54 47
AE ≠0.113 [ ≠0.225, ≠0.001 ] 0.078 49 52
tC ≠0.075 [ ≠0.201, 0.051 ] 0.262 59 42

ManyBugs (105-defect subset)
SPR ≠0.120 [ ≠0.366, 0.126 ] 0.338 25 17
KaliC 0.021 [ ≠0.205, 0.246 ] 0.882 23 19
Prophet 0.003 [ ≠0.250, 0.255 ] 1.000 12 30
tC ≠0.029 [ ≠0.266, 0.209 ] 0.965 26 16

Defects4J
GenProgJ 0.022 [ ≠0.208, 0.252 ] 0.871 18 147
Nopol 0.175 [ ≠0.009, 0.358 ] 0.096 27 138
KaliJ ≠0.032 [ ≠0.264, 0.199 ] 0.852 14 151
tJava 0.105 [ ≠0.071, 0.282 ] 0.267 35 130

Figure 2.5: Correlation between program versions a�ected by a defect and repair
applicability. Versions data are available for 101 ManyBugs and 165 Defects4J defects.
Number of versions a�ected by a defect likely has little e�ect on automated repair’s
e�ectiveness producing a patch for that defect. The 95% CI (confidence interval)
column shows the range in which Somers’ d lies with a 95% confidence. Rows for
which both the Mann-Whitney U test produces a p value below 0.05 and the 95% CI
does not span zero are bold. The data shown are only for those defects classified as
bugs and with known versions values.

In such cases, our methodology for measuring the time to fix will not capture the time

the developer(s) spent thinking about the defect prior to reporting it. Unfortunately,
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this time is not recorded in the various surviving artifacts. However, this situation

most likely pertains only to defects that the developer(s) fix quickly, thus correctly

capturing the rank of the defects’ time to fix measure. Top of Figure 2.6 shows the

distribution of the time to fix values.

Figure 2.6 shows the results of the Somers’ d and the Mann-Whitney U tests on

the time taken to fix distributions of defects for which techniques do, and do not

produce patches. For every technique, Somers’ d indicates a negative correlation:

the longer it took for developers to repair a defect, the harder it is for automated

repair techniques to produce a patch. However, these results are not statistically

significant as indicated by the Mann-Whitney U test, except for GenProgC (p Æ 0.1)

and GenProgJ (p Æ 0.05). For all other techniques, p > 0.1. We conclude that the

time taken by the developer(s) to fix a defect likely has little e�ect on automated

repair’s e�ectiveness producing a patch for that defect.

These results indicate that Java repair techniques are moderately more likely

to patch defects of a higher priority, while C techniques do not correlate with

defect priority. The time taken by the developer(s) to fix a defect and number

of software versions a�ected by the defect had little to no correlation with the

ability to produce a patch. Overall, there is evidence that automated repair is

as likely to repair more important defects, as it is to repair less important ones,

which is an encouraging finding.

2.4.2 Defect Complexity

RQ2: Is an APR technique’s ability to produce a patch for a defect correlated with

that defect’s complexity?

We measure a defect’s complexity using two parameters, the number of files

containing non-comment, non-blank-line edits in the developer-written fix, and the
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Time to fix distribution
ManyBugs (95 defects) Defects4J (199 defects)

0
1
0

0
0

2
0
0

0
3
0

0
0

d
a
ys

0 20 40 60 80

0
2

0
0

6
0

0
1

0
0

0
1
4

0
0

d
a
ys

0 30 60 90 120 150 180

ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC ≠0.231 [ ≠0.459, ≠0.003 ] 0.053 45 50
TrpAutoRepair ≠0.067 [ ≠0.304, 0.170 ] 0.576 51 44
AE ≠0.128 [ ≠0.360, 0.105 ] 0.287 45 50
tC ≠0.112 [ ≠0.349, 0.126 ] 0.357 55 40

ManyBugs (105-defect subset)
SPR ≠0.175 [ ≠0.552, 0.202 ] 0.382 20 16
KaliC ≠0.152 [ ≠0.532, 0.229 ] 0.447 19 17
Prophet ≠0.095 [ ≠0.524, 0.335 ] 0.688 9 27
tC ≠0.130 [ ≠0.513, 0.253 ] 0.521 21 15

Defects4J
GenProgJ ≠0.294 [ ≠0.590, 0.002 ] 0.024 22 177
Nopol ≠0.173 [ ≠0.390, 0.043 ] 0.137 29 170
KaliJ ≠0.131 [ ≠0.381, 0.119 ] 0.364 18 181
tttJava ≠0.226 [ ≠0.411, ≠0.040 ] 0.029 39 160

Figure 2.6: Correlation between time taken by developer(s) to fix a defect and repair
applicability. Time to fix data are available for 95 ManyBugs and 199 Defects4J
defects. Time to fix a defect likely has little e�ect on automated repair’s e�ectiveness
producing a patch for that defect. The 95% CI (confidence interval) column shows
the range in which Somers’ d lies with a 95% confidence. Rows for which both the
Mann-Whitney U test produces a p value below 0.05 and the 95% CI does not span
zero are bold. The data shown are only for those defects classified as bugs and with
known time to fix values.

total number of non-comment, non-blank lines of code in the developer-written fix

(recall Section 2.2).
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Number of source files edited by the developer-written patch. The

information on the number of files edited by the developer patch was available for all

185 defects in ManyBugs. The number of files varied from 1 to 11. The distribution

of the 156 ManyBugs defects that were classified as bugs also varied from 1 to 11: 133

edited a single file, 10 two files, 7 three files, 2 four files, 1 five files, 2 eight files, and 1

eleven files. For Defects4J too, all 224 defects had this information. The number of

files varied from 1 to 7. Of the 220 defects classified as bugs, 205 edited a single file,

12 two files, 1 three files, 1 four files, and 1 seven files. Top of Figure 2.7 shows the

distribution of the number of files edited values.

For C techniques, Somers’ d showed a weak to moderate negative correlation

between the number of files the developer-written patch edited, and the techniques’

ability to produce a patch (Figure 2.7). The Mann-Whitney U test showed this

relationship to be statistically significant (p Æ 0.05) for all C techniques. The

correlation was also negative for Java repair techniques, although this relationship was

very weak and statistically insignificant (p > 0.1). We suspect the relatively weaker

correlation for Java programs is due to the lower variability in Defects4J in the number

of files edited by the developer patch.

Number of non-blank, non-comment lines of code in developer-written

patch. For the 185 ManyBugs defects, the number of non-comment, non-blank lines

in the developer-written patches varied from 1 to 1,887. In the subset of ManyBugs

consisting of 156 bugs, the number varied from 1 to 1,341. For Defects4J, for both

the 224 defects and the subset consisting of 220 bugs, the number of non-comment,

non-blank lines in the developer-written patches varied from 1 to 49. Top of Figure 2.8

shows the distribution of the number of lines edited values.

For C techniques, Somers’ d showed a weak to strong negative correlation: the

larger the developer-written patch, the less likely automated repair is to produce a

patch. The Mann-Whitney U test showed this relationship to be significant (p Æ 0.05)
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File count distribution
ManyBugs (156 defects) Defects4J (220 defects)
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ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC ≠0.134 [ ≠0.241, ≠0.026 ] 0.016 75 81
TrpAutoRepair ≠0.117 [ ≠0.231, ≠0.002 ] 0.042 84 72
AE ≠0.134 [ ≠0.241, ≠0.026 ] 0.016 75 81
tttC ≠0.147 [ ≠0.268, ≠0.025 ] 0.011 91 65

ManyBugs (105-defect subset)
SPR ≠0.256 [ ≠0.407, ≠0.105 ] 0.002 41 43
KaliC ≠0.191 [ ≠0.343, ≠0.039 ] 0.028 39 45
Prophet ≠0.186 [ ≠0.297, ≠0.075 ] 0.062 22 62
tttC ≠0.233 [ ≠0.396, ≠0.070 ] 0.007 44 40

Defects4J
GenProgJ ≠0.067 [ ≠0.090, ≠0.045 ] 0.232 27 193
Nopol ≠0.035 [ ≠0.098, 0.027 ] 0.521 34 186
KaliJ ≠0.066 [ ≠0.085, ≠0.047 ] 0.372 22 198
tJava ≠0.047 [ ≠0.100, 0.005 ] 0.298 46 174

Figure 2.7: Correlation between number of files modified by developer(s) to fix a
defect and repair applicability. Number of files in the developer-written patch data
are available for all 156 ManyBugs and 220 Defects4J defects. Automated program
repair is less likely to produce patches for defects whose developer-written patches
edit more files. This result is strongly statistically significant for C repair techniques,
but is statistically insignificant for Java repair techniques. The 95% CI (confidence
interval) column shows the range in which Somers’ d lies with a 95% confidence. Rows
for which both the Mann-Whitney U test produces a p value below 0.05 and the 95%
CI does not span zero are bold. The data shown are only for those defects classified
as bugs.
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for all C techniques (see Figure 2.8). For Java techniques, the results were insignificant

(p > 0.1 or the 95% CI spanned zero). Thus, we cannot conclude that the number

of non-comment, non-blank lines in the developer-written patches is significantly

associated with repairability for Java techniques.

These results indicate that C repair techniques are less likely to produce patches

for defects that required developers to write more lines of code and edit more

files to patch. This suggests that automated repair is more likely to patch easy

defects than hard ones, reducing its utility. However, the correlation is not

strong for all the techniques meaning that automated repair could still produce

patches for some hard-to-repair-manually defects.

2.4.3 Test E�ectiveness

RQ3: Is an APR technique’s ability to produce a patch for a defect correlated with

the e�ectiveness of the test suite used to repair that defect?

We measure a test suite’s quality using three parameters, statement coverage, the

number of defect-triggering test cases, and the number of relevant test cases (recall

Section 2.2).

The fraction of the lines in the files edited by the developer-written

patches that are executed by the test suite. For ManyBugs, we were able to

compute test suite statement coverage for 113 out of 156 defects classified as bugs.

This measure — the fraction of the lines in the files edited by the developer-written

patches that are executed by the test suite — varied from 1.6% to 99.4% uniformly

across the 113 defects. For Defects4J, we were able to compute test suite statement

coverage for all 220 defects classified as bugs. The fraction varied from 7.9% to 100%;

for 214 out of 220 defects, the fraction was above 50%, for 5 defects, the fraction was

between 30% and 50%, and for 1 defect, the fraction was 7.9%. Top of Figure 2.9

shows the distribution of test suite statement coverage values.
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Line count distribution
ManyBugs (156 defects) Defects4J (220 defects)
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ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC ≠0.228 [ ≠0.403, ≠0.054 ] 0.013 75 81
TrpAutoRepair ≠0.182 [ ≠0.359, ≠0.005 ] 0.049 84 72
AE ≠0.221 [ ≠0.396, ≠0.046 ] 0.016 75 81
tttC ≠0.249 [ ≠0.426, ≠0.072 ] 0.008 91 65

ManyBugs (105-defect subset)
SPR ≠0.405 [ ≠0.625, ≠0.185 ] 0.001 41 43
KaliC ≠0.342 [ ≠0.569, ≠0.115 ] 0.006 39 45
Prophet ≠0.363 [ ≠0.624, ≠0.102 ] 0.011 22 62
tttC ≠0.388 [ ≠0.614, ≠0.161 ] 0.002 44 40

Defects4J
GenProgJ ≠0.083 [ ≠0.318, 0.152 ] 0.485 27 193
Nopol 0.209 [ ≠0.018, 0.437 ] 0.050 34 186
KaliJ ≠0.072 [ ≠0.315, 0.170 ] 0.578 22 198
tJava 0.060 [ ≠0.128, 0.247 ] 0.533 46 174

Figure 2.8: Correlation between number of non-comment, non-blank lines of files
modified by developer(s) to fix a defect and repair applicability. The number of
non-comment, non-blank lines of files in the developer-written patch data are available
for all 185 ManyBugs and 220 Defects4J defects classified as bugs. This number is
strongly correlated with automated repair techniques’ ability to produce patches. This
result is strongly statistically significant for C repair techniques and Nopol. The 95%
CI (confidence interval) column shows the range in which Somers’ d lies with a 95%
confidence. Rows for which both the Mann-Whitney U test produces a p value below
0.05 and the 95% CI does not span zero are bold. The data shown are only for those
defects classified as bugs.

39



For C and Java techniques, the results were insignificant. Somers’ d showed a very

weak to weak correlation between the coverage of the test suite used to repair the defect

and the automated repair’s ability to produce a patch for that defect (Figure 2.9);

the 95% CI for Somers’ d consistently spanned zero and the Mann-Whitney U test

showed that the di�erences between the distributions are not statistically significant

(p > 0.1 for all techniques).

The number of defect-triggering test cases. For ManyBugs, all 156 defects

classified as bugs had information on the number of test cases that trigger the defect.

This number of tests varied from 1 to 52. Of these 156 defects, 111 had only a single

triggering test case. For Defects4J, all 220 defects had this information, varying from

1 to 28. Of the 220 defects, 152 had only a single triggering test. Top of Figure 2.10

shows the distribution of triggering test counts.

For C techniques, the results were insignificant (p > 0.1 or the 95% CI spanned

zero). For Java techniques, Somers’ d showed a weak to moderate negative correlation

between the number of triggering test cases and the ability to produce a patch

(Figure 2.10). The Mann-Whitney U test indicated this result to be statistically

significant (p Æ 0.05) for all Java techniques except KaliJ, for which p Æ 0.1. We

conclude that the number of triggering tests negatively a�ects a Java technique’s

ability to produce a patch.

The number of relevant test cases (test cases that execute at least one

line of the developer-written patch). For ManyBugs, we annotated the same

156 defects with the total number of positive and negative test cases provided for

each defect in ManyBugs benchmark. The number of relevant test cases varied from 3

to 7,951. For Defects4J, we annotated the 220 defects with the number of relevant

tests provided for each defect in Defects4J benchmark and the number of relevant test

cases varied from 1 to 4011. Top of Figure 2.11 shows the distribution of relevant test

counts.
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Test suite statement coverage distribution
ManyBugs (113 defects) Defects4J (220 defects)
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ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC ≠0.094 [ ≠0.312, 0.124 ] 0.390 55 58
TrpAutoRepair ≠0.088 [ ≠0.304, 0.127 ] 0.421 60 53
AE ≠0.159 [ ≠0.374, 0.057 ] 0.146 57 56
tC ≠0.166 [ ≠0.378, 0.046 ] 0.134 66 47

ManyBugs (105-defect subset)
SPR ≠0.073 [ ≠0.365, 0.219 ] 0.640 34 25
KaliC ≠0.090 [ ≠0.383, 0.203 ] 0.558 32 27
Prophet ≠0.109 [ ≠0.484, 0.266 ] 0.538 15 44
tC ≠0.094 [ ≠0.387, 0.198 ] 0.550 36 23

Defects4J
GenProgJ ≠0.097 [ ≠0.354, 0.160 ] 0.416 27 193
Nopol ≠0.064 [ ≠0.278, 0.149 ] 0.555 34 186
KaliJ ≠0.158 [ ≠0.468, 0.152 ] 0.226 22 198
tJava ≠0.011 [ ≠0.204, 0.181 ] 0.907 46 174

Figure 2.9: Correlation between the statement coverage of developer tests and repair
applicability. The statement coverage of the test suite are available for 113 ManyBugs
and 220 Defects4J defects. There is a weak, statistically insignificant, negative
correlation for all techniques, between the coverage of the test suite used to repair
the defect, and the technique’s ability to produce a patch for the defect. The 95%
CI (confidence interval) column shows the range in which Somers’ d lies with a 95%
confidence. The data shown are only for those defects classified as bugs for which we
could compute coverage information.

For C techniques, Somers’ d showed a very weak positive correlation for

TrpAutoRepair. The Mann-Whitney U test indicated this result to be statistically
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Triggering test case distribution
ManyBugs (156 defects) Defects4J (220 defects)
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ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC 0.098 [ ≠0.047, 0.243 ] 0.187 75 81
TrpAutoRepair 0.137 [ ≠0.004, 0.278 ] 0.065 84 72
AE 0.067 [ ≠0.079, 0.212 ] 0.370 75 81
tC 0.087 [ ≠0.056, 0.229 ] 0.249 91 65

ManyBugs (105-defect subset)
SPR 0.018 [ ≠0.182, 0.217 ] 0.866 41 43
KaliC ≠0.013 [ ≠0.212, 0.186 ] 0.905 39 45
Prophet ≠0.063 [ ≠0.266, 0.140 ] 0.589 22 62
tC ≠0.025 [ ≠0.225, 0.175 ] 0.810 44 40

Defects4J
GenProgJ ≠0.231 [ ≠0.348, ≠0.113 ] 0.017 27 193
Nopol ≠0.221 [ ≠0.337, ≠0.104 ] 0.012 34 186
KaliJ ≠0.177 [ ≠0.342, ≠0.013 ] 0.095 22 198
tttJava ≠0.252 [ ≠0.348, ≠0.156 ] 0.001 46 174

Figure 2.10: Correlation between the number of failing tests that trigger a defect
and repair applicability. The number of triggering test cases is available for all 156
ManyBugs and 220 Defects4J defects. There is a negative correlation between a
defect’s number of triggering test cases and the ability to produce a patch, but this
relationship is only statistically significant for the Java repair techniques. The 95%
CI (confidence interval) column shows the range in which Somers’ d lies with a 95%
confidence. Rows for which both the Mann-Whitney U test produces a p value below
0.05 and the 95% CI does not span zero are bold. The data shown are only for those
defects classified as bugs.
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Relevant test case distribution
ManyBugs (156 defects) Defects4J (220 defects)
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ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC 0.166 [ ≠0.017, 0.349 ] 0.074 75 81
TrpAutoRepair 0.188 [ 0.008, 0.368 ] 0.043 84 72
AE 0.122 [ ≠0.062, 0.307 ] 0.188 75 81
tC 0.134 [ ≠0.048, 0.316 ] 0.154 91 65

ManyBugs (105-defect subset)
SPR 0.087 [ ≠0.162, 0.335 ] 0.497 41 43
KaliC 0.085 [ ≠0.164, 0.334 ] 0.507 39 45
Prophet ≠0.096 [ ≠0.396, 0.204 ] 0.509 22 62
tC 0.050 [ ≠0.199, 0.299 ] 0.697 44 40

Defects4J
GenProgJ ≠0.204 [ ≠0.432, 0.024 ] 0.086 27 193
Nopol ≠0.317 [ ≠0.549, ≠0.084 ] 0.003 34 186
KaliJ ≠0.223 [ ≠0.505, 0.059 ] 0.087 22 198
tttJava ≠0.313 [ ≠0.500, ≠0.125 ] 0.001 46 174

Figure 2.11: Correlation between the number of tests relevant to a defect and repair
applicability. The number of relevant test cases is available for all 156 ManyBugs
and 220 Defects4J defects. For Java repair techniques, there is a weak to moderate
significant negative correlation between a defect’s number of relevant test cases and
the ability to produce a patch. For C repair techniques, the correlation is weakly
positive. These correlations are statistically significant for a subset of techniques. The
95% CI (confidence interval) column shows the range in which Somers’ d lies with a
95% confidence. Rows for which both the Mann-Whitney U test produces a p value
below 0.05 and the 95% CI does not span zero are bold.
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significant (p Æ 0.05). However, our confounding factor analysis (Section 2.5.3) found

that this correlation was due to a correlation between the number of relevant test

cases and the number of files edited by the developer-written patch. For all other C

techniques, the results were insignificant (p > 0.1 or the 95% CI spanned zero). For

Java techniques, Somers’ d showed a moderate to strong negative correlation between

the number of relevant test cases and the ability to produce a patch for all techniques

(Figure 2.11). The correlation was statistically significant (p Æ 0.05) for Nopol and

for tJava and weakly statistically significant (p Æ 0.1) for GenProgJ and KaliJ.

These results indicate that Java repair techniques are less likely to produce

patches for defects with more triggering or more relevant tests. Test suite

coverage does not significantly correlate with the ability to produce a patch.

These findings are concerning, as they show it is harder to produce patches in

situations that prior work has shown to lead to higher-quality patches [252].

2.4.4 Defect Independence

RQ4: Is an APR technique’s ability to produce a patch for a defect correlated with

that defect’s dependence on other defects?

Our dataset turned out to be insu�cient to draw conclusions on a relationship

between independence and repairability. For ManyBugs, 76 out of 156 defects classified

as bugs had information on how many other defects they depended on, but none of

them depended on other defects. For Defects4J, 165 out of 220 defects classified as

bugs had this information. Of these, 136 did not depend on other defects, 26 depended

on a one other defect, 1 on two other defects, and 2 on three other defects.

For C techniques, the lack of variability in the benchmark defects with respect to

defect independence prevented us from drawing any conclusions. For Java techniques,

the results were insignificant (p > 0.1 or the 95% CI spanned zero), as Figure 2.12

44



Dependents distribution
Defects4J (165 defects)
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Defects4J
technique Somers’ d 95% CI p patched unpatched
GenProgJ ≠0.075 [ ≠0.233, 0.083 ] 0.494 18 147
Nopol 0.058 [ ≠0.114, 0.230 ] 0.501 27 138
KaliJ ≠0.039 [ ≠0.230, 0.153 ] 0.767 14 151
tJava 0.032 [ ≠0.117, 0.181 ] 0.725 35 130

Figure 2.12: Correlation between the a defect’s dependence on other defects and repair
applicability. For Java repair techniques, there is a weak statistically insignificant
correlation between a defect’s dependence on other defects and the ability to produce
a patch. The 95% CI (confidence interval) column shows the range in which Somers d

lies with a 95% confidence. The data shown are only for those defects classified as
bugs.

shows. This suggests that the number of other defects a defect depends on does not

a�ect repairability of Java repair techniques.

While we have developed a methodology that can be applied to other

defect benchmarks, ManyBugs did not contain enough variability in defect

independence to identify a relationship between independence and repairability.

For Defects4J, an insignificant correlation is observed for all the techniques.
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2.4.5 Developer-Written Patch Characteristics

RQ5: What characteristics of the developer-written patch are significantly associated

with an APR technique’s ability to produce a patch for that defect?

Investigating which characteristics of the developer-written patches are significantly

associated with defect repairability allows us to reason about automated repair’s ability

to fix defects in terms of what the developers did. This may, in turn, lead to actionable

advice about which kinds of defects the developer(s) should fix manually, and which

can be trusted to automated repair. Of course, to use this information, the developer(s)

must have a sense of the characteristics of the patch before it is written, which may

sometimes be possible. However, the main goal of studying this research question is to

help guide future research into automated program repair techniques by identifying the

characteristics of the defects, in terms of the patches that repair them, that existing

techniques struggle to produce patches for. Research into future repair tools may,

for example, target modifying or inserting loops, just as, for example, Nopol targets

conditional statements.

Figure 2.13 shows the distributions of the nine patch characteristics for the two

benchmarks, and the results of a logistic regression using these characteristics. For

each repair technique, Figure 2.13 shows which patch characteristics are significantly

associated with repairability and how much variance in repairability is explained by

all defect characteristics.

The data suggest that some characteristics of developer-written patches are

significantly associated with repairability for C repair techniques, but not for Java

repair techniques. In particular, for C repair techniques, changing a data structure or

type, a function argument, or a conditional, or adding a new variable, an if statement,

or a new function are significantly associated with repairability, whereas changing a

method signature, or adding a function call, or a loop is not.
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Distributions of the nine characteristics of the developer-written patches
ManyBugs (156 defects) Defects4J (220 defects)
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technique model quality patch characteristic
p R2 characteristic # p

GenProgC 0.001 0.129

C3 0.036
C4 0.088
C5 0.066
C7 0.055
C9 0.051

TrpAutoRepair 0.005 0.109
C3 0.058
C6 0.046
C7 0.040
C9 0.049

AE 0.042 0.081 C2 0.057
C7 0.068

SPR 0.001 0.184 C1 0.059
C3 0.014

Prophet 0.004 0.169 C3 0.003
KaliC 0.213 0.100 C3 0.088
ttt

C 0.000 0.162
C3 0.001
C7 0.075
C9 0.030

GenProgJ 0.555 0.047 C1 0.057
C5 0.029

Nopol 0.572 0.040 none
KaliJ 0.543 0.055 C1 0.031ttt

Java 0.395 0.041 C1 0.039

Figure 2.13: Association between patch characteristics and repair applicability. Top
charts show the distribution of the nine patch characteristics for the developer-written
patches in the ManyBugs and Defects4J benchmarks. Bottom shows logistic regression
reporting that characteristics C1, C3, C5, C6, C7 and C9 — changing a data structure
or type, a function argument, or a conditional, or adding a new variable, an if statement
or a new function — are significantly associated with repairability. Data for which the
p value is below 0.05 are bold.
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These results suggest that defects that required developers to insert a loop or a

new function call, or change a method signature are challenging for automated

repair techniques to patch. More patch characteristics are significantly associated

with repairability for C repair techniques than for Java repair techniques.

2.4.6 Patch Quality

RQ6: What characteristics of defect are significantly associated with an APR

technique’s ability to produce a high-quality patch for that defect?

Recent work has begun evaluating the quality of patches produced by automated

repair [29, 67, 175, 177, 184, 216, 227, 252]. Until now, our analysis remained quality

agnostic, focusing on whether techniques can produce patches, as opposed to whether

techniques can produce high-quality patches. Quality and applicability are orthogonal

aspects of program repair: one can work on improving the quality of the produced

patches, the applicability of the repair techniques to a wider range of defects, or both.

However, it is important to also study how the two interact. At the present time,

the quality of the patches produced by most techniques is fairly low. According to a

manual analysis, on the 105-defect subset of ManyBugs, GenProgC could only produce

2 correct patches, TrpAutoRepair 3 correct patches, and AE 2 correct patches [227].

On an 84-defect subset of Defects4J, GenProgJ could only produce 5 correct patches,

Nopol 5 correct patches, and KaliJ 1 correct patch [184]. The number of correct

patches is too small for us to make statistically significant claims for these techniques.

Inspired by the findings of the low quality of repairs, SPR and Prophet were designed

to specifically improve repair quality. SPR produces 13 and Prophet 15 correct patches

on the 105-defect subset of ManyBugs [177]. Other techniques that claim to produce

high-quality patches, e.g., SearchRepair [122], fail to scale to the size and complexity

of real-world defects we consider. We use the SPR and Prophet data to begin studying

the defect characteristics’ e�ect on the ability to produce high-quality repairs. There
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are eight abstract parameters that have su�cient data to perform such analysis.

Figure 2.14 shows the Somers’ d and Mann-whitney U test results testing for an

association between each of these eight abstract parameters and the ability to produce

high-quality patches. Only the abstract parameters related to defect complexity and

test suite e�ectiveness exhibit statistically significant associations.

Defect complexity. For Prophet, the number of non-comment, non-blank lines

in the developer-written patch correlated negatively with the ability to produce a

correct patch. This negative correlation was stronger compared to the negative

correlation with the ability to produce a patch at all (d = ≠0.564 for correct patches,

vs. d = ≠0.342 for all patches). For SPR, the correlations with the ability to produce

a correct patch and a patch all were the same (d = ≠0.405). The Mann-Whitney

U test confirmed this distribution di�erence to be statistically significant (p Æ 0.05)

for both the techniques. However, for SPR, the 95% CI for Somers’ d spans zero for

producing correct patches.

For Prophet, there was a weakly significant (p Æ 0.1) negative correlation between

the number of files edited by the developer-written patch and the ability to produce a

correct patch. For SPR, the correlation was insignificant.

Test suite e�ectiveness. SPR showed a weakly significant (p < 0.1) positive

correlation for producing correct patches when using higher-coverage test suites

(d = 0.312 for correct patches, vs. d = ≠0.073 for all patches). This is consistent

with prior results showing that higher-coverage test suites lead to higher-quality

patches [252]. The result for Prophet was not statistically significant (p > 0.1). Also,

correlations with the number of triggering tests and relevant tests were either the

same for the correct patches as all patches, or not statistically significant.

Developer-written patch characteristics. A logistic regression using the nine

patch characteristics showed that characteristics C1 and C3 associated with SPR’s

ability to produce patches, and characteristic C3 associated with Prophet’s ability to
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abstract ManyBugs (105-defect subset)
parameter technique Somers’ d 95% CI p patched unpatched

line count

SPR (produces patch) ≠0.405 [ ≠0.655, ≠0.155 ] 0.001 41 43
SPR (correct patch) ≠0.405 [ ≠0.826, 0.016 ] 0.023 12 72
Prophet (produces patch) ≠0.342 [ ≠0.594, ≠0.090 ] 0.006 39 45
Prophet (correct patch) ≠0.564 [ ≠0.963, ≠0.165 ] 0.001 14 70

file count

SPR (produces patch) ≠0.256 [ ≠0.402, ≠0.111 ] 0.002 41 43
SPR (correct patch) ≠0.120 [ ≠0.264, 0.024 ] 0.328 12 72
Prophet (produces patch) ≠0.191 [ ≠0.339, ≠0.042 ] 0.028 39 45
Prophet (correct patch) ≠0.214 [ ≠0.284, ≠0.144 ] 0.093 14 70

statement coverage

SPR (produces patch) ≠0.073 [ ≠0.366, 0.220 ] 0.640 34 25
SPR (correct patch) 0.312 [ ≠0.071, 0.695 ] 0.099 12 47
Prophet (produces patch) ≠0.090 [ ≠0.385, 0.204 ] 0.558 32 27
Prophet (correct patch) 0.284 [ ≠0.101, 0.668 ] 0.135 12 47

triggering test count

SPR (produces patch) 0.018 [ ≠0.182, 0.217 ] 0.866 41 43
SPR (correct patch) 0.109 [ ≠0.208, 0.426 ] 0.470 12 72
Prophet (produces patch) ≠0.013 [ ≠0.212, 0.186 ] 0.905 39 45
Prophet (correct patch) 0.118 [ ≠0.179, 0.416 ] 0.390 14 70

relevant test count

SPR (produces patch) 0.087 [ ≠0.159, 0.332 ] 0.497 41 43
SPR (correct patch) 0.319 [ ≠0.100, 0.739 ] 0.078 12 72
Prophet (produces patch) 0.085 [ ≠0.162, 0.332 ] 0.507 39 45
Prophet (correct patch) 0.272 [ ≠0.093, 0.638 ] 0.110 14 70
SPR (produces patch) ≠0.111 [ ≠0.510, 0.288 ] 0.753 9 5
SPR (correct patch) ≠0.154 [ ≠0.366, 0.058 ] 1.000 1 13
Prophet (produces patch) ≠0.111 [ ≠0.510, 0.288 ] 0.753 9 5
Prophet (correct patch) NA NA NA 0 14

versions

SPR (produces patch) ≠0.120 [ ≠0.358, 0.118 ] 0.338 25 17
SPR (correct patch) ≠0.206 [ ≠0.307, ≠0.104 ] 0.312 8 34
Prophet (produces patch) 0.021 [ ≠0.205, 0.246 ] 0.882 23 19
Prophet (correct patch) ≠0.206 [ ≠0.307, ≠0.104 ] 0.312 8 34

time to fix

SPR (produces patch) ≠0.175 [ ≠0.555, 0.205 ] 0.382 20 16
SPR (correct patch) ≠0.172 [ ≠0.681, 0.337 ] 0.501 7 29
Prophet (produces patch) ≠0.152 [ ≠0.537, 0.233 ] 0.447 19 17
Prophet (correct patch) ≠0.192 [ ≠0.710, 0.326 ] 0.452 7 29

Figure 2.14: Correlation between defect characteristics and repair quality. Defect
complexity and test suite e�ectiveness exhibit statistically significant associations with
the techniques’ ability to produce high-quality patches. SPR and Prophet are the
only two techniques that produce a su�cient number of high-quality patches for this
analysis. The 95% CI (confidence interval) column shows the range in which Somers’
d lies with a 95% confidence. Rows for which both the Mann-Whitney U test produces
a p value below 0.05 and the 95% CI does not span zero are bold. The data shown are
only for those defects classified as bugs and with known respective parameter values.

produce patches (recall Figure 2.13). A logistic regression of correct patches generated

by SPR and Prophet identified the same characteristics associating with producing

correct patches, and also identified C7 (patch adds an if statement) as statistically

significantly associating with producing correct patches (SPR p = 0.044, Prophet

p = 0.086). Both SPR and Prophet target defects that can be repaired by inserting or
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modifying conditional statements, explaining the observation that adding if statements

associates with producing correct patches.

None of the statistical tests revealed statistically significant results for the correct

patches for the defect importance and defect independence characteristics.

Only two of the considered repair techniques, Prophet and SPR, produce a

su�cient number of high-quality patches to evaluate. These techniques were

less likely to produce patches for more complex defects, and they were even less

likely to produce correct patches.

2.4.7 Feature Synthesis

We wanted to conduct the same statistical tests to measure correlation between

defect characteristics with the ability to synthesize features using those defects in

our benchmarks that are features, not bugs. Unfortunately, too few of the defects

were features: Features make up 29 of the 185 defects in ManyBugs (21 of the 105-

defect subset), and only 4 of the 224 in Defects4J. GenProgJ and KaliJ synthesize

none of the features and Nopol synthesizes 1. Meanwhile GenProgC synthesized

11, TrpAutoRepair synthesized 12 and AE synthesized 10 out of 29 features from

185-subset of ManyBugs and SPR synthesized 5, Prophet synthesized 4 and KaliC

synthesized 5 out of 21 features from 105-subset of ManyBugs. These sample sizes are

too small and none of our experiments revealed statistically significant results.

2.5 Discussion
This section discusses the implications of our findings (Section 2.5.1), makes

observations about our dataset and the use of the methodology that produced it

(Section 2.5.2), and analyzes potential confounding factors within our evaluation

(Section 2.5.3).
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2.5.1 Implications

Our data suggest several encouraging conclusions. First, APR techniques are

slightly more likely to produce patches for defects of a higher priority, and are equally

likely to produce patches for defects regardless of how long developer(s) took to fix

them. The former finding may suggest di�erences between low- and high-priority

defects, from the point of view of automated program repair. Second, while overall,

automated repair techniques were more likely to produce patches for defects that

required fewer edits by the developers to fix, the correlations were not strong for all

techniques, and the techniques were able to produce patches for some hard-to-repair-

manually defects. Producing larger patches requires search-based automated repair

techniques to explore more of the search space, which requires longer execution time.

As repair techniques typically operate with a time limit, finding such patches may be

more di�cult than smaller ones. The fact that techniques were able to find patches

for some defects that were hard to repair manually suggests that either the techniques

are able to sometimes successfully traverse the large search space, or that smaller

patches exist than the manually written ones.

At the same time, our data suggest that Java repair techniques had a harder

time producing patches for defects with more triggering or more relevant tests. This

finding is intuitive because each test executing code related to the defect represents

constraints on the patch. To produce a patch, the automated repair techniques have

to modify the code to satisfy all the constraints. The more constraints there are, the

harder it is to find a satisfying patch. Prior studies have found that higher-coverage

test suites can lead to higher-quality patches [252] and that larger search spaces lead

to a higher fraction of incorrect patches [176]. As a result, we find that test suites that

make it easier to produce a patch reduce, in expectation, the quality of the produced

patch. This identifies a research challenge of creating techniques that are capable of

either finding patches e�ectively even when constrained by high-quality test suites, or
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discriminating between low-quality and high-quality patches despite using test suites

that provide few guiding constraints.

We identified some evidence that targeting repair techniques to specific defects is

worthwhile, as defects that required a developer to write new if statements were more

likely to be correctly repaired by SPR and Prophet, two techniques designed to insert

or modify conditional statements. This provides preliminary evidence that perhaps

when automated repair techniques are applied to defects that developers patched using

the kinds of changes the techniques are designed to make, the techniques are capable

of making higher-quality changes.

2.5.2 Dataset Observations

The ManyBugs and Defects4J datasets lack certain kinds of data diversity to answer

some of our proposed research questions. For example, every defect in ManyBugs

that included dependence information did not depend on other defects. Similarly,

only two of the evaluated repair techniques produced su�ciently many high-quality

patches for our analysis to make statistically significant findings about patch quality.

Nevertheless, this study presents a methodology that can be applied to other datasets

to derive more data to answer these questions, particularly as the body of defects on

which automated program repair techniques are evaluated grows.

One of the goals of our study has been to create a methodology for evaluating

the applicability of automated program repair techniques that can be applied to new

techniques and help drive research toward improving such applicability. As such, none

of the defect characteristics we consider are specific to a repair technique. For example,

we define defect complexity in terms of the number of lines and number of files edited

by the minimized developer-written patch, and how easy it is to reproduce the defect.

We do not take into account that some repair techniques may, for example, find defects

that involve control flow more complex than ones that do not. Our study of RQ5
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empirically identifies several characteristics of the defects’ developer-written patches

(such as if the patch changes a conditional or adds a function argument) that associate

with the techniques’ ability to produce patches for those defects. Studying technique-

specific complexity of defects is also a worthwhile e�ort, but it is beyond the scope of

our work on creating a technique-agnostic applicability evaluation methodology.

2.5.3 Confounding Factor Analysis

To consider potential confounding factors in our analyses, we computed the

Spearman correlation coe�cients between all pairs of abstract parameters. Figure 2.15

shows these coe�cients for ManyBugs and Defects4J. The bold coe�cients are

statistically significant (p Æ 0.05) and underlined coe�cients are weakly statistically

significant (p Æ 0.1). To be conservative in our analysis, we consider all pairs

that correlate at least weakly significantly (p < 0.1) to pose potential confounding

factors. We found that for ManyBugs, the following pairs of cross-defect-characteristic

parameters correlated at least weakly significantly: file count correlates with relevant

test count and triggering test count, line count correlates with triggering test count and

statement coverage, and versions correlates with relevant test count. For Defects4J,

relevant test count correlates with time to fix and priority. (All other correlations of

at least weak statistical significance were within defect characteristics, e.g., file count

correlated with line count.)

For each correlating cross-characteristic parameter pair Èp1, p2Í, we created four

logistic regression models for repairability:

Model1: a model using only p1,

Model2: a model using only p2,

Model1+2: a model using a linear combination of p1 and p2 (p1 + p2), and

Model1ú2: a model using all possible interactions between p1 and p2 (p1 ú p2).

We then pairwise compare the models’ goodness of fit using the area under the curve
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ManyBugs
file line relevant triggering statement time

count count test count test count coverage to fix versions priority
line count 0.46

relevant test count ≠0.22 ≠0.13
triggering test count 0.05 0.14 ≠0.04

statement coverage ≠0.01 ≠0.14 0.30 0.03
time to fix 0.07 0.10 ≠0.19 0.11 0.02

versions 0.11 0.10 ≠0.30 ≠0.16 ≠0.12 0.18
priority ≠0.23 ≠0.50 0.12 ≠0.14 0.26 0.12 0.06

dependents — — — — — — — —
Defects4J

file line relevant triggering statement time
count count test count test count coverage to fix versions priority

line count 0.17
relevant test count 0.17 0.08

triggering test count 0.11 0.04 0.22
statement coverage 0.00 ≠0.02 ≠0.01 ≠0.03

time to fix 0.05 0.13 0.22 0.11 ≠0.02
versions ≠0.10 0.02 ≠0.02 ≠0.02 0.00 ≠0.15
priority 0.03 0.11 ≠0.13 ≠0.05 0.04 ≠0.19 0.10

dependents 0.04 0.09 ≠0.05 ≠0.10 0.05 0.17 ≠0.11 0.09

Figure 2.15: Confounding parameter analysis in annotated defect benchmarks.
Pairwise Spearman correlation coe�cients for the abstract parameters for the
ManyBugs and Defects4J defects. The bold coe�cients are statistically significant
(p Æ 0.05) and underlined coe�cients are weakly statistically significant (p Æ 0.1).

and determine the statistical significance in the models’ quality improvement. We

consider improvements that are at least weakly statistically significant to demonstrate

confounding factors. If Model1+2 shows a significant improvement over model Model1,

we determine that parameter p2’s contribution to the model is significant. Similarly,

if Model1+2 improves over Model2 then p1 contributes. Finally, if Model1ú2 improves

significantly on Model1+2, then there exists an interaction between p1 and p2 whose

contribution is significant.

Analyzing the correlated pairs of parameters, we find that:

• For all C techniques except TrpAutoRepair, relevant test count does not

contribute significantly to model quality beyond file count’s contribution. We

conclude, for our C analysis, that the observed correlation (weak, significant for

TrpAutoRepair) between relevant test count and repairability (Section 2.4.3)
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is not due to the confounding factor of relevant test count correlating with

file count. The interactions between relevant test count and file count do not

significantly contribute to the quality of model.

• For all C techniques, triggering test count does not contribute significantly

to model quality beyond file count’s contribution; however, for GenProgC,

the interactions of file count and triggering test count do o�er a significant

contribution. We conclude, for our C analysis, that the observed correlation

(moderate, weakly significant for TrpAutoRepair) between triggering test count

and repairability (Section 2.4.3) is likely largely due to the confounding factor of

triggering test count correlating with file count, and file count correlating with

repairability, although the combination of the two parameters does add some

useful information.

• For GenProgC, TrpAutoRepair, SPR, Prophet, and tC on the full 185-defect

ManyBugs, both line count and triggering test count contribute significantly to

model quality. For TrpAutoRepair, Prophet, and tC, ManyBugs, interactions

between the two parameters significantly contribute more than the individual

contributions of the parameters. We conclude, for our C analysis, that the

correlation between line count and triggering test count is not a confounding

factor.

• For each C technique except AE and tC on 185-defect ManyBugs, both line

count and statement coverage contribute significantly to model quality. The

interactions between the two o�er no significant contribution. We conclude, for

our C analysis, that the correlation between line count and statement coverage

is not a confounding factor.

• For each C technique except GenProgC, both relevant test count and versions

contribute significantly to model quality. The interactions between the two
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parameters do not contribute significantly more than the two parameters on

their own. We conclude, for our C analysis, that the correlation between relevant

test count and versions is not a confounding factor.

• For each Java technique except Nopol, both relevant test count and time to

fix contribute significantly to model quality. For Nopol, time to fix does not

contribute significantly to model quality beyond relevant test count’s contribution.

The interactions between the two parameters do not contribute additional

information. We conclude, for our Java analysis, that the correlation between

relevant test count and time to fix is not a confounding factor.

• For each Java technique except GenProgJ and KaliJ, priority and relevant

test count contribute significantly to the model quality. For GenProgJ and

KaliJ, priority does not contribute significantly beyond relevant test count’s

contribution. The interactions between the two parameters do not contribute

significantly more than the two parameters on their own. We conclude, for our

Java analysis, that the observed correlations (moderate, weakly significant for

GenProgJ and KaliJ) between priority and repairability (Section 2.4.1) is likely

largely due to the confounding factor of priority correlating with relevant test

count, and relevant test count correlating with repairability.

We conclude that the number of files edited by the developer-written patch is

a confounding factor to relevant and triggering test count in the ManyBugs

dataset, and that relevant test count is a confounding factor to priority in the

Defects4J dataset. All other observed correlations between the parameters do

not indicate confounding factors. Our earlier conclusions are not a�ected by this

analysis as only weak or weakly significant observed correlations in only a few

cases are a�ected by the confounding factors, and those observed correlations

did not lead to conclusions.
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2.6 Threats to Validity
This study investigates the relationship between automated repair techniques’

ability to produce patches and characteristics of the defects, test suites, and developer-

written patches for the defects. However, this study only begins to explore the

relationship between these characteristics and the quality of the patches (recall RQ6).

Future work needs to address this concern, as today, techniques repair very few of

the studied defects correctly, reducing the power of our analysis. The methodology

presented in this study can be applied to other defect benchmarks as they become

available, and to other repair techniques that focus on repair quality and applicability.

The goal of our study is to characterize the kinds of defects for which automated

program repair is capable of producing patches and high-quality patches. The study

is observational. Of course, given a defect, changing its metadata, such as its priority,

will not a�ect the techniques’ ability to produce patches, and our findings should be

viewed as directing research into improving or creating new automated program repair

techniques, not as methods for making existing repair techniques apply to specific

defects. However, some of our findings suggest how altering inputs to automated

program repair techniques may a�ect patch production, such as that increasing the

number of tests may make it more di�cult to produce a patch.

We took steps to ensure that our study is objective and reproducible. All

characteristics derived from source-code repositories and developer-written patches

are computed using deterministic scripts, available at:

https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData/.

However, some of the judgments with respect to which parameters are relevant to this

study are subjective. We addressed this threat by having two authors independently

collect parameters in eleven issue tracking systems, and independently measure all

subjective parameters for the defects we considered. The authors then merged their

findings, paying special attention to any disagreements in initial judgments.
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Our study relies on repairability and quality results presented by prior work [149,

150,175,177,184,227] and errors or subjective judgment quality in that work a�ects

our findings. As an example, GenProgC makes an assumption that the source code

files that must be edited to repair a defect are known [149,150]; this assumption may

not hold in practice, and that would threaten the generalizability of those repairability

results, and, in turn, our findings. Using results from multiple studies partially

mitigates this threat, although using an objective measure of quality, such as number

of independent tests a patch passes [252], would go farther. Unfortunately, such

an evaluation requires multiple, independent, high-quality test suites for real-world

defects, and such test suites do not exist for the ManyBugs benchmark, but do for

Defects4J.

While GenProgC was designed prior to ManyBugs, the other techniques have been

developed in part to compete with GenProgC on the then known (at least partially)

ManyBugs benchmark. This may a�ect the generalizability of the techniques to other

defects, which, in turn a�ects the generalizability of our results. We mitigate this

threat by using two defect benchmarks and multiple repair techniques.

Our study treats all parameters related to a characteristic as equally important.

This is likely an oversimplification of the real world. For example, defect priority is

likely a better indicator of a defect’s importance than the number of project versions

the defect a�ects. To mitigate this threat, we perform independent analyses with each

parameter.

Our study treats all defects related to the same issue in an issue tracking system

equally. This may contribute to noisy data. For example, a single issue, and commit,

may resolve two defects. One of these defects may be critical, while the other is not.

Our analysis, due to lack of finer granularity in the source code repository and issue

tracking system, considers both defects as critical, potentially a�ecting our findings.
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The relatively low number of such defects mitigates this threat, although another

study could remove such defects altogether.

We consider a developer-written patch to be a proxy of the complexity of the defect

it patches. In theory, there may be many other patches for the same defect, some

smaller and simpler and others larger and more complex. We mitigate this threat

by considering a large number of defects and using benchmarks of mature software

projects that are less likely to accept poorly written patches.

2.7 Contributions
Automated program repair has recently become a popular area of research, but

most evaluations of repair techniques focus on how many defects a technique can

produce a patch for. This study, for the first time, analyzes how characteristics of

the defects, the test suites, and the developer-written patches correlate with the

repair techniques’ ability to produce patches, and to a smaller degree, produce high-

quality patches. We study seven popular repair techniques applied to two large defect

benchmarks of real-world defects.

We find that automated repair techniques are less likely to produce patches for

defects that required developers to write a lot of code or edit many files, or that have

many tests relevant to the defect, and that Java techniques are moderately more likely

to produce patches for high-priority defects. The time it took developers to fix a

defect does not correlate with automated repair techniques’ ability to produce patches.

A test suite’s coverage also does not correlate with the ability to produce patches,

but higher coverage correlated with higher-quality patches. Finally, automated repair

techniques had a harder time fixing defects that required developers to add loops or

new function calls, or change method signatures.

We produce a methodology and data that extend the ManyBugs and Defects4J

benchmarks to enable evaluating new automated repair techniques, answering questions
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such as “can automated repair techniques repair defects that are hard for developers

to repair, or defects that developers consider important?”

Our findings both raise concerns about automated repair’s applicability in practice,

and also provide promise that, in some situations, automated repair can properly

patch important and hard defects. Recent work on evaluating repair quality [29,67,

184,227,252] has led to work to improve the quality of patches produced by automated

repair [122, 175,177]. Our position is that our work will similarly inspire new research

into improving the applicability of automated repair to hard and important defects.

While it is less likely for repair techniques to fix hard or complex bugs as indicated

in the findings, even for the relatively less complex bugs, the quality of patches

produced by many APR techniques are often of low quality [252] and not semantically

equivalent to developer-written patches [227]. This both raises an important concern

about the practical usability of modern APR techniques, and drives research toward

building techniques that produce higher-quality patches as described in the next

chapter of this dissertation.

The work described in this chapter is joint with Sandhya Sankaranarayanan,

René Just, and Yuriy Brun, and credit for this work is shared by all the researchers. Our

extensions to the ManyBugs and Defects4J benchmarks and the scripts we have used

to automate deriving the data for those benchmarks are available at https://github.

com/LASER-UMASS/AutomatedRepairApplicabilityData/. The published version of

this study [199] is available at http://dx.doi.org/10.1007/s10664-017-9550-0.
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CHAPTER 3

QUALITY OF AUTOMATIC PROGRAM REPAIR ON
REAL-WORLD DEFECTS

3.1 Introduction
APR techniques typically start with a defective program version and a set of

passing and failing tests, and then modify the program version until finding a patch

that makes all the tests pass. The underlying issue is that the set of tests provides a

partial specification of the desired behavior, and thus the produced patches may overfit

to those tests. This is known as the patch overfitting problem. For example, while,

typically, many patches in a technique’s search space pass the supplied tests, relatively

few are equivalent to the developer-written patch [177,227]; the APR technique has

no way of knowing which is the better patch to return.

To address the patch overfitting problem, we first need a method to evaluate

the quality of the produced patches. Prior studies of quality of APR have either

used manual inspection [184, 227], or have used automatically generated, independent,

evaluation test suites not used during the repair process [252, 307]. The issue with

manual inspection is that it cannot scale to evaluate hundreds of automatically

produced patches and can be subject to subconscious bias, especially if the inspectors

are authors of the tools being evaluated [141]. Contrastingly, using evaluation tests is

inherently partial, as the generated tests may undertest the patched program. Existing

studies that use evaluation tests focus on small programs and relatively-easy-to-fix

defects [252,307].

This chapter describes our work that overcomes three considerable new engineering

challenges. First, employing the objective, independent-test-suite-based evaluation of
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patch quality, requires the creation of high-quality, automatically-generated test suites

for real-world projects. We develop a methodology for using today’s state-of-the-art

test-suite generation techniques and overcoming their shortcomings to produce high-

quality suites, and we release both the methodology and the generated test suites.

Second, many APR techniques are designed and implemented for C (e.g., GenProg and

TrpAutoRepair) and Par, designed and implemented for Java, was never released. We

build JaRFly, the Java Repair Framework, which simplifies the implementation of Java

techniques for genetic improvement (including but not limited to genetic improvement

techniques for program repair), and release Java-based implementations of GenProg,

Par, and TrpAutoRepair. Our implementations of GenProg and TrpAutoRepair are

the first that faithfully follow the original techniques’ designs, improving prior attempts

at replicating these techniques for Java. Our release of the Par [123] implementation is

the first ever public release of Par. JaRFly is the first framework of its kind that can

handle the entire Defects4J dataset, including the Closure compiler subject program.

Third, while semantic code search can produce high-quality patches [122], such an

approach has never been demonstrated on real-world programs. We have designed

SOSRepair, a novel approach to using semantic code search to repair programs,

focusing on extending expressiveness to that of real-world C programs and improving

the search mechanism’s scalability.

This chapter is organized as follows. Section 3.2 describes our methodology to

evaluate APR quality. Section 3.3 describes the methods to analyze the factors that

could a�ect repair quality. Section 3.4 describes the repair techniques and the real-

world defects we use to evaluate repair quality and perform factor analyses. Section 3.5

describes the key findings in terms of the research questions. Section 3.6 discusses the

implications of our results, suggests future directions for research, and describes the

limitations of our choices of subject repair tools and defects. Section 3.7 addresses the

threats to validity of our study and Section 3.8 summarizes our contributions.
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3.2 Methodology to Evaluate Repair Quality
There are two established methods for evaluating quality of APR, using an

independent test suite not used during the construction of the patch [29, 252], and

manual inspection [184,227], typically for equivalence with a developer-written patch

(though manual inspection has been used to measure how maintainable the patches

are [83] and how likely developers are to accept them [123]). The two methodologies

are complementary. Intuitively, the methodology that uses an independent test suite

is more objective, whereas manual inspection is more subjective and can be subject to

subconscious bias, especially if the inspectors are authors of one of the techniques being

evaluated. A recent study found that manual-inspection-based quality evaluation can

be imprecise [141], while independent-test-suite-based quality evaluation is inherently

partial, as the independent test is a partial specification. As a result, manual evaluation

of quality can imprecisely label patches as correct and incorrect. The test-suite-based

evaluation cannot be imprecise, but may be incomplete, potentially mislabeling some

patches as correct but never labeling a correct patch as incorrect.

In this study, we select to use the test-suite-based quality evaluation method

because (1) it is objective and reproducible in a fully automated manner, (2) can scale

to complex, real-world defects in real-world systems, which are the focus of our work

(whereas manual inspection would require using the projects’ developers with intricate

project knowledge). Since this methodology necessarily underestimates overfitting (it

never labels a correct patch as incorrect) [141], our findings of overfitting are, at worst,

conservative. Two independent recent studies [141,307] have empirically demonstrated

that our independent-test-suite-based methodology is more reliable and more objective

than manual inspection.

To objectively measure the quality of a generated patch, we need two independent

test suites that specify the desired behavior of the program being repaired. One

test suite can be used by the repair techniques to produce a patch for a defect. The
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second, independent test suite is called the evaluation test suite; this test suite is used

to measure the patch’s quality. To create the second test suite, for each defect, we

generated test inputs using an o�-the-shelf automated test input generator, and using

the developer-repaired code as an oracle of correct behavior.

This repair-quality methodology is only e�ective if the evaluation test suite is of

high-quality. Coverage is widely-used in industry to estimate test-suite quality [105].

Using statement-level code coverage as a proxy for test suite quality, our goal was to

generate, for each defect, a high-coverage test suite, thus implying that a big portion

of the functionality of the inspected class is being evaluated. Specifically, we focused

on the statement coverage of the methods and classes modified by the developer-

written patch and designed a test generation methodology aimed to maximize that

coverage. Ideally, we want the evaluation test suite to have perfect coverage, but

modern automated test generation tools cannot achieve perfect coverage on all large

real-world programs, in part because of limitations of such tools such as possible

infinite recursion in the creation process or impreciseness of method signatures such

as Java generics [81]. Thus, we set as our goal to generate, for each defect, a test

suite that achieves 100% coverage on all developer-modified methods, and at least

80% coverage on all developer-modified classes. The choice of coverage criteria is a

compromise between a reasonable measure of covering all the developer changes and

the modern automated test generation tools’ ability to generate high-coverage test

suites.

We used the developer-patched version of the code to generate the evaluation test

suite because it guarantees that this test suite covers at least one way of repairing the

defect. An alternative to using the defective version of the code would not provide

such a guarantee. Our choice might cause the evaluation test suites to more accurately

measure the quality of patches that are structurally similar to the human-written

patches, and would bias that measurement more favorably toward patches whose
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behavior agrees with the human-written patches. Future work could attempt to

mitigate these concerns by combining test suites generated using multiple versions

of the code, and by using alternate information for oracles, such as natural language

specifications [22,90,197,265], other implementations of the same specification [188],

or even the unpatched version [296, 311], though each of those approaches would

introduce its own limitations.

To measure the quality of a produced patch, we start with the defective code

version, apply the patch to that code, and execute the generated evaluation test suite.

We call the total number of tests executed in the evaluation test suite Ttotal and the

number of tests the patched version passes Tpass. The quality of a patch is Tpass
Ttotal

, as

defined by prior work [252]. A patch that passes all the tests in the evaluation test

suite has 100% patch quality.

We also measure the quality of the defective code version by executing the

evaluation test suite prior to applying the patch. This allows us to identify the

quality improvement due to the patch.

3.3 Analyzing Factors That Could A�ect Repair Quality
This section describes the four factors we identify that could potentially a�ect the

quality of the patches produced by repair techniques and the methodologies to analyze

the association between the identified factors and repair quality.

3.3.1 Test-Suite Coverage and Size

Intuition suggests that higher coverage test suites used to produce patches should

lead to better-quality patches. Prior work empirically supports this intuition for

heuristics-based program repair [252]; however, that work approximated the test suite

coverage using test suite size and was not on real-world defects. In this study, we

use real-world defects, measure the actual statement-level code coverage instead of
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an estimate or proxy, and control for confounding factors, such as test suite size,

defects’ project, and the number of failing tests. In fact, prior studies of test suites

have identified test suite size as often a confounding factor [120]. For the Defects4J

dataset, we found statistically significant weak positive correlation (r = 0.14) between

test suite size and statement-level coverage of the developer-written test suite on the

defective code version. This is consistent with the prior studies [120].

Methodology: To measure the relationship between test suite coverage and repair

quality, we attempted to create subsets of the developer-written test suite of varying

coverage while controlling for test suite size, number of failing tests, and the defects

themselves. However, we found that there is very low variability in the coverage of

the individual tests and so we could not control for the test suite size while varying

coverage. Hence, we generate the subsets while controlling for the number of failing

tests and defects. Since test suite coverage and test suite size are positively correlated,

analyzing their association with repair quality individually would not be appropriate.

Thus, we use multiple linear regression to identify the relationship between two

explanatory variables (test suite coverage and test suite size) and a response variable

(repair quality).

For each of the defects patched by the repair techniques, we created subsets of the

developer-written test suite of varying coverage. Each subset contains all the tests

that evidence the defect, and randomly selected subsets of the rest of the tests. We

then used the repair techniques to produce patches using these test suite subsets,

and then computed the quality of the patches produced for each defect using the

automatically-generated evaluation test suites.

To generate the test suite subsets for each defect, we first compute the minimum

and the maximum code coverage ratio of the developer-written test suite of that defect.

The minimum code coverage ratio (covmin) of a developer-written test suite is the

statement coverage on the defective code version of just those tests that fail on the
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defective code version and pass on the developer-repaired code version. We include all

of these tests in every subset we generate, so their coverage is the minimum possible

coverage. The maximum code coverage ratio (covmax) is the statement coverage on the

defective code version of the entire developer-written test suite (the largest possible

subset). We then compute the potential test suite coverage variability as the di�erence

between the minimum and the maximum: �cov = covmax ≠ covmin. Defects whose

�cov < 25% lack su�cient variability in statement coverage to be used in this study,

and we discard them. We chose five target coverage ratios evenly spaced between

the minimum and the maximum: covmin + 1
5�cov, covmin + 2

5�cov, covmin + 3
5�cov,

covmin + 4
5�cov, and covmin + �cov = covmax.

We used these target ratios to create 25 distinct test suites, 5 for each of the

targets. For each target ratio c, we attempted to create five distinct test suite subsets

within a 5% margin of c. (Note that there are typically multiple ways to achieve even

covmax coverage.) Each of the five test suite subsets started with all tests that fail on

the defective code version and pass on the developer-repaired code version. We then

iteratively attempted to add a uniformly randomly selected passing test case, without

replacement, one at a time, as long as it did not make the subset’s coverage exceed the

target by more than 5%, stopping if the subset’s coverage was within 5% of the target.

If we attempted to add a test 500 times and failed to reach the target, we stopped.

Finally, for each technique, we computed a multiple linear regression considering

patch quality as the dependent variable and test suite coverage and size as independent

variables.

3.3.2 Defect Severity

The number of failing tests that trigger the defect are likely to be proportional

to the number constraints that repair techniques need to satisfy to generate a repair.
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The goal of this analysis is to measure the e�ect of the number of failing tests in the

test suite used for producing the patches on the quality of repair techniques.

Methodology: To measure the e�ect of the number of failing tests in the test suite

used to guide repair, we selected those defects that had at least 5 failing tests in the

developer-written test suite and for which we are able to create high-quality evaluation

test suite (recall Section 3.2). For each of the defects, we created 21 test suites subsets.

We did this by first computing five evenly distributed target sizes s: 1
5f , 2

5f , 3
5f ,

4
5f , and f , where f is the number of failing tests in the developer-written test suite

(rounding to the nearest integer). Then, for each s (except s = f), we created 5 test

suite subsets by including every passing test from the developer-written test suite,

and uniformly randomly sampling, without replacement, s of the failing tests. This

created 20 test suite subsets. We also included the entire developer test suite as a

representative of the s = f target, for a total of 21 test suite subsets. We then used

the four automated repair techniques to attempt to patch the defects using each of the

test suite subsets. Our methodology controls for the number of passing tests, unlike

the prior study [252].

Both patch quality and the number of failing tests in the test suite used to guide

repair are continuous variables, so we measure the association between these two

variables using the Pearson correlation coe�cient. This is typical for measuring the

linear relationship between two continuous random variables.

3.3.3 Test-Suite Provenance

Prior work has suggested that using automatic test generation might improve

program repair quality by increasing the coverage of the test suite used to produce the

repair [252,296,311]. Augmenting a developer-written test suite with automatically-

generated tests requires an oracle that specifies the expected test outputs. The

unpatched program can be used as that oracle [296, 311], but that enforces the
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assumption that the patch should avoid changing any behavior not explicitly exhibited

by the failing tests. Other implementations of the same specification could similarly

be used as an oracle [188], but this is only possible when multiple implementations

exist (e.g., if repairing a browser and the expected behavior can be observed in an

independent browser implementation) and requires defects in the implementations

to be independent, which is often not the case in practice [128]. Finally, oracles can

perhaps be extracted from comments or natural language specifications, for example

with Swami [197], Toradacu [90], Jdoctor [22], or @tComment [265].

However, an earlier study found that even when a perfect oracle exists, using

automatically-generated tests for program repair resulted in much lower quality

patches than using developer-written tests (about 50% vs. about 80% quality) on

small, student-written programs [252]. Thus, the goal of this analysis is to evaluate the

e�ectiveness of using automatically generated tests to produce high-quality patches

using program repair techniques.

Methodology: In this experiment, we compared the patches generated using

developer-written test suites to patches generated using the automatically generated

test suites. To control for the di�erences in the defects, properly measuring the

association between test suite provenance and patch quality should be done using

defects that can be patched using both kinds of test suites. If the set of defects patched

using developer-written test suites di�ers from the set of defects patched using the

automatically-generated test suites (as was the case in the earlier study [252]), then

the defects can be a confounding factor in the experiment. For example, it is possible

that more of the defects patched using one of the types of test suites are easier to

produce high-quality patches for, unfairly biasing the results.

We thus started with the defects for which at least one of the repair techniques was

able to produce a patch when using the developer-written test suites to guide repair,

and first discarded those defects for which the automatically generated test suites did

70



not evidence the defect. To evidence the defect, at least one test in the test suite has to

fail on the defective code version. (By definition, all automatically-generated tests pass

on the developer-patched version, since that version is the oracle for those tests.) We

next executed the repair techniques on the defects for which automatically generated

tests evidenced the defect. For each repair technique, we identified the set of defects

that were patched both using developer-written and using automatically-generated

test suites. We call these the in-common populations. Note that these populations

are, potentially, di�erent for each repair technique.

To compare the quality of the patches on the in-common patch populations, we

use the non-parametric Mann-Whitney U test. We choose this test because the two

populations may not be from a normal distribution. This test measures the likelihood

that the two populations came from the same underlying distribution. We compute

Cli�’s delta’s ” estimate to capture the magnitude and direction of the estimated

di�erence between the two populations. We also compute the 95% confidence interval

(CI) of the ” estimate.

3.3.4 Fault Localization Accuracy

Most program repair techniques use o�-the-shelf automated FL techniques to

identify suspicious program elements such as methods or statements. We hypothesize

that a potential reason for the repair techniques to produce low-quality patches is the

imprecise fault locations the repair techniques use to modify and produce patches.

The goal of this analysis is to test this hypothesis.

Methodology: Instead of using an o�-the-shelf automated FL technique, we manually

specify the candidate buggy code region that repair technique should modify. This is

also known as the perfect FL [166]. We use the location of the code the developer

modified to patch the defect as its candidate buggy code region, simulating the

developer suggesting where the repair technique should try to repair a defect. We
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then compare the number of defects correctly patched by the repair technique when

using perfect FL than when using an automated FL technique.

3.4 Subjects of Investigation
This section details the subjects we investigated, in terms of the APR techniques

and the real-world defects that these repair techniques could patch.

3.4.1 Automatic Program Repair Techniques

We conduct this study using two fundamentally di�erent kinds of APR techniques:

(1) Section 3.4.1.1 describes the four heuristics-based Java repair techniques and our

JaRFly framework that implements three of these techniques. (2) Section 3.4.1.2

describes SOSRepair, a semantics-based repair technique that we develop to patch

defects in large, real-world C programs. We analyze the e�ect of test-suite coverage and

size, defect severity, and test-suite provenance on repair quality (Sections 3.3.1–3.3.3)

using the heuristics-based repair techniques. We analyze the e�ect of fault localization

accuracy on repair quality (Section 3.3.4) using SOSRepair.

3.4.1.1 Heuristics-Based Repair Techniques

We chose the following four representative heuristics-based repair techniques for

our analysis. There are many existing heuristics-based techniques, often with similar

performance. However, an underlying theory of heuristics-based repair suggests that

analysis of a set of these techniques should generalize to others [282].

1. GenProg [147, 284] uses a genetic programming heuristic [133] to search the

space of candidate repairs. Given a buggy program and a set of tests, GenProg

generates a population of random patches by using statistical fault localization

to identify which program elements to change (those that execute only on failing

test cases or on both failing and passing text cases), and selecting elements from
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elsewhere in the program to use as candidate patch code. The fitness of each

patch is computed by applying it to the input program and running the result

on the input test cases; a weighted sum of the count of passed tests informs

a random selection of a subset of the population to propagate into the next

iteration. These patch candidates are recombined and mutated to form new

candidates until either a candidate causes the input program to pass all tests,

or a preset time or resource limit is reached. Because genetic programming is a

random search technique, GenProg is typically run multiple times on di�erent

random seeds to repair a bug.

2. Par [123] performs search by applying 12 fix templates — automatic program

editing scripts created based on the fix patterns identified from developer fixes —

in the locations they can be applied that are also identified as likely faulty by

statistical fault localization.

3. SimFix [111], mines code patterns (similar to Par templates) from frequently

occurring code changes from developer-written patches. Then, in the project with

the defect SimFix is attempting to repair, SimFix identifies code snippets that are

similar to the code SimFix has localized the defect to. SimFix defines similarity

using structural properties, variable names, and method names. SimFix ranks

the code snippets by the number of times the mined patterns have to be applied

to the snippet to replace the buggy code. SimFix then selects the snippets (one

at a time) from the ranked list of top 100 snippets, applies the pattern-based

modifications to produce a candidate patch, and validates the patch against the

purified failing tests created using a test purification technique [302]. While

the original paper describes SimFix stopping once a patch that passes the test

suite is found [111], the implementation [108] generates multiple patches which
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pass at least one of the purified failing tests. In this study, we use all the found

patches for our analyses.

4. TrpAutoRepair [224] uses random search instead of genetic programming

to traverse the search space of candidate solutions. Instead of running an

entire test suite for every patch, TrpAutoRepair uses heuristics to select the

most informative test cases first, and stops running the suite once a test fails.

TrpAutoRepair limits its patches to a single edit. It is more e�cient than

GenProg in terms of time and test case evaluations [224]. The same approach is

also called RSRepair [225], and we refer to the original algorithm name in this

study.

GenProg and TrpAutoRepair were originally designed and implemented for C and

Par was designed and implemented for Java, but was never released. We build JaRFly,

the Java Repair Framework, which simplifies the implementation of Java techniques

for genetic improvement (including but not limited to genetic improvement techniques

for program repair), and release Java-based implementations of GenProg, Par, and

TrpAutoRepair. We next describe the details of JaRFly framework.

JaRFly: The Java Repair Framework. JaRFly is our open-source framework

http://JaRFly.cs.umass.edu/

for implementing techniques for automatic search-based improvement (or genetic

improvement) of Java programs. Genetic improvement approaches reuse existing

software as input to metaheuristic search. The search goal is to identify variants of
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that input software that improve on the software according to some criterion (e.g.,

functionality, performance) [219].

JaRFly is publicly available to facilitate researchers and practitioners building

search-based improvement approaches for Java programs. The implementation includes

reimplementations of GenProg [147] and TrpAutoRepair [224] for Java (original releases

of these tools were for C programs), and releases the first public reimplementation of

Par [123].

JaRFly’s novelty and utility lie in the way it decouples the fundamental components

of metaheuristic search and allows developers to specify just those fundamental

components, taking care of the rest of the approach implementation. These components

include problem representation, fitness function, mutation operators, and search

strategy [98]. JaRFly provides high-level extension points for each of these components,

which di�erentiates it from prior frameworks that support implementing Java-based

repair techniques [185].

JaRFly simplifies the process of implementing genetic improvement approaches for

Java programs. JaRFly handles parsing Java programs into a specified representation,

and metaheuristic search over variants within that representation using specified

mutation operators, search strategy, and fitness function. JaRFly allows the user

to specify these representations, mutation operators, search strategies, and fitness

functions by selecting from a set of already implemented options, or by extending

with new versions via explicit extension points.

JaRFly improves on prior frameworks that support implementing Java-based repair

techniques [185] by making these fundamental components explicit and supporting

their extensions explicitly, while also handling a wider range of Java programs. For

example, JaRFly can operate over the Closure compiler subject program from the

Defects4J dataset, whereas prior frameworks cannot [185]. We next detail JaRFly’s

four fundamental components of metaheuristic search.
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Problem Representation. The first and perhaps most fundamental design choice

in applying metaheuristic search to a software engineering problem is deciding how

to represent the problem such that it is amenable to symbolic manipulation. The

most common representation choice in genetic improvement applications is the patch

representation, in which an individual candidate solution is represented as a variable-

length sequence of edits to the original program [147, 148]. In addition to Java,

variations of and improvements on this representation choice can target Python [3]

and C [209, 210] programs. Prior to the development of the patch representation,

genetic-programming-based program repair operated over problems represented as a

fixed-length weighted path through the program represented as an abstract syntax

tree [80, 284]; as is typical in metaheuristic search, representation choice influences

search success and e�ciency [148]. By making this representation an explicit choice,

and extension point, JaRFly enables developers to both pay proper attention to the

choice of representation and to evaluate multiple representation choices.

JaRFly’s Representation interface exports functionality for manipulating and

evaluating a candidate solution in the context of a search-based program improvement

approach. This includes support for

1. querying variant-specific localization information,

2. evaluating fitness, such as serializing a variant to disk and compiling it, or

running one or more test cases against a given variant, tasks common to most

genetic improvement approaches, depending on fitness function, and

3. assessing the validity of and applying mutation operators to the particular

variant.

To that end, JaRFly’s Representation is parameterized by a mutation interface

that provides functionality for editing arbitrary Java programs.
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JaRFly provides prebuilt implementations of (1) an abstract superclass that

supports caching and serialization of common representation-independent intermediate

data, such as a fitness cache, and (2) a classic patch representation for program repair

problems in Java. The currently-implemented patch representation is a variable-length

list of indivisible mutation operators, such as “Insert statement S at location L”;

mutating this representation adds a new edit to the end of the current variant. It

is straightforward to implement other choices without requiring major refactoring of

the framework. For example, Oliveira et al. [209, 210] propose a novel patch-based

representation that decouples the fault, operator, and fix spaces, with implications for

crossover (but no other components of the search strategy); this could be achieved

for Java in our framework by specializing the present patch-based representation

(specifically the getGenome method) and implementing the new crossover operators in

dedicated methods in the Population module.

Fitness Function. Applying metaheuristic search to a software engineering problem

requires a fitness function to determine the fitness of a variant. Thus, this function

must operate on the representation. JaRFly makes the choice of the fitness function

explicit.

The most typical fitness function in modern repair approaches is a weighted sum

of the number of test cases passed by a program variant. Sampling can reduce the

computational cost of this fitness function [78]. Alternative fitness functions for

program repair typically combine test cases with another objective, such as in a multi-

objective search strategy. These alternative objectives can include a variant’s similarity

to patches in a dataset of previous developer-written patches [145], or its intermediate

semantic distance according to a set of learned invariants over intermediate program

state [64,78] or according to memory values [56] from either the original program or

the rest of the population.
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JaRFly provides an extensible, representation-agnostic Fitness module that, by

default, implements and provides configuration options for multiple common fitness

strategies from the genetic improvement literature. These strategies include test

execution at di�erent levels of JUnit granularity (individual JUnit method, or entire

JUnit class), and configuration options for test sampling (including generational versus

individual sampling, and a configurable sample rate), and test selection (sampled,

heuristically modeled [224,282], or test to first failure). JaRFly’s Fitness interface

is agnostic to the underlying testing methodology, so it is not limited to using

JUnit for fitness calculation. Fitness provides, by default, the idea of a (potentially

dynamically-updated) test model, supporting experiments and extensions focused on

more intelligent test selection and prioritization. JaRFly, moreover, extends (in a

non-default branch) Fitness to evaluate and provide additional values, such as an

experimental diversity-based metric [64], in the context of a multi-objective search

strategy (NSGA-II [57]) extended from the Search module. Other measures of fitness,

such as via comparison to a historical dataset of patches [145], can similarly extend

Fitness.testFitness for more specialized, non-test-driven metrics.

Mutation Operators. Metaheuristic search requires a set of manipulation operators

applicable to the selected representation. JaRFly provides the EditOperation

abstraction, parameterized by a rewriter engine that can modify arbitrary Java

programs. JaRFly’s default implementation uses the Eclipse JDT API to perform

rewriting. An EditOperation is instantiated at a particular (abstract) Location,

and may contain one or more abstract Holes that need to be filled in with suitable

code. For example, an Append operation can be instantiated at any statement in a

Java location; it has a single Hole that must be filled in by a piece of code that may

be appended there.

JaRFly implements all of the statement-level edit operations used by GenProg

and TrpAutoRepair and all Par fix templates, including the optional ones from https:
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//sites.google.com/site/autofixhkust/home/, not included in the original Par

paper [123]. Both GenProg and TrpAutoRepair construct modifications by reusing

code from elsewhere in the program under repair. The Representation enforces this

type of modification, providing information on legal Locations and code bank code

that can be used to fill in Holes for a particular variant. Meanwhile Par uses 12

fix templates — automatic program editing scripts created based on the fix patterns

identified from developer-written patches. As with the coarser-grained operations used

by GenProg and TrpAutoRepair, the Representation provides the possible values to

fill in Holes in Par’s fix templates, such as which variable should be checked for null

in the null-check-insertion template.

Some EditOperations cannot be applied at all Locations. For example, an Append

operation cannot insert code that references out-of-scope variables, or the result will

not compile. JaRFly creates EditOperations via a helper JavaEditFactory, which

queries a variant via its Representation interface for information to determine the

edit’s legality. JaRFly implements a set of static semantic checks that can identify edits

that will be rejected by the compiler. Previous work demonstrated that static semantic

checks improve e�ciency in genetic programming repair for C programs [148]. Java’s

compiler is substantially stricter than most C compilers, requiring commensurately

more complex static checks to avoid invalid mutations.

Although we use the released SimFix implementation for our experiments, the

mutation operators considered by SimFix could be implemented further as abstractions

or extensions of this paradigm. Mutation operators are typically associated with

weights that inform their selection and application. In the default implemented

algorithms, these weights are fixed throughout the search strategy. However, they are

customizable by design, such as via a machine-learned model of edit frequency drawn

from historical, developer-written patches [177,256].
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Search Strategy. The choices of representation and mutation operators represent the

space of possible variants metaheuristic search can explore, and the choice of fitness

function represents the objective shape of that search space. The search strategy

defines the path through the space the metaheuristic search uses to optimize the

objective.

Common search strategies include local search, random search, and genetic

programming. JaRFly’s Search interface provides a representation-agnostic extension

point for implementing search strategies, and implements five strategies, to facilitate

comparison and customization. The implemented strategies are a random search,

a weighted brute force single-edit search, an oracle search, a genetic programming

heuristic, and NGSA-II [57], a multi-objective evolutionary search strategy.

In addition to these four fundamental components of the metaheuristic search,

JaRFly includes implementation and support for other common and important

interfaces and utilities for search-based program modification:

Population Manipulation. JaRFly implements crossover and selection strategies

common in source-level evolutionary program manipulation. The implemented

crossover strategies include one-point crossover, uniform crossover [284], and crossback

crossover (crossover with the original unmodified representation) [284]. The one

implemented selection strategy is tournament selection with configurable tournament

sizes. JaRFly contains extension points to make adding new crossover and selection

operators straightforward and independent of representation. Additionally, JaRFly

allows setting the proportional mutation rate as a top-level configuration option.

Localization and Code Bank Management. Fault and fix localization are

common concerns in search-based program repair or improvement. JaRFly implements

common weighted path localization with configurable path weights, facilities for reading

in arbitrary localization data from a file, and an abstract class for implementing
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alternative localization strategies [226]. JaRFly uses the JaCoCo coverage library to

compute coverage for the purposes of fault localization [72].

These facilities support significant (but straightforward) customization and investig-

-ation of all elements of a meta-heuristic search technique for program transformation.

Implementing di�erent metaheuristic search strategies (regardless of the search goal)

requires specialization of a single Search class; investigating or isolating the e�ect

of particular search features (such as selection, crossover or mutation rate, or the

numerous other parameters influencing the traversal strategy in a genetic algorithm)

requires the specialization of single methods, or the modification of existing top-level

configuration options. These choices enable significant ongoing experimentation and

specialization of the search component of a search-based or genetic improvement

program modification strategy, without requiring reimplementation or modification of

how programs under modification are represented, manipulated, or evaluated.

3.4.1.2 SOSRepair: Semantics-Based Repair Technique

We designed a novel repair technique called SOSRepair which builds on the

underlying principles of SearchRepair [122], a semantics-based repair technique that is

able to produce high-quality patches (patches passed 97.3% of independent, evaluation

tests not used during patch construction) for bugs in small 24-line student-written

C programs but could not be run on large programs. We fundamentally redesigned

SearchRepair to create SOSRepair which is able to produce high-quality patches for

large, real-world C programs. Appendix C describes the details of the SOSRepair

approach and implementation.

3.4.2 Defect Benchmarks

To evaluate the quality of the four heuristics-based Java repair techniques we use

Defects4J (v1.1.0) [119] benchmark, which consists of 357 defects taken from five

real-world, open-source Java projects (recall Section 2.3.2).
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To evaluate the quality of SOSRepair, we use the ManyBugs [149] benchmark,

which consists of 185 defects taken from nine large, open-source C projects (recall

Section 2.3.2). SOSRepair’s is applicable to the 65 of the 185 ManyBugs defects (for

details see Section C.4.1.2 in Appendix C).

3.5 Evaluating Repair Quality and Key Findings
In this section, we first summarize the key findings of this study in terms of the

research questions we ask. Next, we describe the key findings of statistically analyzing

factors that could a�ect repair quality. Finally, we describe the results that lead to

the summarized findings.

We ask the following eight research questions.

RQ1 Do heuristics-based repair techniques produce patches for real-world Java defects?

Answer: Yes, although less often than for C defects. Overall, at least one of the four

techniques produced at least one patch for 106 (29.7%) out of the 357 defects

available in the Defects4J benchmark.

RQ2 Does SOSRepair produce patches for real-world C defects?

Answer: Yes, SOSRepair produces patches for 22 (34%) of the 65 defects available in the

ManyBugs benchmark on which SOSRepair is applicable.

RQ3 How often and how much do the patches produced by heuristics-based techniques

overfit to the developer-written test suite and fail to generalize to the evaluation

test suite, and thus ultimately to the program specification?

Answer: Often. For the four techniques we evaluated, only between 13.8% and 41.6%

of the patches pass 100% of an independent test suite. Patches typically break

more functionality than they repair.
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RQ4 How often and how much do the patches produced by SOSRepair overfit to the

developer-written test suite and fail to generalize to the evaluation test suite,

and thus ultimately to the program specification? How does this compare with

the state-of-the-art?

Answer: Often. While SOSRepair patches more defects than prior techniques, the repair

quality of SOSRepair is comparable to the quality of other state-of-the-art repair

techniques as SOSRepair patches produced for only 9 (41%) of the 22 defects

pass all the tests in the evaluation test suite.

RQ5 How do the coverage and size of the test suite used to produce the patch a�ect

patch quality?

Answer: Larger test suites produce slightly higher-quality patches, though, surprisingly,

the e�ect is extremely small. Also surprisingly, higher-coverage test suites

correlate with lower quality, but, again, the e�ect size is extremely small.

RQ6 How does the number of tests that a buggy program fails a�ect the degree to

which the generated patches overfit?

Answer: The number of failing tests correlates with slightly higher quality patches.

RQ7 How does the test suite provenance (whether it is written by developers or

generated automatically) influence patch quality?

Answer: Test suite provenance has a significant e�ect on repair quality, although the

e�ect may di�er for di�erent techniques. In most cases, human-written tests

lead to higher-quality patches.

RQ8 How does FL accuracy a�ect the quality of patches produced by SOSRepair?

Answer: FL accuracy can significantly improve repair quality. Manually improving FL

accuracy significantly improved (9 (41%) vs. 16 (70%)) the quality of the patches
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produced by SOSRepair and also enabled it to patch one more defect (22 (34%)

vs. 23 (35%)).

In the following sections, we describe the details of the results obtained for each of

the above research questions.

3.5.1 Repairability: Ability to Produce a Patch

RQ1: Do heuristics-based repair techniques produce patches for real-world Java

defects?

Figure 3.1(a) reports the results of the repair attempts made by the four heuristics-

based techniques. GenProg patches 49 out of 357 defects (6 Chart, 15 Closure, 9 Lang,

18 Math, and 1 Time) and produces a total of 585 patches, out of which 255 are

unique. Par patches 38 out of 357 defects (3 Chart, 12 Closure, 7 Lang, 15 Math, and

1 Time), and produces a total of 288 patches, out of which 107 are unique. SimFix

patches 68 out of 357 defects (8 Chart, 15 Closure, 13 Lang, 27 Math, and 5 Time) and

produces a total of 76 patches, out of which 73 are unique. TrpAutoRepair patches 44

out of 357 defects (7 Chart, 12 Closure, 8 Lang, 16 Math, and 1 Time) and produces

a total of 513 patches, out of which 199 are unique. Overall, at least one technique

produced at least one patch for 106 out of the 357 defects. All techniques produced

at least one patch for 12 defects. SimFix most often produced patches (21.3% of the

attempts) and produced patches for the most defects (19.0%). Figure 3.1(b) shows the

distributions of unique patches, per project, generated by each of the four techniques.

Compared to prior studies on C defects [252], [149,224], the Java repair mechanisms

produce patches on fewer repair attempts and for fewer defects. On C defects, GenProg

produced patches for between 47% (ManyBugs defect dataset) and 60% (IntroClass

defect dataset) and TrpAutoRepair produced patches for between 52% (ManyBugs)

and 57% (IntroClass) defects. It is not surprising that on real-world defects, the rate

is lower. Our findings are also consistent with prior work applying heuristics-based
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patches defects
technique total unique patched
GenProg 585 (8.2%) 255 49 (13.7%)
Par 288 (4.0%) 107 38 (10.6%)
SimFix 76 (21.3%) 73 68 (19.0%)
TRPAutoRepair 513 (7.2%) 199 44 (12.3%)
total 1,462 (6.7%) 634 106 (29.7%)

(a) Produced patches

(b) Unique patch distributions, per technique

Figure 3.1: Repairability of heuristics-based techniques on real-world Java defects.
(a) GenProg, Par, SimFix, and TrpAutoRepair produce patches 1,462 times (6.7%) out
of the 21,777 attempts. At least one technique can produce a patch for 106 (29.7%) of
the 357 real-world defects. (b) The distributions of unique patches produced by the
four techniques are similarly shaped.

repair to Java defects, which found techniques to produce patches for 9.8%–15.6% of

the defects [184]. In a prior study on Java defects, Par produced patches for 22.7%

of the defects [123]. While that study’s defects also came from real-world software

projects, it is possible that the complexity of Defects4J defects results in the lower

patch rates for Par. Some of the prior study’s defects came from Lang and Math,

projects that are also part of Defects4J (though a di�erent set of defects), and our

results on those projects are similar to those in the prior study [123]. Even though

SimFix patches more defects (19.0%) than other techniques, the fraction of defects

patched by SimFix is still much lower (19.0% vs. 47%) than that those obtained using

repair techniques for C defects.
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We conclude that heuristics-based techniques do produce patches on real-world

Java defects, though the rate of patch production is lower than on C defects.

RQ2: Does SOSRepair produce patches for real-world C defects?

The first four columns of Figure 3.2 show the project, size of source code, number

of developer-written tests, and the number of defective versions of the ManyBugs

programs we use to evaluate SOSRepair. These defects require developers to edit one

or more consecutive lines of code in a single location. As shown, SOSRepair patches

22 of the 65 defects.

program kLOC tests defects patched
gmp 145 146 2 0
gzip 491 12 4 0
libtiff 77 78 9 8
lighttpd 62 295 5 1
php 1,099 8,471 39 9
python 407 355 4 2
wireshark 2,814 63 2 2
total 5,095 9,420 65 22

Figure 3.2: Repairability of SOSRepair on real-world C defects. The table shows the
programs in the ManyBugs benchmark that contain defects on which SOSRepair is
applicable and the number of each for which SOSRepair generates a patch.

We conclude that SOSRepair produces patches for 22 (34%) of the 65 defects

available in the ManyBugs benchmark on which SOSRepair is applicable..

3.5.2 Repair Quality

RQ3: How often and how much do the patches produced by heuristics-based

techniques overfit to the developer-written test suite and fail to generalize to the

evaluation test suite, and thus ultimately to the program specification?
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To analyze the quality of patches produced by heuristics-based techniques, we

use EvoSuite [81] to generate high-quality, held-out evaluation test-suites for the

106 Defects4J defects patched by these techniques (recall Section 3.5.1) following

the methodology described in Section 3.2. Figure 3.3 shows the distributions of the

quality of the patches produced by each technique. Due to the nature of the space

of possible patches, all four techniques produce the same patch for some defects,

which, for example, caused the minimum exhibited quality patch to be identical for

all four techniques. Overall, 74.1% of the patches (GenProg: 75.7%, Par: 86.2%,

SimFix: 53.9%, and TrpAutoRepair: 80.5%), on average, failed at least one test,

thus overfitting to the specification and failing to fully repair the defect. The mean

quality of the patches varied from 95.7% to 96.4%. The relatively high fraction is not

necessarily a proportional indication of the quality of repair: Defective code versions

already pass 98.3% of the tests, on average, so a patch that passes 96.0% of the tests

may not even be an improvement over the defective version.

Accordingly, next, we consider whether patches improve program quality. Figure 3.4

shows, for each of the patched defects, the change in the quality between the defective

version and the patched version. A negative value implies that the patched version

failed more evaluation tests than the defective version. When a technique produced

multiple distinct patches for a defect, for this comparison, we used the highest-quality

patch. For GenProg, 33.3% of the defects’ patches improved the quality, 42.5%

showed no improvement, and the remaining 24.2% decreased quality. For Par, 20.0%

improved, 40.0% showed no improvement, and 40.0% decreased quality. For SimFix,

45.8% improved, 35.5% showed no improvement, and 16.7% decreased quality. For

TrpAutoRepair, 32.3% improved, 25.8% showed no improvement, and 41.9% decreased

quality. For Par and TrpAutoRepair, more patches broke behavior than repaired it,

and the decrease in quality was, on average, larger than the improvement. For all

the techniques, the majority (89 out of 137, 65.0%) of the patches decrease or fail to
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patch quality 100%-quality
technique minimum mean median maximum patches
GenProg 64.8% 95.7% 98.4% 100.0% 24.3%
Par 64.8% 96.1% 98.5% 100.0% 13.8%
SimFix 65.0% 96.3% 99.9% 100.0% 46.1%
TrpAutoRepair 64.8% 96.4% 98.4% 100.0% 19.5%

Figure 3.3: Repair quality of heuristics-based techniques on real-world Java defects.
The quality of the patches the repair techniques generated when using the developer-
written test suite varied from 64.8% to 100.0%. The distributions of patch quality
is skewed toward the 100% end. On average, 74.1% (GenProg: 75.7%, Par: 86.2%,
SimFix: 53.9% and Trp: 80.5%) of the patches failed at least one test.

improve quality, and more than a quarter (39 out of 137, 28.5%) of the patches break

even more tests than they fix.

These results are consistent with the previous findings obtained using C repair

techniques on small programs, where the median GenProg patch passed only 75%

(mean 68.7%) of the evaluation test suite and the median TrpAutoRepair patch passed

75.0% of the evaluation test suite (mean 72.1%) [252].

We conclude that repair tool-generated patches on real-world Java defects often

overfit to the test suite used in constructing the patch, often breaking more

functionality than they repair.
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GenProg Par
33 defects 25 defects

SimFix TrpAutoRepair
48 defects 31 defects

change in quality due to patch
technique minimum mean median maximum
GenProg ≠30.9% ≠1.7% 0.0% 2.6%
Par ≠30.9% ≠2.8% 0.0% 1.5%
SimFix ≠24.9% 0.2% 0.0% 35.0%
TrpAutoRepair ≠30.9% ≠2.1% 0.0% 3.8%

Figure 3.4: Patch overfitting. Change in quality between the defective version and
the patched version of the code. The median patch neither improves nor decreases
quality. While more GenProg patches improve the quality than decrease it, the
opposite is true for Par and TrpAutoRepair patches, and, on average, patches break
more functionality than they repair. The data presented are for the 45 defects with
high-quality evaluation test suites, of which GenProg produced patches for 33, Par for
25, and TrpAutoRepair for 31.
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RQ4: How often and how much do the patches produced by SOSRepair overfit

to the developer-written test suite and fail to generalize to the evaluation test suite,

and thus ultimately to the program specification? How does this compare with the

state-of-the-art?

To analyze the patch quality of SOSRepair and other APR techniques on ManyBugs

defects, we create held-out evaluation test-suites using the following method. For a

given defect, we automatically generate unit tests for all methods modified by either

the project’s developer or by at least one of the APR techniques in our evaluation.

We do this by constructing small driver programs that invoke the modified methods:

• Methods implemented as part of an extension or module can be directly invoked

from a driver’s main function (e.g., the substr_compare method of php string

module.)

• Methods implemented within internal libraries are invoked indirectly by using

other functionality. For example, the method do_inheritance_check_on_method of

zend_compile library in php is invoked by creating and executing php programs

that implement inheritance. For such methods, the driver’s main function sets

the values of requisite global variables and then calls the functionality that

invokes the desired method.

We automatically generate random test inputs for the driver programs that then

invoke modified methods. We generate inputs until either the tests fully cover the target

method or until adding new test inputs no longer significantly increases statement

coverage. For four php and two lighttpd scenarios for which randomly generated

test inputs were unable to achieve high coverage, we manually added new tests to

that e�ect. For libtiff methods requiring ti� images as input, we use 7,214 ti�

images randomly generated and released by the AFL fuzz tester [4]. We use the

developer-patched behavior to construct test oracles, recording logged, printed, and
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returned values and exit codes as ground truth behavior. If the developer-patched

program crashes on an input, we treat the crash as the expected behavior.

Figure 3.5 shows the percent of evaluation tests passed by the SOSRepair. along

with Angelix [190], Prophet [177], and GenProg [150], the state-of-the-art repair

techniques we compare SOSRepair with. As shown, SOSRepair produces more patches

(9, 41%) that pass all independent tests than Angelix (4), Prophet (5) and, GenProg (4).

This suggests that semantic code search is a promising approach to generate high-

quality repairs for real defects, and that it has potential to repair defects that are

outside the scope of other, complementary repair techniques.

We conclude that while SOSRepair patches more defects than prior techniques,

the repair quality of SOSRepair is comparable to the quality of other state-of-

the-art repair techniques as SOSRepair patches produced for only 9 (41%) of

the 22 defects pass all the tests in the evaluation test suite.

3.5.3 Test-Suite Coverage and Size

RQ5: How do the coverage and size of the test suite used to produce the patch

a�ect patch quality?

We performed this analysis using the four heuristics-based repair techniques

(Section 3.4.1.1) and the Defects4J benchmark (Section 3.4.2). Using the methodology

described in Section 3.3.1, we were able to generate five distinct test suite subsets of

varying coverage for 45 defects. For each of the 45 defects, we had 25 test suite subsets,

and we attempted each repair 20 times using GenProg, Par, and TrpAutoRepair on

di�erent seeds, and one time using SimFix. In total, these 23,625 repair attempts

produced 9,144 patches. Figure 3.6(a) shows the distribution of these patches. GenProg

produced at least one patch for 29 out of the 45 defects, Par 25, SimFix 34, and

TrpAutoRepair 29. (GenProg: 6 Chart, 2 Closure, 10 Lang, 10 Math, and, 1 Time;

Par: 5 Chart, 1 Closure, 8 Lang, 10 Math, and, 1 Time; SimFix: 6 Chart, 3 Closure,
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program ID: revision pair coverage Angelix Prophet GenProg SOSRepair SOSRepairü

gmp-2: 14166-14167 — 4 8 4 8 8
gzip-2: 3fe0caeada-39a362ae9d — 8 4 8 8 8
gzip-3: 1a085b1446-118a107f2d — 8 8 4 8 8
gzip-4: 3eb6091d69-884ef6d16c — 4 8 8 8 8
libtiff-1: 3b848a7-3edb9cd 90% 4 99% 4 99% 4 97% 4 97% " 8
libtiff-2: a72cf60-0a36d7f 76% 4 100% 8 4 100% 4 100% " 4 100% "
libtiff-3: eec4c06-ee65c74 73% 4 96% 4 96% 4 96% 4 96% " 4 96% "
libtiff-4: 09e8220-f2d989d 96% 8 8 8 4 59% ! 4 100% -
libtiff-5: 371336d-865f7b2 50% 4 100% 8 4 98% 4 99% ! 8
libtiff-6: 764dbba-2e42d63 73% 4 92% 4 92% 4 28% 4 99% " 4 99% !
libtiff-7: e8a47d4-023b6df 82% 4 100% 8 4 0% 4 100% " 4 100% !
libtiff-8: eb326f9-eec7ec0 90% 8 4 100% 4 100% 4 60% - 4 100% -
libtiff-9: b2ce5d8-207c78a — 8 8 8 8 8
lighttpd-1: 2661-2662 50% NA 4 100% 4 100% 4 100% - 4 100% -
lighttpd-3: 2254-2259 — NA 8 8 8 8
lighttpd-4: 2785-2786 — NA 8 8 8 8
lighttpd-5: 1948-1949 — NA 4 8 8 8
php-1: 74343ca506-52c36e60c4 89% NA NA 4 17% 4 100% ! 4 100% !
php-2: 70075bc84c-5a8c917c37 86% 4 100% 4 100% 4 0% 4 100% " 4 100% "
php-3: 8138f7de40-3acdca4703 63% ‡ 4 100% 8 4 100% - 8
php-4: 1e6a82a1cf-dfa08dc325 100% NA NA 8 4 53% - 4 53% -
php-5: ff63c09e6f-6672171672 79% NA NA 4 80% 4 90% ! 4 50% -
php-6: eeba0b5681-d3b20b4058 40% NA NA 4 0% 4 0% - 4 100% !
php-7: 77ed819430-efcb9a71cd 70% 8 4 100% 4 50% 4 100% - 8
php-8: 01745fa657-1f49902999 100% 4 67% 8 4 100% 4 67% ! 8
php-9: 7aefbf70a8-efc94f3115 79% NA NA 8 4 91% ! 8
php-14: 0a1cc5f01c-05c5c8958e — NA NA 4 8 8
php-15: 5bb0a44e06-1e91069eb4 — 8 4 8 8 8
php-16: fefe9fc5c7-0927309852 — 8 4 4 8 8
php-17: e65d361fde-1d984a7ffd — 4 4 8 8 8
php-18: 5d0c948296-8deb11c0c3 — 8 8 8 8 8
php-19: 63673a533f-2adf58cfcf — 4 4 8 8 8
php-20: 187eb235fe-2e25ec9eb7 — 4 4 4 8 8
php-21: db01e840c2-09b990f499 — 8 8 8 8 8
php-22: 453c954f8a-daecb2c0f4 — 8 8 4 8 8
php-23: b60f6774dc-1056c57fa9 — 4 4 8 8 8
php-24: 1f78177e2b-d4ae4e79db — NA NA 8 8 8
php-25: 2e5d5e5ac6-b5f15ef561 — NA NA 4 8 8
php-26: c4eb5f2387-2e5d5e5ac6 — NA NA 4 8 8
php-27: ceac9dc490-9b0d73af1d — NA NA 4 8 8
php-28: fcbfbea8d2-c1e510aea8 — NA NA 8 8 8
php-29: 236120d80e-fb37f3b20d — NA NA 4 8 8
php-30: 55acfdf7bd-3c7a573a2c — NA NA 4 8 8
php-31: ecc6c335c5-b548293b99 — NA NA 4 8 8
php-32: eca88d3064-db0888dfc1 — NA NA 4 8 8
php-33: 544e36dfff-acaf9c5227 — NA NA 8 8 8
php-34: 9de5b6dc7c-4dc8b1ad11 — NA NA 4 8 8
php-35: c1322d2505-cfa9c90b20 — NA NA 4 8 8
php-36: 60dfd64bf2-34fe62619d — NA NA 4 8 8
php-37: 0169020e49-cdc512afb3 — NA NA 8 8 8
php-38: 3954743813-d4f05fbffc — NA NA 8 8 8
php-39: 438a30f1e7-7337a901b7 — NA NA 8 8 8
python-1: 69223-69224 100% NA 4 33% 8 4 76% - 4 76% -
python-2: 69368-69372 72% NA 4 54% 8 4 50% ! 4 50% -
python-3: 70098-70101 — NA 4 8 8 8
python-4: 70056-70059 — NA 8 4 8 8
wireshark-1: 37112-37111 100% 4 87% 4 87% 4 87% 4 100% " 4 100% "
wireshark-2: 37122-37123 100% NA NA 4 87% 4 100% " 4 100% "

Ÿ

additional defects patched by SOSü Ÿ

gmp-1: 13420-13421 97% 4 99% 4 99% 8 8 4 100% -
gzip-1: a1d3d4019d-f17cbd13a1 79% ‡ 4 100% 8 8 4 100% -
lighttpd-2: 1913-1914 56% NA 4 100% 8 8 4 100% !
php-10: 51a4ae6576-bc810a443d 90% NA NA 4 92% 8 4 92% -
php-11: d890ece3fc-6e74d95f34 72% ‡ 4 100% 8 8 4 100% -
php-12: eeba0b5681-f330c8ab4e 42% NA NA 4 0% 8 4 100% -
php-13: 80dd931d40-7c3177e5ab 71% NA NA 8 8 4 100% -

Figure 3.5: Repair quality of SOSRepair on real-world C defects. SOSRepair patches
22 of the 65 considered defects, 9 (41%) of which pass all of the independent tests.
When manually provided a fault location (SOSRepairü), it patches 23 defects, 16
(70%) of which pass all of the independent tests. Coverage is the mean statement-
level coverage of the independent tests on the patch-modified methods. 4 means a
patch was produced, 8 means a produce could not be produced, and NA means the
defect was not attempted by a technique. Three of the released Angelix patches [190]
(denoted ‡) do not automatically apply to the buggy code.
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(a) Distribution of patches generated using varying-coverage test suites.

patch quality 100%-quality
technique minimum mean median maximum patches

GenProg 0.0% 94.8% 98.4% 100.0% 16.2%
Par 51.8% 91.2% 95.5% 100.0% 13.3%
SimFix 77.3% 98.4% 100.0% 100.0% 50.7%
TrpAutoRepair 62.9% 95.5% 99.0% 100.0% 19.0%

(b) Quality of patches generated using varying-coverage test suites.

technique model quality
p R2 test suite p

GenProg 7.2 ◊ 10≠13 0.013 size 6.7 ◊ 10≠13

coverage 8.5 ◊ 10≠4

Par 5.2 ◊ 10≠12 0.035 size 4.2 ◊ 10≠5

coverage 7.6 ◊ 10≠11

SimFix 4.0 ◊ 10≠16 0.086 size 2.7 ◊ 10≠7

coverage 1.3 ◊ 10≠15

TrpAutoRepair 6.9 ◊ 10≠5 0.0057 size 1.6 ◊ 10≠5

coverage 0.96

(c) Multiple linear regression relating coverage and size to patch quality.

Figure 3.6: The e�ect of test suite coverage and size on repair quality. (a) Distribution
of the number of patches produced using developer-written test suite subsets of varying
code coverage on the defective code version. (b) The quality of the patches generated
using varying-coverage test suites varied from 0.0% to 100.0%. On average, 75.2%
(GenProg: 83.8%, Par: 86.7%, SimFix: 49.3%, and TrpAutoRepair: 81.0%) of the
patches failed at least one test. (c) A multiple linear regression reports that test suite
size and test suite coverage are strongly significantly associated with patch quality
(p < 0.001) except for coverage for TrpAutoRepair).

8 Lang, 13 Math, and 4 Time; and TrpAutoRepair 6 Chart, 2 Closure, 10 Lang,

10 Math, and, 1 Time.)

Figure 3.6(b) shows the statistics of the quality of the patches for those defects,

created using the varying-coverage test suites. The quality varied, with GenProg even
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producing some patches that failed all evaluation test cases. Overall, 75.2% of the

patches, on average, failed at least one test in the evaluation test suite.

Next, for each technique, we created a multiple linear regression model to predict

the quality of the patches based on the test suite coverage and size. Figure 3.6(c)

shows, for each technique, the results of the regression model. All four fitted regression

models are strongly statistically significant (p < 0.001) though with low R
2 values.

Test suite size was a statistically significant predictor for patch quality for all four

techniques, with larger test suites leading to higher-quality patches; however, with an

extremely small e�ect size. Coverage was a less clear predictor: for TrpAutoRepair, the

association was not statistically significant (p > 0.1), and was positive for GenProg and

TrpAutoRepair, but negative for SimFix and Par. We further detail each technique’s

regression results next.

For GenProg, patch quality (on a 0–100 scale) is equal to 94.82 ≠ 0.02(coverage) +

0.02(size), where coverage is 100◊ the fraction of code in the defective code version

covered by the test suite, and size is the normalized number of tests in the test suite

used to generate the patch. Thus, the quality of the patch produced by GenProg

decreases by 0.02% for each 1% increase in the test suite coverage and increases by

0.02% for each additional test in the test suite. While both associations of test suite

coverage and size with the patch quality were statistically significant (p < 0.001), the

magnitude is extremely small and the low R
2 value indicates little of the variability

is explained. We conclude that test suite coverage and test suite size are significant

predictors of patch quality, but the magnitude of the e�ect is extremely small, for

GenProg.

For Par, the quality of the patch is equal to 91.18 ≠ 0.10(coverage) + 0.03(size).

Thus, the quality of the patch produced by Par decreases by 0.10% for each 1%

increase in the test suite coverage and increases by 0.03% for each additional test in

the test suite. Again, while both associations of test suite coverage and test suite size
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with patch quality are strongly statistically significant (p < 0.001), the magnitude is

extremely small and the low R
2 value indicates little of the variability is explained.

We conclude that both test suite coverage and test suite size are significant predictors

of patch quality, but the magnitude of the e�ect is extremely small, for Par.

For SimFix, the quality of the patch is equal to 98.43≠0.04(coverage)+0.002(size).

Thus, the quality of the patch produced by SimFix decreases by 0.04% for each 1%

increase in the test suite coverage and increases by 0.002% for each additional test in

the test suite. We observe strongly statistically significant (p < 0.001) associations of

test suite coverage and test suite size with patch quality however, the magnitude is

extremely small and the low R
2 value indicates little of the variability is explained.

We conclude that both test suite coverage and test suite size are significant predictors

of patch quality, but the magnitude of the e�ect is extremely small, for SimFix.

For TrpAutoRepair, the quality of the patch is equal to 95.80 + 0.0003(coverage) +

0.006(size). The equation implies that the patch quality of TrpAutoRepair increases

by 0.0003% for 1% increase in the test suite coverage and increases by 0.006% for

each additional test in test suite. The association of test suite size with patch quality

is strongly statistically significant (p < 0.001), but that is not the case for test suite

coverage. And, again, the magnitude of the association is extremely small and the

low R
2 value indicates little of the variability is explained. We conclude that test

suite size is a significant predictor of patch quality, but the magnitude of the e�ect is

extremely small, for TrpAutoRepair.

We conclude that, surprisingly, both test suite size and test suite coverage

have extremely small but statistically significant correlations with patch quality

(positive for test suite size and negative for test suite coverage) produced using

automatic program repair techniques.
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3.5.4 Defect Severity

RQ6: How does the number of tests that a buggy program fails a�ect the degree to

which the generated patches overfit?

We performed this analysis using the four heuristics-based repair techniques

(Section 3.4.1.1) and the Defects4J benchmark (Section 3.4.2). Figure 3.7(a) shows

the frequency distribution of failing tests across the 71 defects for which at least one of

the four techniques produced at least one patch, and for which we were able to create

a high-quality evaluation test suite. Of these 71 defects, only 5 defects, Chart 22,

Chart 26, Closure 26, Closure 86, and Time 3, have at least five failing tests.

Figure 3.7(b) shows, for each technique, the quality of the patches produced, as a

function of the fraction of the failing tests in the test suite used to guide repair. For

GenProg and TrpAutoRepair, we observe statistically significant (p < 0.05) positive

correlations (GenProg: r = 0.18, p = 0.006; TrpAutoRepair: r = 0.19 p = 0.008)

between patch quality and the number of failing tests in the test suite. The 95%

confidence interval for both techniques was [0.05, 0.30].

Par did not produce any patches for any of the 5 defects considered for this analysis.

Simfix only produced three patches and did not patch any of the 5 defects when using

partial failing tests. Analyzing the execution logs of SimFix revealed that it was not

able to localize the bug using partial failing tests. This suggests that fault localization

strategy used by repair techniques could be a confounding factor when measuring the

e�ect of the number of failing tests on patch quality. (Recall that SimFix and JaRFly

use di�erent fault localization techniques.)

We conclude that the number of tests that a buggy program fails has a small

but statistically significant positive e�ect on the quality of the patches produced

using automatic program repair techniques and that this finding depends on

the fault localization strategy used by the repair techniques.
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(a)

(b)

Figure 3.7: The e�ect of the number of failing tests in test-suite on repair quality.
(a) The distribution of the number of failing tests in the 71 defects for which at least
one repair technique produces at least one patch and has a high-quality evaluation test
suite. (b) Linear regression between patch quality and the number of failing tests and
Pearson’s correlation show statistically significant positive correlations for GenProg
and TrpAutoRepair.

3.5.5 Test-Suite Provenance

RQ7: How does the test suite provenance (whether it is written by developers or

generated automatically) influence patch quality?
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We performed this analysis using the four heuristics-based repair techniques

(Section 3.4.1.1) and the Defects4J benchmark (Section 3.4.2). In this experiment,

we compared the patches generated using developer-written test suites to the patches

generated using the EvoSuite-generated test suites. A technical challenge in executing

repair techniques using EvoSuite-generated tests is a potential incompatibility between

the bytecode instrumentation of EvoSuite tests with the bytecode instrumentation

done by code-coverage-measuring tools employed by repair techniques for FL.

JaRFly uses JaCoCo [103] for fault localization and resolves instrumentation

conflicts by updating the runtime settings of EvoSuite-generated tests (following

o�cial EvoSuite documentation1). The EvoSuite-generated tests are compatible with

JaCoCo, Cobertura [43], Clover [13], and PIT [47] code coverage tools, but not with

GZoltar [34]. Unfortunately, SimFix uses GZoltar, and so could not be included in this

experiment. For GenProg, Par, and TrpAutoRepair, we used the developer-written

patches as the oracle of expected behavior.

We thus started with the 68 defects for which at least one of the three repair

techniques (GenProg, Par, and TrpAutoRepair) was able to produce a patch when

using the developer-written test suites to guide repair. For 31 out of the 68 defects,

automatically-generated test suites did not evidence the defect. This left 37 defects

(5 Chart, 4 Closure, 11 Lang, 16 Math, and 1 Time). We next executed each of

the three repair techniques on each of the 37 defects using the EvoSuite-generated

test suites, using the methodology from Section 3.5.1, thus executing 37 ◊ 20 = 740

repair attempts per technique. Note that comparing repair techniques’ behavior with

di�erent test suites on these 37 defects is unfair because one of the criteria they

satisfied to be selected is that at least one repair technique produced at least one

patch for the defect using the developer-written test suite. Thus, for each technique,

1http://www.evosuite.org/documentation/measuring-code-coverage/
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technique test suite generated defects patch quality 100%-quality
patches patched min mean median max patches

GenProg developer 158 (21.4%) 29 (78.4%) 77.4% 94.9% 98.0% 100.0% 17.8%
EvoSuite 98 (13.2%) 14 (37.8%) 6.3% 65.3% 54.3% 100.0% 8.2%

Par developer 75 (10.1%) 20 (54.1%) 98.1% 98.4% 98.1% 99.7% 0.0%
EvoSuite 17 ( 2.3%) 2 ( 5.4%) 97.2% 99.6% 99.9% 100.0% 41.2%

TrpAutoRepair developer 128 (17.3%) 30 (81.1%) 77.4% 96.8% 98.1% 100.0% 24.6%
EvoSuite 103 (13.9%) 17 (45.9%) 6.3% 65.2% 54.3% 100.0% 10.4%

Figure 3.8: The e�ect of test suite provenance on repairability. Using EvoSuite-
generated tests, repair techniques were able to patch 37 of the the 68 defects.

we identified the set of defects that were patched both using developer-written and

using automatically-generated test suites. We call these the in-common populations.

Note that these populations are, potentially, di�erent for each technique.

Figure 3.8 and Figure 3.9 summarize our results. Figure 3.8 reports data for the

37 defects for which both test suites evidence the defect. As expected, because of

the aforementioned bias in the selection of the 37 defects, using EvoSuite-generated

test suites produced fewer patches and patches for fewer defects than using developer-

written test suites. Using developer-written test suites produced a patch on between

10.1% and 21.4% executions, while using EvoSuite-generated test suites produced a

patch on between 2.3% and 13.9% of the executions. Using developer-written test

suites produced a patch for between 54.1% and 81.1% of the defects, while using

EvoSuite-generated test suites produced a patch for between 5.4% and 45.9% of the

defects.

In addition to the bias in defect selection, another possible reason that EvoSuite-

generated test suites resulted in fewer patches could be di�erences in the test suites.

Figure 3.9(a) shows the distributions of the number of failing (defect-evidencing) tests

across the 37 defects for the two types of test suites. EvoSuite-generated test suites

typically had more failing tests, perhaps contributing to it being more di�cult to

produce patches when using those test suites. Prior work has shown that having a

larger number of failing tests correlated with lower patch production [199,252].
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(a) Distributions of failing tests in the 37 Defects4J defects’ test suites.

GenProg Par TrpAutoRepair
12 defects, 166 patches 2 defects, 35 patches 13 defects, 153 patches

p = 1.3 ◊ 10
≠11

” = 0.61 (large)

95% CI = [0.45, 0.72 ]

p = 5.3 ◊ 10
≠5

” = ≠0.76 (large)

95% CI = [≠0.96, ≠0.04 ]

p = 5.8 ◊ 10
≠11

” = 0.63 (large)

95% CI = [0.48, 0.75 ]

(b) Patch quality comparison on the in-common (patched using both types of test suites) defect
populations.

Figure 3.9: The e�ect of test suite provenance on repair quality. (a) The EvoSuite
generated tests typically have more failing tests than the developer-written ones.
(b) The box-and-whisker plots compare patch quality on the in-common defect
populations, showing the maximum, top quartile, median, bottom quartile, and
minimum values, with the mean as a red diamond. The patch quality of GenProg
and TrpAutoRepair using the EvoSuite-generated tests is statistically significantly
(Mann-Whitney U test) lower that those produced using developer-written tests. For
Par, the e�ect is reversed. The ” estimate reports a large e�ect size and its 95%
confidence intervals (CI) are entirely on one side of 0.

We compared the quality of the patches produced using the two types of test

suites on the in-common populations. Figure 3.9(b) shows that for GenProg and

TrpAutoRepair, the mean and median quality of the patches produced using the
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developer-written test suites are higher than of those produced using EvoSuite-

generated test suites. These di�erences are statistically significant (Mann-Whitney U

test, p = 1.3 ◊ 10≠11 for GenProg, and p = 5.8 ◊ 10≠11 for TrpAutoRepair). The ”

estimate computed using Cli�’s delta shows a large e�ect size for the median patch

quality of the patches produced using EvoSuite-generated test suites being lower for

GenProg and TrpAutoRepair. The 95% CI does not spans 0 for both techniques,

indicating that, with 95% probability, the two populations have di�erent distributions.

For GenProg, this comparison is on the 12 in-common defects (Chart 5, Closure 22,

Lang 43, Math 24, Math 40, Math 49, Math 50, Math 53, Math 73, Math 80, Math 81,

and Time 19). On these defects, GenProg produced 73 patches using developer-written

test suites and 93 patches using EvoSuite-generated test suites (166 patches total). For

TrpAutoRepair, this comparison is on the 13 in-common defects (Chart 5, Closure 22,

Closure 86, Lang 43, Lang 45, Math 24, Math 40, Math 49, Math 50, Math 73,

Math 80, Math 81, and Time 19). On these defects, TrpAutoRepair produced 57

patches using developer-written test suites and 96 patches using EvoSuite-generated

test suites (153 patches total).

Because the results for GenProg and TrpAutoRepair are derived from 12 and 13

defects, respectively, there is hope that these results will generalize to other defects.

The same cannot be said for Par. Par produced patches using both types of test suites

for only 2 out of the 37 defects (Closure 22 and Math 50). Figure 3.9(b) shows that

the mean and median quality of the patches produced using the developer-written test

suites are lower than those produced using EvoSuite-generated test suites. This result

is statistically significant because Par produced 18 patches using developer-written

test suites and 17 patches using EvoSuite-generated test suites, with p = 5.3 ◊ 10≠5

and the 95% CI interval does not span 0. However, while significant for these 2 defects,

we cannot claim (nor do we believe that) this result generalizes to all defects from

this 2-defect sample.
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Our finding is consistent with the earlier finding [252] that provenance has a

significant e�ect on repair quality, and that for GenProg and TrpAutoRepair, developer-

written test suites lead to higher quality pathces. Surprisingly, the finding is opposite

for Par (which was not part of the earlier study), with automatically-generated tests

leading to higher-quality patches. Our study improves on the earlier work in many

ways: We control for the defects in the two populations being compared, we use real-

world defects, and we use a state-of-the-art test suite generator with a rigorous test

suite generation methodology. The earlier study used a di�erent generator (KLEE [33])

and aimed to achieve 100% code coverage on a reference implementation, but the

generated test suites were small.

We conclude that test suite provenance has a significant e�ect on repair

quality, though the e�ect may di�er for di�erent techniques. For GenProg

and TrpAutoRepair, patches created using automatically-generated tests had

lower quality than those created using developer-written test suites. For a small,

perhaps non-representative number of defects, Par-generated patches showed

the opposite e�ect.

3.5.6 Fault Localization Accuracy

RQ8: How does FL accuracy a�ect the quality of patches produced by SOSRepair?

We performed this analysis using the SOSRepair (Section 3.4.1.2) and the 65 defects

in ManyBugs benchmark on which SOSRepair is applicable (Section 3.4.2). We created

SOSRepairü, a semi-automated version of SOSRepair that can take hints from the

developer regarding fault location and variables of interest. SOSRepairü di�ers from

SOSRepair in the following two ways:

1. SOSRepair uses spectrum-based FL [117] to identify candidate buggy code

regions. SOSRepairü uses a manually-specified candidate buggy code region.
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In our experiments, SOSRepairü uses the location of the code the developer

modified to patch the defect as its candidate buggy code region, simulating the

developer suggesting where the repair technique should try to repair a defect.

2. SOSRepair considers all live variables after the insertion line in its query. While

multiple mappings may exist that satisfy the constraints, not all such mappings

may pass all the tests. SOSRepair uses the one mapping the SMT solver returns.

SOSRepairü can be told which variables not to consider, simulating the developer

suggesting to the repair technique which variables likely matter for a particular

defect. A smaller set of variables of interest increases the chance that the

mapping the SMT solver returns and SOSRepairü tries is a correct one. We

found that for 6 defects (gzip-1, libtiff-4, libtiff-8, php-10, php-12, and gmp-1),

SOSRepair failed to produce a patch because it attempted an incorrect mapping.

For these 6 defects, we instructed SOSRepairü to reduce the variables of interest

to just those variables used in the developer’s patch.

On our benchmark, SOSRepairü patches 23 defects and 16 (70%) of them pass all

independent tests. While it is unsound to compare SOSRepairü to prior, fully-

automated techniques, our conclusions are drawn only from the comparison to

SOSRepair; the quality results for the SOSRepairü-patched defects for the prior

tools in Figure 3.5 are only for reference.

Our experiments show that perfect FL allows SOSRepairü to patch 7 additional

defects SOSRepair could not (bottom of Figure 3.5), and to improve the quality of 3

of SOSRepair’s patches. Overall, 9 new patches pass 100% of the independent tests.

We conclude that FL accuracy can significantly a�ect the quality of APR

techniques. Manually improving FL significantly improved (9 (41%) vs. 16 (70%))

the quality of the patches produced by SOSRepair and enabled it to patch one

more defect (22 (34%) vs. 23 (35%)).
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3.6 Discussion
Our main finding is that patches produced by APR techniques often overfit to the

tests used to produce those patches. The most important implication of our work is

that research is needed into improving program repair techniques to produce higher-

quality patches, or at least identifying and discarding lower-quality ones. Researchers

can use the patch quality evaluation methodology and high-quality test suites we

have developed to evaluate their techniques on real-world defects and demonstrate

improvements over the state-of-the-art within this important dimension.

We observed that test-suite size correlates with higher-quality patches, and test-

suite coverage correlates with lower-quality patches, though both e�ects are extremely

small. Further, we found that human-written tests are, usually, better for APR than

automatically-generated ones. These findings suggest that automatically generating

tests to augment the developer-written tests may not help program repair. However,

the method of generating the tests likely matters, and future research should study

that relationship, in particular, exploring whether new approaches that generate tests

from natural-language specifications [22,197] are helpful.

Controlling for FL strategy, the number of tests a buggy program fails is positively

correlated with higher-quality patches. On its face, this is surprising because fixing

a larger number of failing tests usually requires fixing more behavior (although it is

certainly possible for a small bug to cause many tests to fail, and for a large bug to

cause only one test to fail). The key observation here is that FL can be a confounding

factor. A larger number of failing tests can help FL identify the correct place to repair

a defect, improving the chances the technique can produce a patch. In our study,

we observe cases in which SimFix failed to localize a defect, and therefore failed to

produce a patch when given fewer failing tests, but was able to do so with more failing

tests (recall Section 3.5.4).
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Finally, we observed that Java heuristics-based repair techniques produce patches

for more defects than C heuristics-based repair techniques. Future research could

target understanding the di�erences in the languages that cause this and improving

the fix space and repair strategies used by the Java repair techniques.

Limitations. Research questions each impose specific requirements on the

benchmark that can be used e�ectively to evaluate them. It is challenging for a

single benchmark to satisfy these requirements for a diverse set of research questions,

such as the ones we have explored in this study. For example, the majority of the

Defects4J defects have a single failing test, which makes it hard to study the association

between the number of failing tests and patch quality. Similarly, a lack of variability

in the statement coverage of the developer-written tests makes it hard to study

the relationships that involve that coverage. These shortcomings in the benchmark

may reduce the strength of the results. Nevertheless, this study has developed a

methodology that can be applied to other benchmarks to further study these questions.

JaRFly, our Java Repair framework, can help future researchers build new Java

repair techniques. Our methodology for creating high-quality evaluation test-suites

can be used to do so for new benchmarks, and the instances of evaluation test suites

we have created for Defects4J can be used for future evaluations on that benchmark

in a reproducible manner.

A recent study identified the evaluation-test-based approach to be reproducible,

if conservative [141]: Evaluation test-suites may miss identifying some overfitting

patches, but every patch they identify as overfitting, does so. This approach is

complementary to manual inspection, which is less reliable but can identify some

instances of overfitting that evaluation test suites miss [141]. Future research should

pursue improving automated test generation with the goal of producing higher-quality

evaluation test suites for program repair. Perhaps complementary to this challenge is
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recent work on automatically generating test-suites from natural-language software

artifacts (instead of human-patched version of code) [22,197].

The generalizability of our results relies on the generalizability of the program

repair techniques we use in our evaluation. While the classification of heuristics-based

techniques [282] makes the argument that evaluations on representative techniques

should generalize to other techniques in this class, evaluations on a larger, more

diverse set of techniques provide stronger evidence. Applying our methodology to

other techniques would constitute a valuable replication study. However, technological

challenges prevented us from adding more techniques. Some projects do not release

their tools’ implementations, making reuse di�cult. Some projects release only

compiled binaries of their tools and do not make the source code public, which

prevents minor modifications to those tool necessary for running experiments. For

example, we were unable to use CapGen [287] in our evaluation because only its

compiled binary is publicly available and we could not modify it to run using only a

subset of the developer-written test-suites (as is required in Sections 3.3.1 and 3.3.2)

and EvoSuite-generated test-suites (as is required in Section 3.3.3). Finally, some

tools cannot be used as envisioned by the original project because of environmental

changes. For example, we were unable to use ACS [298] in our evaluation because it

was designed to work with a particular query style that directly interacts with GitHub,

and GitHub has since disabled such queries. More generally, a recent empirical study

on Java program repair techniques found that 13 out of the 24 (54%) techniques

studied could not be used, including ACS and CapGen. The techniques could not be

used because they were not publicly available, did not function as expected, required

extraordinary manual e�ort to run (e.g., manual fault localization), or had hard-coded

information to work on specific defect benchmarks and could not be modified with

reasonable e�ort to work on others [66]. When possible, future research that produces
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APR techniques should aim to make their tools public, releasing their source code, and

avoid encoding specific benchmarks or experimental setups into the tools themselves.

3.7 Threats to Validity
Our study uses ManyBugs and Defects4J, well-established benchmark of defects

in real-world, open source projects. The diversity, and real-world nature of these

benchmarks mitigates the threat that our study will not generalize to other defects.

Defects4J is evolving and growing with new projects, and our methodology can

be applied to subsequently added projects, and to other benchmarks, to further

demonstrate generalizability.

Our objective methodology for measuring patch quality requires independently

generated test suites and the quality of those test suites a�ects our quality measurement.

We use state-of-the-art automated test generation techniques, EvoSuite [81] and

Randoop [212], but even state-of-the-art tools struggle to perform well on real-world

programs. To mitigate this threat, we experimented with two test generation tools and

their configuration parameters, developed a methodology for generating and merging

multiple test suites, and only perform our study on the 71 out of 106 defects (67%)

whose evaluation test suites met strict coverage criteria on the code a�ected by

developer-written patches for the defects.

Our test-suite-based methodology to measure patch quality inherently overestimates

the quality of patches because the evaluation test suites are necessarily partial

specifications. If our methodology identifies a test that fails on a patch, the patch

is necessarily incorrect; however, if our methodology deems a patch of 100% quality,

there could still exist a hypothetical evaluation test the patch would fail. As a result,

our conclusions are conservative. We find that APR often overfits on real-world defects,

but the reality could be even more dire.
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GenProg, Par, SimFix, and TrpAutoRepair are four representative heuristics-based

automated program repair techniques. Prior work has explored similarity unifying

heuristics-based repair and developed an underlying theory, suggesting that results

from analysis of these four techniques should generalize to other heuristics-based

techniques [282].

Our methodology follows the guidelines for evaluating randomized algorithms [10]

and uses repair techniques’ configuration parameters from prior evaluations that

explored the e�ectiveness of those parameter settings [123, 147, 224]. We carefully

control for a variety of potential confounding factors in our experiments, and use

statistical tests that are appropriate for their context. We make all our code, test

suites, and data public to increase researchers being able to replicate our results,

explore variations of our experiments, and extend the work to other repair techniques,

test suite generation tools, and defect datasets.

3.8 Contributions
We make the following contributions in this study:

• An empirical evaluation of quality of program repair on real-world Java defects,

which outlines shortcomings and establishes a methodology and dataset for

evaluating quality of new repair techniques’ patches on real-world defects

to promote research on high-quality repair. our generated test suites and

experimental results are available from:

http://github.com/LASER-UMASS/JavaRepair-replication-package/.

• A methodology for evaluating patch quality that fixes numerous shortcomings

in prior work, properly controlling for potential confounding factors.

• A dataset of independent evaluation test suites for Defects4J defects, and a

methodology for generating such test suites. Augmenting existing Defects4J
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defects with two, independently created test suites can aid not only program

repair, but other test-based technology.

• Java Repair Framework (http://JaRFly.cs.umass.edu/), a publicly released,

open-source framework for building Java repair techniques, including our reimpl-

-ementations of GenProg [147], Par [123], and TrpAutoRepair [224]. JaRFly

allows for easy combinations and modifications to existing techniques, and

simplifies experimental design for automatic program repair on Java programs.

To make SOSRepair (Appendix C) possible, we make five major contributions to

both semantic code search and program repair:

1. A more-scalable semantic search query encoding. We develop a novel, e�cient,

general mechanism for encoding semantic search queries for program repair,

inspired by input-output component-based program synthesis [106]. This

encoding e�ciently maps the candidate fix code to the buggy context using a

single query over an arbitrary number of tests. By contrast, SearchRepair [122]

required multiple queries to cover all test profiles and failed to scale to large

code databases or queries covering many possible permutations of variable

mappings. Our new encoding approach provides a significant speedup over the

prior approach, and we show that the speedup grows with query complexity.

2. Expressive encoding capturing real-world program behavior. To apply semantic

search to real-world programs, we extend the state-of-the-art constraint encoding

mechanism to handle real-world C language constructs and behavior, including

structs, pointers, multiple output variable assignments, console output, loops,

and library calls.

3. Search for patches that insert and delete code. Prior semantic-search-based repair

could only replace buggy code with candidate fix code to a�ect repairs [122].

We extend the search technique to encode deletion and insertion.
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4. Automated, iterative search query refinement encoding negative behavior. We

extend the semantic search approach to include negative behavioral examples,

making use of that additional information to refine queries. We also propose

a novel, iterative, counter-example-guided search-query refinement approach

to repair buggy regions that are not covered by the passing test cases. When

our approach encounters candidate fix code that fails to repair the program, it

generates new undesired behavior constraints from the new failing executions and

refines the search query, reducing the search space. This improves on prior work,

which could not repair buggy regions that no passing test cases execute [122].

5. Evaluation and open-source implementation. We release the implementation of

SOSRepair (https://github.com/squaresLab/SOSRepair). We also release

the independently-generated held-out evaluation test-suites for the ManyBugs

defects used to evaluate SOSRepair and compare it with previous techniques

(https://github.com/squaresLab/SOSRepair-Replication-Package).

The key findings presented in this chapter suggest that using better developer-

written tests and accurate FL to guide the repair process in APR can significantly

improve the repair quality. Based on these findings and the observation that most

repair techniques only use test-suites for the repair process, I attempt to improve the

repair quality by: (1) improving developer-written tests (Chapter 4) and (2) improving

the accuracy of automated FL (Chapter 5) by deriving additional constraints from

natural language software artifacts such as software specifications and bug reports.

The work described in this chapter is joint with Afsoon Afzal, Mauricio Soto,

Yuriy Brun, Claire Le Goues, Kathryn T. Stolee, and René Just and credit for this work

is shared by all the researchers. The published versions of the studies presented in this

chapter [5, 200] can be found at http://dx.doi.org/10.1109/TSE.2020.2998785

and http://dx.doi.org/10.1109/TSE.2019.2944914.
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CHAPTER 4

IMPROVING DEVELOPER-WRITTEN TESTS USING
NATURAL LANGUAGE SOFTWARE SPECIFICATIONS

4.1 Introduction
One of the key steps in the APR process is verifying that the patched program

does what developer want it to do. Unfortunately, the most common way humans

describe and specify software is natural language, which is di�cult to formalize, and

thus also di�cult to use in an automated process as an oracle of what the software

should do. Hence, repair techniques use developer-written test suites as a proxy for

software specification. The developer-written tests are often inadequate [137] yet

they are used by most APR tools because the tests are readily available and are

machine-processable. Tests consist of two parts, an input to trigger a behavior and an

oracle that indicates the expected behavior. While the state-of-the-art automated test

generation techniques (e.g., Randoop [211], EvoSuite [81]) can e�ectively generate test

inputs, they require a reference implementation to compute oracles for the generated

inputs. In practice, a correct reference implementation may not be available, thus,

limiting the use of such test generation techniques to improve the quality of APR tools.

To address this, we analyzed other software artifacts from which we can derive the

intended software behavior and improve the developer-written tests, which are used by

APR tools. While formal, mathematical specifications that can be used automatically

by computers are rare, developers do write natural language (NL) specifications, often

structured (e.g., JavaDoc comments), as part of software requirements specification

documents. Hence, in this chapter, we tackle the problem of automatically generating
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tests from such structured NL specifications to verify that the software does what the

specifications say it should.

We present an approach to automatically generate tests (inputs with oracles) from

natural language specifications that can be used to verify that the software does

what the specifications say it should. For example, Figure 4.1 shows a structured,

natural language specification of a JavaScript Array(len) constructor (part of the

o�cial JavaScript specification ECMA-262 standard [290]) to be implemented in

JavaScript implementations. Our approach focuses on generating oracles from such

structured natural language specifications (test inputs can often be e�ectively generated

randomly [81,211], and together with the oracles, produce executable tests).

Of particular interest is generating tests for exceptional behavior and boundary

conditions because, while developers spend significant time writing tests manually [8,

235], they often fail to write tests for such behavior. In a study of ten popular,

well-tested, open-source projects, the coverage of exception handling statements lagged

significantly behind overall statement coverage [90]. For example, Developers often

focus on the common behavior when writing tests and forget to account for exceptional

or boundary cases [8]. At the same time, exceptional behavior is an integral part of

the software as important as the common behavior. An IBM study found that up to

two thirds of production code may be devoted to exceptional behavior handling [49].

And exceptional behavior is often more complex (and thus more buggy) because

anticipating all the ways things may go wrong, and recovering when things do go

wrong, is inherently hard. Finally, exceptional behavior is often the cause of field

failures [283], and thus warrants high-quality testing.

We present Swami, a technique for automatically generating executable tests from

natural language specifications. We scope our work by focusing on exceptional and

boundary behavior, precisely the important-in-the-field behavior developers often

undertest [90, 283].
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This chapter is organized as follows. Section 4.2 illustrates Swami on an example

specification in Figure 4.1. Section 4.3 details the Swami approach. Section 4.4

describes the open-source specifications and software implementations we use to

evaluate Swami and, Section 4.5 evaluates it. Section 4.6 compares Swami with the

state-of-the-art. Section 4.7 describes future research directions. Section 4.8 discusses

the threats to validity and Section 4.9 summarizes our contributions.

4.2 Intuition Behind Swami
To explain our approach for generating test oracles, we will use ECMA-262, the

o�cial specification of the JavaScript programming language [290]. The ECMA-262

documentation consists of hundreds of sections, including an index, a description of

the scope, definitions, notational conventions, language semantics, abstract operations,

and, finally, methods supported by the JavaScript language.

Our technique, Swami, consists of the following three steps: identifying parts

of the documentation relevant to the implementation to be tested, extracting test

templates from those parts of the documentation, and generating executable tests from

those templates. We now illustrate each of these steps on the Array(len) constructor

specification from ECMA-262 (Figure 4.1).

To use Swami to generate tests for a project, the developer needs to manually specify

two things. First, a test constructor for instantiating test cases. For example, for Rhino,

the test constructor is new TestCase(test name, test description, expected output,

actual output). This makes Swami project- and language-agnostic, for example, we

were able to generate tests for Rhino and Node.js, two JavaScript implementations,

one written in Java and one in C++, simply by specifying a di�erent test constructor.

Second, an implementation of abstract operations used in the specification. For

example, the specification in Figure 4.1 uses the abstract operation ToUnit32(len),

specified in a di�erent part of the specification document (Figure 4.5), and Swami
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Figure 4.1: Section 15.4.2.2 of ECMA-262 (v5.1), specifying the JavaScript Array(len)
constructor.

needs an executable method that encodes that operation. For JavaScript, we found

that implementing 10 abstract operations, totaling 82 lines of code, was su�cient for

our purposes. Most of these abstract operation implementations can be reused for

other specifications, so the library of abstract operation implementations we have

built can be reused, reducing future workload.

4.2.1 Identifying Relevant Specifications

The first step of generating test oracles is to identify which sections of the ECMA-

262 documentation encode testable behavior. There are two ways Swami can do

this. For documentation with clearly delineated specifications of methods that include

clear labels of names of those methods, Swami uses a regular expression to match the

relevant specifications and discards all documentation sections that do not match the

regular expression. For example, Figure 4.1 shows the specification of the Array(len)

constructor, clearly labeling the name of that method at the top. This is the case for

all of ECMA-262, with all specifications of methods clearly identifiable and labeled.

For specifications like this one, Swami uses a regular expression that matches the
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section number and the method name (between the section number and the open

parenthesis).

When the documentation is not as clearly delineated, Swami can still identify

which sections are relevant, but it requires access to the source code. However, to

reiterate, this step, and the source code, are not necessary for ECMA-262, hundreds of

other ECMA standards, and many other structured specification documents. Swami

uses the Okapi information retrieval model [237] to map documentation sections

to code elements. The Okapi model uses term frequencies (the number of times

a term occurs in a document) and document frequency (the number of documents

in which a term appears) to map queries to document collections. Swami uses the

specification as the query and the source code as the document collection. Swami

normalizes the documentation, removes stopwords, stems the text, and indexes the

text by its term frequency and document frequency. This allows determining which

specifications are relevant to which code elements based on terms that appear in both,

weighing more unique terms more strongly than more common terms. For example,

when using the Rhino implementation, this approach maps the specification from

Figure 4.1 as relevant to the five classes listed in Figure 4.2. The 5th-ranked class,

NativeArray.java, is the class that implements the Array(len) constructor, and the

other four classes all depend on this implementation. Swami uses a threshold similarity

score to determine if a specification is relevant. We empirically found that a similarity

score threshold of 0.07 works well in practice: If at least one class is relevant to a

specification document above this threshold, then the specification document should

be used to generate tests. With this threshold, Swami’s precision to identify relevant

specification sections is 79.0% and recall is 98.9%, but that Swami can use regular

expressions to remove improperly identified specifications, boosting precision to 93.1%,

and all tests generated from the remaining improperly identified specifications will

fail to compile and can be discarded automatically.
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section ID matched Java class similarity score
15.4.2.2 ScriptRuntime.java 0.37
15.4.2.2 Interpreter.java 0.31
15.4.2.2 BaseFunction.java 0.25
15.4.2.2 ScriptableObject.java 0.24
15.4.2.2 NativeArray.java 0.21

Figure 4.2: Source files ranked based on their similarity with the specification in
Figure 4.1 using Swami’s information-retrieval-based approach. Using the information-
retrieval-based approach to identify the documentation sections relevant to the
implementation, Swami finds these Rhino classes as most relevant to section 15.4.2.2 of
the ECMA-262 (v5.1) documentation (the specification of the Array(len) constructor
from Figure 4.1). NativeArray.java is the class that implements the Array(
len) constructor, and the other four classes all depend on this implementation.
Each of the classes listed appears in the org.mozilla.javascript package, e.g.,
ScriptRuntime.java appears in org.mozilla.javascript.ScriptRuntime.java.

4.2.2 Extracting Test Templates

For the specification sections found relevant, Swami next uses rule-based natural

language processing to create test templates: source code parameterized by (not yet

generated) test inputs that encodes the test oracle. Swami generates two types of tests:

boundary condition and exceptional condition tests. For both kinds, Swami identifies

in the specification (1) the signature (the syntax and its arguments) of the method to

be tested, the (2) expected output for boundary condition tests, and (3) the expected

error for exceptional condition tests.

The Array(len) specification shows that the constructor has one argument: len

(first line of Figure 4.1). The specification dictates that Array(len) should throw

a RangeError exception if len is not equal to ToUnit32(len) (second paragraph of

Figure 4.1), where ToUnit32(len) is an abstract operation defined elsewhere in the

specification (Figure 4.5). We now demonstrate how Swami generates tests for this

exceptional condition.

We have written four rules that Swami uses to extract this information. Each rule

consists of a set of regular expressions that determine if a natural language sentence
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satisfies the conditions necessary for the rule to apply, and another set of regular

expressions that parse relevant information from the sentence. The rule also specifies

how the parsed information is combined into a test template. Swami applies the four

rules in series.

The first rule, Template Initialization, parses the name of the method being tested

and its arguments. The rule matches the heading of the specification with a regular

expression to identify if the heading contains a valid function signature i.e., if there

exists a function name and function arguments. In the example specification shown

in Figure 4.1, the top line (heading) “15.4.2.2 new Array(len)” matches this regular

expression. Swami then creates an empty test template:

1 function test_new_array (len){}

and stores the syntax for invoking the function (var output = new Array(len)) in its

database for later use.

The second rule, Assignment Identification, identifies assignment descriptions

in the specification that dictate how variables’ values change, e.g., “Let posInt be

sign(number) ◊ floor(abs(number))” in Figure 4.5. For assignment sentences, Swami’s

regular expression matches the variable and the value assigned to the variable and

stores this association in its database. Here, Swami would match the variable posInt

and value sign(number) ◊ floor(abs(number). This populates the database with variable-

value pairs as described by the specification. These pairs will be used by the third

and fourth rules.

The third rule, Conditional Identification, uses a regular expression to extract the

condition that leads to returning a value or throwing an error. The rule fills in the

following template:
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1 if (<condition >){
2 try{
3 <function call >
4 }
5 catch(e){
6 <test constructor >(true , eval(e instanceof <expected error >))
7 }
8 }

replacing “<function call>” with “var output = new Array(len)”, the method invoking

syntax from the database (recall it being stored there as a result of the first rule).

The <test constructor> is a project-specific description of how test cases are written.

This is written once per project, by a developer.

The sentence “If the argument len is a Number and ToUnit32(len) is not equal

to len, a RangeError exception is thrown” (Figure 4.1) matches this expression and

Swami extracts the condition “argument len is a Number and ToUnit32(len) is not

equal to len” and the expected error “RangeError exception is thrown”, populating

the following template, resulting in:

1 if ( argument len is a Number and ToUnit32 (len) is not equal to len
){

2 try{
3 var output = new Array(len)
4 }
5 catch(e){
6 new TestCase (" test_new_array_len ", " test_new_array_len ", true ,

eval(e instanceof a RangeError exception is thrown ))
7 test ()
8 }
9 }

Finally, the forth rule, Conditional Translation, combines the results of the previous

steps to recursively substitute the variables and implicit operations used in the

conditionals from the previous rule with their assigned values, until all the variables

left are either expressed in terms of the method’s input arguments, or they are function

calls to abstract operations. Then, Swami embeds the translated conditional into the

initialized test template, creating a test template that encodes the oracle from the

specification. In our example, this step translates the above code into:
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1 function test_new_array (len){
2 if ( typeof (len)==" number " && ( ToUint32 (len)!= len)){
3 try{
4 var output = new Array(len)
5 }catch(e){
6 new TestCase (" test_new_array_len ", " test_new_array_len ",

true , eval(e instanceof RangeError ))
7 test ()
8 }
9 }

10 }

4.2.3 Generating Executable Tests

Swami uses the above test template with the oracle to instantiate executable

tests. To do this, Swami generates random inputs for each argument in the template

(len, in our example). ECMA-262 describes five primitive data types: Boolean, Null,

Undefined, Number, and String (and two non-primitive data types, Symbol and

Object). Swami generates random instances of the five primitive data types and

several subtypes of Object (Array, Map, Math, DateTime, RegExp, etc.) using certain

heuristics that help reduce fall alarms. We have found empirically that generating

such inputs for all arguments tests parts of the code uncovered by developer written

tests, which is consistent with prior studies [90]. Combined with the generated oracle

encoded in the template, each of these test inputs forms a complete test.

Swami generates 1,000 random test inputs for every test template. Many of

these generated tests will not trigger the generated conditional, but enough do. The

bottom part of Figure 4.3 shows representative tests automatically generated for the

test_new_array template.

Finally, Swami augments the generated test file with the manually implemented

abstract operations. Figure 4.3 shows the final test file generated to test the Array(len)

constructor.
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1 /* ABSTRACT FUNCTIONS */
2 function ToUint32 ( argument ){
3 var number = Number ( argument )
4 if ( Object .is(number , NaN) || number == 0 || number == +0 ||

number == -0 || number == Infinity || number == -Infinity ){
5 return 0
6 }
7 var i = Math.floor(Math.abs( number ))
8 var int32bit = i%( Math.pow (2 ,32))
9 return int32bit

10 }
11 ...
12 /* TEST TEMPLATE GENERATED AUTOMATICALLY */
13 function test_new_array (len){
14 if ( typeof (len)==" number " && ( ToUint32 (len)!= len)){
15 try{
16 var output = new Array(len)
17 }catch(e){
18 new TestCase (" test_new_array_len ", " test_new_array_len ",

true , eval(e instanceof RangeError ))
19 test ()
20 }
21 }
22 }
23 /* TESTS GENERATED AUTOMATICALLY */
24 test_new_array (1.1825863363010669 e+308)
25 test_new_array (null)
26 test_new_array ( -747)
27 test_new_array (368)
28 test_new_array (false)
29 test_new_array (true)
30 test_new_array (" V7KO08H ")
31 test_new_array ( Infinity )
32 test_new_array ( undefined )
33 test_new_array (/[^.]+/)
34 test_new_array (+0)
35 test_new_array (NaN)
36 test_new_array (-0)
37 ...

Figure 4.3: The executable tests automatically generated for the Array(len) constructor
from the specification in Figure 4.1.

4.3 Swami Approach
Using natural language specifications pose numerous challenges. Consider the

ECMA-262 specification of a JavaScript Array(len) constructor in Figure 4.1. The

specification:
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Figure 4.4: The Swami approach. Swami generates tests by applying a series of
regular expressions to processed (e.g., tagged with parts of speech) natural language
specifications, discarding non-matching sentences. Swami does not require access
to the source code; however, Swami can optionally use the code to identify relevant
specifications. Swami’s output is executable tests with oracles and test templates that
can be instantiated to generate more tests.

• Uses natural language sentences, such as “If the argument len is a Number and

ToUint32(len) is equal to len, then the length property of the newly constructed

object is set to ToUint32(len).”

• Refers to abstract operations defined elsewhere in the specification, such as

ToUint32, which is defined in section 9.6 of the ECMA-262 specification document

(Figure 4.5).
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Figure 4.5: An example abstract operation in the ECMA specification. ECMA
specifications include references to abstract operations, which are formally defined
elsewhere in the specification document, but have no public interface. Section 9.6
of ECMA-262 (v5.1) specifies the abstract operation ToUnit32, referenced in the
specification in Figure 4.1.

• Refers to implicit operations not formally defined by the specification, such as

min, max, is not equal to, is set to, is an element of, and is greater than.

• Implicitly uses local variables specified in assignment statements (e.g., number,

posInt, and int32bit used in the specification shown in Figure 4.5) to describe

oracles.

• Describes complex control flow, such as conditionals, using the outputs of abstract

and implicit operations, and local variables in other downstream operations and

conditionals.

Our technique, Swami, addresses these challenges and generates executable tests

using the approach (Figure 4.4) described next. Swami normalizes and parts-of-speech

tags the specifications (Section 4.3.1), identifies the relevant sections (Section 4.3.2),

uses regular-expression-based rules to create a test template encoding an oracle

(Section 4.3.3), and instantiates the tests via heuristic-based, random input generation

(Section 4.3.4).
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4.3.1 Specification Preprossessing

Swami uses standard natural language processing [118] to convert the specification

into more parsable format. Swami normalizes the text by removing punctuation

(remembering where sentences start and end), case-folding (converting all characters

to lower case), and tokenizing terms (breaking sentences into words). Then Swami

removes stopwords (commonly used words that are unlikely to capture semantics,

such as “to”, “the”, “be”), and stems the text to conflate word variants (e.g., “ran”,

“running”, and “run”) to improve term matching. Swami uses the Indri toolkit [262]

for removing stopwords and stemming. Swami then tags the parts of speech using the

Standford coreNLP toolkit [182].

4.3.2 Identifying Testable Specifications From the Documentation

As Section 4.2.1 described, Swami has two ways of deciding which sections of

the specification to generate tests from. For many structured specifications such as

ECMA-262, the sections that describe methods are clearly labeled with the name

of the method (e.g., see Figure 4.1). For such specifications, Swami uses a regular

expression it calls Section Identification to identify the relevant sections.

Swami’s Section Identification regular expression discards white space and square

brackets (indicating optional arguments), and looks for a numerical section label (which

is labeled as “CD” by the parts of speech tagger), followed optionally by the “new”

keyword (labeled “JJ”), a method name (labeled “NN”), then by a left parenthesis

(labeled “LRB”), then arguments (labeled “NN”), and then a right parenthesis (labeled

“RRB”). If the first line of a section matches this regular expression, Swami will

attempt to generate tests; otherwise, this section is discarded. For example, the

heading of the specification in Figure 4.1, “15.4.2.2 new Array (len)” is pre-processed

to [(‘15.4.2.2’, ‘CD’), (‘new’, ‘JJ’), (‘Array’, ‘NN’), (‘(’, ‘-LRB-’), (‘len’, ‘NN

’), (‘)’, ‘-RRB-’)] matching the Section Identification regular expression.
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If the specifications do not have a clear label, Swami can use information retrieval

to identify which sections to generate tests for. (This step does not require the parts

of speech tags.) The fundamental assumption underlying this approach is that some

terms in a specification will be found in relevant source files. Swami considers the

source code to be a collection of documents and the specification to be a query. Swami

parses the abstract syntax trees of the source code files and identifies comments and

class, method, and variable names. Swami then splits the extracted identifiers into

tokens using CamelCase splitting. Swami will index both the split and intact identifies,

as the specifications can contain either kind. Swami then tokenizes the specification

and uses the Indri toolkit [262] for stopword removal, stemming, and indexing by

computing the term frequency, the number of times a term occurs in a document,

and document frequency, the number of documents in which a term appears. Finally,

Swami uses the Indri toolkit to apply the Okapi information retrieval model [237] to

map specification sections to source code, weighing more unique terms more strongly

than more common terms. We chose to use the Okapi model because recent studies

have found it to outperform more complex models on both text and source code

artifacts [230,267]. The Okapi model computes the inverse document frequency, which

captures both the frequency of the co-occurring terms and the uniqueness of those

terms [314]. This model also weighs more heavily class and method names, which can

otherwise get lost in the relatively large number of variable names and comment terms.

Swami will attempt to generate tests from all specifications with a similarity score

to at least one class of 0.07 or above (recall the example in Figure 4.2). We selected

this threshold by computing the similarity scores of a small subset (196 sections)

of ECMA-262, selecting the minimum similarity score of the relevant specifications

(where relevant is defined by the ground-truth [71], described in Section 4.5.4). This

prioritizes recall over precision. More advanced models [236] might improve model
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quality by improving term weights, but as Section 4.5.4 will show, this model produces

su�ciently high-quality results.

4.3.3 Extracting Test Templates

To generate test templates, Swami uses rule-based natural language processing on

the specification sections identified as relevant in Section 4.3.2. Swami applies four

rules — Template Initialization, Assignment Identification, Conditional Identification,

and Conditional Translation — in series. Each rule first uses a regular expression

to decide if a sentence should be processed by the rule. If it should, the rule then

applies other regular expressions to extract salient information, such as method names,

argument names, assignments, conditional predicates, etc. When sentences do not

match a rule, they are discarded from processing by further rules (recall Figure 4.4).

Only the sentences that match all four rules will produce test templates.

Rule 1: Template Initialization locates and parses the name of the method

being tested and the arguments used to run that method, and produces a test template

with a valid method signature and an empty body. Template Initialization works

similarly to the Section Identification regular expression; it matches the numerical

section label, method name, and arguments by using their parts of speech tags

and parentheses. Unlike Section Identification, Template Initialization also matches

and extracts the method and argument names. Swami generates a test name by

concatenating terms in the method under test’s name with “_”, and concatenating

the extracted arguments with “, ”, populating the following template:

1 function test_ <func name > ([ thisObj ], <func args >){}

Swami uses the thisObj variable as an argument to specify this, an object on which

this method will be invoked.

For example, the specification section “21.1.3.20 String.prototype.startsWith

(searchString [,position])” results in the empty test template
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1 function test_string_prototype_startswith (thisObj , searchString ,
position ){}

Swami identifies the type of the object on which the tested method is invoked

and stores the method’s syntax in a database. For example, the String.startsWith

method is invoked on String objects, so Swami stores var output = new String(thisObj

).startsWith(searchString, position) in the database.

Rule 2: Assignment Identification identifies assignment sentences and

produces pairs of variables and their values, which it stores in Swami database.

Specifications often use intermediate variables, described in the form of assignment

sentences. For example, the specification of ToUint32 (Figure 4.5) contained the

assignment sentence “Let posInt be sign(number) ◊ floor(abs(number))” and posInt

was used later in the specification. Assignment sentences are of the form “Let <var>

be <value>”, where <var> and <value> are phrases. Assignment Identification uses

a regular expression to check if a sentence satisfies this form. If it does, regular

expressions extract the variable and value names, using the parts of speech tags and

keywords, such as “Let”. Values can be abstract operations (e.g., ToUint32), implicit

operations (e.g., max), constant literals, or other variables. Each type requires a

separate regular expression. For the example assignment sentence from Figure 4.5,

Swami extracts variable posInt and value sign(number) ◊ floor(abs(number)). Swami

inserts this variable-value pair into its database. This populates the database with

assigned variable-value pairs as specified by the specification.

Rule 3: Conditional Identification identifies conditional sentences that result

in a return statement or the throwing of an exception, and produces source code

(an if-then statement) that encodes the oracle capturing that behavior. Our key

observation is that exceptional and boundary behavior is often specified in conditional

sentences and that this behavior can be extracted by regular expressions, capturing

both the predicate that should lead to the behavior and the expected behavior.
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Conditional sentences are of the form “If <condition> <action>”, where <condition>

and <action> are phrases, often containing variables and method calls described in

assignment statements. Conditional Identification uses three regular expressions to

check if a sentence satisfies this form and if the <action> is a boundary condition or

an exception. If If * NN * is .* return .* or If * NN * the result is .* match the

sentence, Swami extracts the predicate <condition> as the text that occurs between

the words If and either return or the result is. Swami extracts the <action> as the

text that occurs after the words return or the result is. If If * NN * is .* throw .*

exception matches the sentence, Swami extracts the predicate <condition> as the text

that occurs between If and throw and the expected exception as the noun (NN) term

between throw and exception. For example, consider the following three sentences

taken from section 21.1.3.20 of the ECMA-262 specification for the String.prototype.

startsWith method. The sentence “If isRegExp is true, throw a TypeError exception.”

results in a condition-action pair isRegExp is true - TypeError. The sentence “If

searchLength+start is greater than len, return false.” results in searchLength+start is

greater than len - false. And the sentence “If the sequence of elements of S starting

at start of length searchLength is the same as the full element sequence of searchStr,

return true.” results in the sequence of elements of S starting at start of length

searchLength is same as the full element sequence of searchStr - true.

Finally, Conditional Identification generates source code by filling in the following

templates for exceptional behavior:

1 if (<condition >){
2 try{
3 <function call >
4 return
5 }catch(e){
6 <test constructor >(true , eval(e instanceof <action >))
7 return
8 }
9 }
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and for return statement behavior:

1 if (<condition >){
2 <function call >
3 <test constructor >( output , <action >))
4 return
5 }

The <function call> placeholder is replaced with the method invocation code that

is generated by Template Initialization (and stored in the database) to invoke the

method under test, e.g., var output = new String(thisObj).startsWith(searchString,

position). The <test constructor> placeholder is a project-specific description of how

test cases are written, and is an input to Swami (recall Figure 4.4 and Section 4.2);

for Rhino, it is new TestCase(test name, test description, expected output, actual

output). Figure 4.6 shows the code Template Initialization generates from the three

conditional sentences in the String.startsWith specification.

Rule 4: Conditional Translation processes the oracle code generated by

Conditional Identification by recursively filling in the variable value assignments

according to the specification and injects the code into the template produced by

Template Initialization, producing a complete test template.

Conditional Translation identifies the intermediate variables in the code generated

by Conditional Identification and replaces them with their values from the database

(placed in the database by Assignment Identification). If an intermediate variable

does not have a value in the database (e.g., because the specification was incomplete

or because the text describing this variable did not match Assignment Identification’s

regular expressions), this test will fail to compile and Swami will remove the entire

condition from the test. Next, Swami translates the implicit operations in the code.

For example, is greater than or equal to and Ø are translated to >=; this value is

translated to thisObj; is exactly, is equal to, and is are translated to ===; <x> is one

of <a>, <b>, ... is translated to x===a || x===b. . . ; the number of elements in <S> is
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1 if ( isRegExp is true){
2 try{
3 var output = new String ( thisObj ). startsWith ( searchString ,

position )
4 return
5 }catch(e){
6 new TestCase (<test name >, <test description >, true , eval(e

instanceof TypeError ))
7 return
8 }
9 }

10 if ( searchLength + start is greater than len){
11 var output = new String ( thisObj ). startsWith ( searchString ,

position )
12 new TestCase (<test name >, <test description >, output , false))
13 return
14 }
15 if (the sequence of elements of S starting at start of length

searchLength is same as the full element sequence of searchStr )
{

16 var output = new String ( thisObj ). startsWith ( searchString ,
position )

17 new TestCase (<test name >, <test description >, output , true))
18 return
19 }

Figure 4.6: The test code generated by the Template Initialization rule from the
JavaScript String.startsWith specification.

translated to <S>.length; etc. Swami contains 54 such patterns, composed of keywords,

special characters, wildcard characters, and parts of speech tags.

An inherent limitation of the regular expressions is that they are rigid, and fail

on some sentences. For example, Swami fails on the sentence “If the sequence of

elements of S starting at start of length searchLength is the same as the full element

sequence of searchStr, return true.” Swami correctly encodes most variable values

and implicit operations, but fails to encode the sequence of elements of S starting at

the start of length searchLength, resulting in a non-compiling if statement, which

Swami removes as a final post-processing step.
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1 function test_string_prototype_startswith (thisObj , searchString ,
position ){

2 if ( isRegExp === true){
3 try{
4 var output = new String ( thisObj ). startsWith (

searchString , position )
5 return
6 }catch(e){
7 new TestCase (<test name >, <test description >, true ,

eval(e instanceof TypeError ))
8 return
9 }

10 }
11 if ( ToString ( searchString ). length + Math.min(Math.max(

ToInteger ( position ), 0), ToString ( RequireObjectCoercible (
thisObj )). length ) > ToString ( RequireObjectCoercible ( thisObj
)). length )){

12 var output = new String ( thisObj ). startsWith ( searchString ,
position )

13 new TestCase (<test name >, <test description >, output ,
false))

14 return
15 }
16 }

Figure 4.7: The final test template Swami generates for the String.startsWith
JavaScript method.

Swami adds each of the translated conditionals that compiles to the test template

initialized by Template Initialization. Figure 4.7 shows the final test template Swami

generates for the String.startsWith JavaScript method.

4.3.4 Generating Executable Tests

Swami instantiates the test template via heuristic-driven random input generation.

ECMA-262 describes five primitive data types: Boolean, Null, Undefined, Number,

and String, and two non-primitive data types, Symbol and Object. Swami uses the five

primitive data types and several subtypes of Object (Array, Map, Math, DateTime,

RegExp, etc.). For Boolean, Swami generates true and false; for Null, null; for

Undefined, undefined; for Number, random integers and floating point values. Swami

also uses the following special values: NaN, -0, +0, Infinity, and -Infinity. For the
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Object subtypes, Swami follows several heuristics for generating Maps, Arrays, regular

expressions, etc. For example, when generating an Array, Swami ensures to generate

only valid length arguments (an integer between 1 and 232). (Invalid lengths throw a

RangeError at runtime, which would result in false alarm test failures.)

Finally, Swami augments the test suite with the developer written implementation of

abstract operations used in the specification. Recall that for JavaScript, this consisted

of 82 total lines of code, and that most of these abstract operation implementations

can be reused for other specifications.

4.4 Subjects of Investigation
We evaluate Swami using ECMA-262, the o�cial specification of the JavaScript

programming language [290], and two well known JavaScript implementations: Java

Rhino and C++ Node.js built on Chrome’s V8 JavaScript engine. We chose ECMA-

262 because: (1) it is more reliable and regularly updated unlike JavaDoc comments,

which developers forget to update while updating their source code, and (2) multiple

independently-maintained, open-source JavaScript implementations adhere to ECMA-

262 specifications, which gives us a good dataset to evaluate the e�ectiveness of

Swami-generated tests.

4.5 Evaluating Swami-Generated Tests and Key Findings
In this section, we first summarize the key findings of this study in terms of the

research questions we ask. We then describe the detailed results that lead to the

summarized findings.

We evaluate Swami’s performance to answer the following four research questions.
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RQ1 How precise are Swami-generated tests?

Answer: Of the tests Swami generates, 60.3% are innocuous — they can never fail. Of

the remaining tests, 98.4% are precise to the specification and only 1.6% are

flawed and might raise false alarms.

RQ2 Do Swami-generated tests cover behavior missed by developer-written tests?

Answer: Swami-generated tests identified 1 previously unknown defect and 15 missing

JavaScript features in Rhino, 1 previously unknown defect in Node.js, and 18

semantic ambiguities in the ECMA-262 specification. Further, Swami generated

tests for behavior uncovered by developer-written tests for 12 Rhino methods.

The average statement coverage for these methods improved by 15.2% and the

average branch coverage improved by 19.3%.

RQ3 Do Swami-generated tests cover behavior missed by state-of-the-art automated

test generation tools?

Answer: We compare Swami to EvoSuite and find that most of the EvoSuite-generated

failing tests that cover exceptional behavior are false alarms, whereas 98.4% of

the Swami-generated tests are precise to the specification and can only result in

true alarms. Augmenting EvoSuite-generated tests using Swami increased the

statement coverage of 47 classes by, on average, 19.5%. Swami also produced

fewer false alarms than Toradacu and Jdoctor, and, unlike those tools, generated

tests for missing features.

RQ4 Does Swami’s Okapi model precisely identify relevant specifications?

Answer: The Okapi model’s precision is 79.0% and recall is 98.9%, but further regular

expressions can remove improperly identified specifications, increasing precision
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to 93.1%; all the tests generated from the remaining improperly identified

specifications fail to compile and can be automatically discarded.

In the following sections, we describe the details about the results obtained for

each research question.

4.5.1 Evaluating Precision of Swami-Generated Tests

RQ1: How precise are Swami-generated tests?

Swami’s goal is generating tests for exceptional behavior and boundary conditions,

so we do not expect it to produce tests for most of the specifications. Instead, in the

ideal, Swami produces highly-precise tests for a subset of the specifications.

We use Swami to generate black-box tests from ECMA-262 (v8) JavaScript

specifications. Swami generated test templates for 98 methods, but 15 of these

test templates failed to compile, resulting in 83 compiling templates. We manually

examined the 83 test templates and compared them with the natural language

specifications to ensure that they correctly capture specification’s oracles. We then

instantiated each template with 1,000 randomly generated test inputs, creating 83,000

tests. We instrumented test templates to help us classify the 83,000 tests into three

categories: (1) good tests that correctly encode the specification and would catch

some improper implementation, (2) bad tests that incorrectly encode the specification

and could fail on a correct implementation, and (3) innocuous tests that pass on all

implementations.

Of the 83,000 tests, 32,379 (39.0%) tests were good tests, 535 (0.6%) were bad

tests, and 50,086 (60.3%) were innocuous.

It is unsurprising that innocuous tests are common. For example, if a test template

checks that a RangeError exception is thrown (recall Figure 4.1), but the randomly-

generated inputs are not outside the allowed range, the test can never fail. Innocuous
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tests cannot raise false alarms, since they can never fail, but could waste test-running

resources. Existing test prioritization tools may be able to remove innocuous tests.

We manually analyzed the 535 bad tests. (Of course, many of these tests could be

grouped into a few equivalence classes based on the behavior they were triggering.)

All bad tests came from 3 specifications. First, 176 of the tests tested the ArrayBuffer.

prototype.slice method, and all invoked the method on objects of type String (instead

of ArrayBuffer). Because slice is a valid method for String objects, that other method

was dynamically dispatched at runtime and no TypeError exception was thrown,

violating the specification and causing the tests to fail.

Second, 26 of the bad tests tested the Array.from(items,mapfn,thisArg) method,

expecting a TypeError whenever mapfn was not a function that can be called. The 26

tests invoke the Array.from with mapfn set to undefined. While undefined cannot be

called, the specification describes di�erent behavior for this value, but Swami fails to

encode that behavior.

Third, 333 of the tests tested the Array(len) constructor with nonnumeric len

values, such as Strings, booleans, etc. This dynamically dispatched a di�erent Array

constructor based on the type of the argument, and thus, no RangeError was thrown.

These imprecisions in Swami’s tests illustrate the complexity of disambiguating

natural language descriptions of code elements. The tests were generated to test specific

methods, but di�erent methods executed at runtime. Swami could be improved to

avoid generating these bad tests by adding more heuristics to the input generation

algorithm.

Of the non-innocuous tests Swami generates, 98.4% are precise to the

specification and only 1.6% are flawed and might raise false alarms.
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4.5.2 Comparing Swami Tests With the Developer Tests

RQ2: Do Swami-generated tests cover behavior missed by developer-written tests?

Rhino and Node.js are two extremely well-known and mature JavaScript engines.

Rhino, developed by Mozilla, and Node.js, developed by the Node.js Foundation on

Chrome’s V8 JavaScript engine, both follow rigorous development processes that

include creating high-quality regression test suites. We compared the tests Swami

generated to these developer-written test suites for Rhino v1.7.8 and Node.js v10.7.0

to measure if Swami e�ectively covered behavior undertested by developers.

Rhino’s developer-written test suites have an overall statement coverage of 71% and

branch coverage of 66%. Swami generated tests for behavior uncovered by developer-

written tests for 12 Rhino methods, increasing those methods’ statement coverage, on

average, by 15.2% and branch coverage by 19.3%. For Node.js, the developer-written

test suites are already of high coverage, and Swami did not increase Node.js statement

and branch coverage. However, coverage is an underestimate of test suite quality [276],

as evidenced by the fact that Swami discovered defects in both projects.

Swami generated tests that identified 1 previously unknown defect and 15 missing

JavaScript features in Rhino, 1 previously unknown defect in Node.js, and 18 semantic

ambiguities in the ECMA-262 specification. The Rhino issue tracker contains 2 open

feature requests (but no tests) corresponding to 12 of 15 missing features in Rhino.

We have submitted a bug report for the new defect1 and a missing feature request for

the 3 features not covered by existing requests2.

The discovered defect dealt with accessing the ArrayBuffer.prototype.byteLength

property of an ArrayBuffer using an object other than an ArrayBuffer. Neither Rhino

nor Node.js threw a TypeError, failing to satisfy the JavaScript specification.

1https://github.com/mozilla/rhino/issues/522

2https://github.com/mozilla/rhino/issues/521
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The missing features dealt with 6 Map methods3, 6 Math methods4, 2 String methods

(padStart and padEnd), and 1 Array method (includes) not being implemented in Rhino,

failing to satisfy the JavaScript specification.

The 18 semantic ambiguities are caused by JavaScipt’s multiple ways of comparing

the equality of values, e.g., ==, ===, and Object.is. In particular, === and Object.is

di�er only in their treatment of -0, +0, and NaN. The specification often says two values

should be equal without specifying which equality operator should be used. This causes

a semantic ambiguity in the specifications of methods that di�erentiate between these

values. In fact, developer-written tests for Node.js and Rhino di�er in which operators

they use to compare these values, with Rhino’s developers implementing their own

comparator and explicitly stating that they consider di�erentiating between +0 and

-0 unimportant5, whereas the specification dictates otherwise. With this ambiguity in

the specification, Swami has no obvious way to infer which equality operator should

be used and can generate imprecise tests. When using ===, Swami generated 18 false

alarms revealing this ambiguity. Using Object.is removes these false alarms.

Swami-generated tests identified 1 previously unknown defect and 15 missing

JavaScript features in Rhino, 1 previously unknown defect in Node.js, and 18

semantic ambiguities in the ECMA-262 specification. Further, Swami generated

tests for behavior uncovered by developer-written tests for 12 Rhino methods.

The average statement coverage for these methods improved by 15.2% and the

average branch coverage improved by 19.3%.

3https://github.com/mozilla/rhino/issues/159

4https://github.com/mozilla/rhino/issues/200

5https://github.com/mozilla/rhino/blob/22e2f5eb313b/testsrc/tests/shell.js
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4.5.3 Comparing Swami Tests With the State-Of-The-Art Test Generation

Tool

RQ3: Do Swami-generated tests cover behavior missed by state-of-the-art automated

test generation tools?

Random test generation tools, such as EvoSuite [81] and Randoop [211], can

generate tests in two ways: using explicit assertions in the code (typically written

manually), or as regression tests, ensuring the tested behavior doesn’t change as the

software evolves. As such, Swami is fundamentally di�erent, extracting oracles from

specifications to capture the intent encoded in those specifications. Still, we wanted

to compare the tests generated by Swami and EvoSuite, as we anticipated they would

cover complementary behavior.

We used EvoSuite to generate five independent test-suites for Rhino using 5

minute time budgets and line coverage as the testing criterion, resulting in 16,760

tests generated for 251 classes implemented in Rhino. Of these, 392 (2.3%) tests

failed because the generated inputs resulted in exceptions EvoSuite had no oracles

for (Rhino source code did not encode explicit assertions for this behavior). This

finding is consistent with prior studies of automated test generation of exceptional

behavior [22]. By comparison, only 1.6% of the non-innocuous Swami-generated tests

and only 0.6% of all the tests were false alarms (recall RQ1). Swami significantly

outperforms EvoSuite because it extracts oracles from the specifications.

Since EvoSuite, unlike Swami, requires project source code to generate tests,

EvoSuite failed to generate tests for the 15 methods that exposed missing functionality

defects in Rhino, which Swami detected by generating specification-based tests.

The EvoSuite-generated test suite achieved, on average, 77.7% statement coverage

on the Rhino classes. Augmenting that test suite with Swami-generated tests increased

the statement coverage of 47 classes by 19.5%, on average.
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The tools most similar to Swami, Toradacu [90] and Jdoctor [22], are di�cult to

compare to directly because they work on Javadoc specifications and cannot generalize

to the more complex natural language specifications Swami can handle. On nine

classes from Google Guava, Toradocu reduced EvoSuite’s false alarm rate by 11%: out

of 290 tests, the false alarms went from 97 (33%) to 65 (22%) [90]. Meanwhile, on six

Java libraries, Jdoctor eliminated only 3 of Randoop’s false alarms out of 43,791 tests

(but did generate 15 more tests and correct 20 tests’ oracles) [22]. And again, without

an implementation (or without the associated Javadoc comments), neither Toradacu

nor Jdoctor can generate tests to identify the missing functionality Swami discovered.

Overall, Swami showed more significant improvements in the generated tests.

We compare Swami to EvoSuite and find that most of the EvoSuite-generated

failing tests that cover exceptional behavior are false alarms, whereas 98.4% of

the Swami-generated tests are precise to the specification and can only result in

true alarms. Augmenting EvoSuite-generated tests using Swami increased the

statement coverage of 47 classes by, on average, 19.5%. Swami also produced

fewer false alarms than Toradacu and Jdoctor, and, unlike those tools, generated

tests for missing features.

4.5.4 Evaluating Swami’s Precision to Identify Relevant Specifications

RQ4: Does Swami’s Okapi model precisely identify relevant specifications?

Swami’s regular expression approach to Section Identification is precise: in our

evaluation, 100% of the specification sections identified encoded testable behavior.

But it requires specific specification structure. Without that structure, Swami relies

on its Okapi-model approach. We now evaluate the Okapi model’s precision (the

fraction of the sections the model identifies as relevant that are actually relevant) and

recall (the fraction of all the relevant sections that the model identifies as relevant).
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Eaddy et al. [70] have constructed a ground-truth benchmark by manually mapping

parts of the Rhino source code (v1.5R6) to the relevant concerns from ECMA-262

(v3). Research on information retrieval in software engineering uses this benchmark

extensively [71, 100]. The benchmark consists of 480 specifications and 140 Rhino

classes. On this benchmark, Swami’s precision was 79.0% and recall was 98.9%,

suggesting that Swami will generate tests from nearly all relevant specifications, and

that 21.0% of the specifications Swami may consider generating tests from may not

be relevant.

However, of the irrelevant specifications, 45.3% do not satisfy the Template

Initialization rule, and 27.3% do not satisfy the Conditional Identification rule. All the

test templates generated from the remaining 27.4% fail to compile, so Swami removes

them, resulting in an e�ective precision of 100%.

The Okapi model’s precision is 79.0% and recall is 98.9%, but further

regular expressions can remove improperly identified specifications, increasing

precision to 93.1%; all tests generated from the remaining improperly identified

specifications fail to compile and can be automatically discarded.

4.6 Comparing Swami Approach With the State-Of-The-Art
Our research complements prior work on automatically generating test inputs for

regression tests or manually-written oracles, such as EvoSuite [81] and Randoop [211],

by automatically extracting oracles from natural language specifications. The closest

work to ours is Jdoctor [22] and Toradacu [90], which extract oracles for exceptional

behavior, and @tComment [265], which focuses on extracting preconditions related

to nullness of parameters. These techniques are limited to using Javadoc comments,

which are simpler than the specifications Swami tackles because Javadoc comments

(1) provide specific annotations for pre- and post-conditions, including @param,
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@throws, and @returns, making them more formal [265]; (2) are collocated with

the method implementations they specify, (3) use the variable names as they appear

in the code, and (4) do not contain references to abstract operations specified

elsewhere. Additionally, recent work showed that Javadoc comments are often out

of date because developers forget to update them when requirements change [265].

Our work builds on @tComment, Toradacu, and Jdoctor, expanding the rule-based

natural language processing techniques to apply to more complex and more natural

language. Additionally, unlike those techniques, Swami can generate oracles for not

only exceptional behavior but also boundary conditions. Finally, prior test generation

work [22,81,90,211] requires access to the source code to be tested, whereas Swami

can generate black-box tests entirely from the specification document, without needing

the source code.

4.7 Discussion
While Swami’s regular-expression-based approach is rather rigid, it performs

remarkably well in practice for exceptional and boundary behavior. It forms both

a useful tool for generating tests for such behavior, and a baseline for further

research into improving automated oracle extraction from natural language by using

more advanced information retrieval and natural language processing techniques.

Augmenting developer-written test suite and automatically-generated test suite with

Swami tests significantly improved both kinds of test suites by covering code related

to under-tested functionality. Thus, Swami can be useful to improve APR quality by

enabling APR techniques to produce better patches using the improved developer-

written test suites, and by filtering out the plausible patches by using better held-out,

automatically-generated evaluation test suites.
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4.8 Threats to Validity
Regular expressions are brittle and may not generalize to other specifications or

other software. We address this threat in three ways. First, our evaluation uses ECMA-

based specifications which has been used to specify hundreds of systems [12], from

software systems, to programming languages, to Windows APIs, to data communication

protocols, to telecommunication networks, to data storage formats, to wireless

proximity systems, and so on. This makes our work directly applicable to at least

that large number of systems, and it can likely can be extended to other standards.

Second, our evaluation focuses on the specification of JavaScript, a mature, popular

language. The ECMA-262 standard is the o�cial specification of JavaScript. Third,

we evaluate our approach on two well-known, mature, well-developed software systems,

Rhino, written in Java, and Node.js, in C++, demonstrating generalizability to test

generation for di�erent languages and systems.

The correctness of Swami-generated tests relies on the test constructor written

by the developer. For example, the Rhino’s test case constructor internally uses

method getTestCaseResult(expected, actual) that fails to distinguish -0 from +0 (recall

Section 4.5.2). This inhibits the Swami-generated tests from correctly testing methods

whose behavior depends on di�erentiating signed zeros.

Our evaluation of the Okapi-model-based approach and our choice of similarity

score threshold rely on a manually-created ground truth benchmark [70]. Errors

in the benchmark may impact our evaluation. We mitigate this threat by using a

well-established benchmark from prior studies [71,100,101].

4.9 Contributions
We have presented Swami, a regular-expression-based approach to automatically

generate oracles and tests for boundary and exceptional behavior from structured

natural language specifications. Swami is the first approach to work on specifications
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as complex as the ECMA-262 JavaScript standard. Our evaluation demonstrates that

Swami is e�ective at generating tests, complements tests written by developers and

generated by EvoSuite, and finds previously unknown bugs in mature, well-developed

software. The main contributions of this work are:

• Swami, an approach for generating tests from structured natural language

specifications.

• An open-source prototype Swami implementation, including rules for specification

documents written in ECMA-script style, and the implementations of common

abstract operations.

• An evaluation of Swami on the ECMA-262 JavaScript language specification,

comparing Swami-generated tests to those written by developers and those

automatically generated by EvoSuite, demonstrating that Swami generates tests

often missed by developers and other tools and that lead to discovering several

unknown defects in Rhino and Node.js.

• A replication package of all the artifacts and experiments described in chapter

available at http://swami.cs.umass.edu/.

This work is joint with Yuriy Brun, and credit for this work is shared between

the two of us. The published version of this study [197] can be found at https:

//doi.org/10.1109/ICSE.2019.00035.
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CHAPTER 5

IMPROVING FAULT LOCALIZATION
USING BUG REPORTS

5.1 Introduction
Identifying the defective program elements (e.g., classes, methods, or statements)

is the first step in repairing software defects whether manually or automatically. Fault

localization (FL) research focuses on automatically identifying defective program

elements that cause software failures. Most of the automated FL techniques use

dynamic analysis and run-time information of the defective program to compute the

suspiciousness score (probability of being defective) of the program elements. The

developer or an APR tool can then use a ranked list of program elements to fix the

defect. Please refer to the survey study [293] for more details on the state-of-the-art

FL techniques. Studies show that accuracy of the FL used by APR has a significant

e�ect on APR’s success [5, 11, 110, 164, 286, 304], and manually improving FL can

correctly patch more defects [5, 166]. Some APR tools, such as SimFix [111] use

specific heuristics to address inaccurate FL, however, their FL is tightly coupled with

their repair tool implementation making it non-reusable for other repair tools. This

problem is known as FL bias in APR [164,166]. The goal of the study described in

this chapter is to develop a reusable and better FL for APR by combining information

from test executions and bug reports.

Depending on the source of information used to localize the fault, FL techniques can

be classified into multiple families. For example, spectrum-based (SBFL) techniques

(e.g., [2, 99,295]) use test coverage information, mutation-based (MBFL) techniques
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(e.g., [196, 213]) use test results collected from mutating the program, (dynamic)

program slicing techniques (e.g., [6,234]) use the dynamic program dependencies, stack

trace analysis techniques (e.g., [291, 294]) use error messages, predicate switching

techniques (e.g., [317]) use test results from mutating the results of conditional

expressions, information retrieval-based FL (IRFL) techniques (e.g., [319], [243]) use

bug report information, and history-based FL (e.g., [124,229]) use the development

history to identify the suspicious program elements that are likely to be defective.

Recent studies in FL have found that none of the families of FL techniques is the best

and combining multiple techniques across di�erent families outperforms individual

techniques [155,320].

Even though there exists a variety of FL techniques, most APR tools typically

use SBFL techniques that uses test execution coverage to compute the suspiciousness

scores of program elements. While researchers are actively working on improving FL

by using multiple bug information sources, to the best of our knowledge, there does

not exist any repair tool that uses these advancements to localize bugs in the repair

process. The work closest to experimenting with FL in APR is a repair technique

iFixR [132] that internally uses bug reports and an IRFL FL technique to localize

bugs. iFixR patches defects that 16 SBFL-based repair tools cannot, and vice versa.

In this chapter, we describe FL techniques that use bug reports to localize defects

and are suitable for use in APR. We describe (1) a light-weight FL technique that

uses structured information-retrieval-based approach to localize defects using bug

reports at the statement-level and (2) an unsupervised-learning-based technique that

uses rank aggregation algorithms to combine multiple FL techniques, which may use

di�erent bug information sources. While existing research in FL focuses on improving

manual program repair, the FL techniques described in this chapter intend to improve

program repair.
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This chapter is organized as follows. Section 5.2 describes Blues, a technique that

localizes bugs by ranking suspicious program statement using bug reports. Section 5.3

describes our implementation of an SBFL technique, which is popularly used by most

test-suite-based program repair tools. Section 5.4 describes our method for combining

FL techniques called RAFL and using RAFL to combine Blues and our SBFL into

SBIR. Section 5.5 describes the real-world defects and evaluation metrics used to

evaluate the performance of FL techniques. Section 5.6 describes the evaluation and

key findings in terms of the research questions. Section 5.7 discusses the use of FL

techniques in program repair. Section 5.8 addresses the threats to validity of our study

and Section 5.9 summarizes our contributions.

5.2 Blues: Localizing Bugs Using Bug Reports
We create Blues because most existing IRFL techniques [131,243,288,291,310,319]

are not well suited for APR as they localize defects to a file or a method, whereas

APR tools need finer, statement-level localization. The only known statement-level

IRFL is used internally by iFixR [132], but is poorly suited for our needs because (1) it

uses supervised learning, (unlike Blues) requiring a dataset with bug reports, results

from six IRFL techniques, and correct defect locations, and (2) it is pre-trained on

projects [153] that overlap with the Defects4J benchmark used in our evaluations and

re-training D&C poses complex technical challenges. Further, iFixR’s FL technique

ignores localizing defects in several abstract syntax tree (AST) statements including

for and while loops that can improve APR [163], which Blues uses.

Our IRFL technique, Blues, uses bug reports to localize defects at the statement

level. Blues does not reinvent the wheel. It starts with BLUiR [243] to identify

suspicious files (Section 5.2.1), and then extracts data on 57 types of source-code

statements to extend BLUiR’s mechanism to the statement level and develops several

methods for combining the file-level and statement-level results (Section 5.2.2).
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Figure 5.1: The Blues architecture. The Blues architecture builds on BLUiR [243] to
rank suspiciousness program statements using structured information retrieval.

5.2.1 Ranking Suspicious Files

Blues builds on BLUiR [243], an existing file-level IRFL technique. BLUiR

uses structured information retrieval to compute the similarity between bug reports

and source code files. We select BLUiR because it is e�cient, does not require a

training dataset, and performs comparably to the other state-of-the-art file-level IRFL

techniques [153].

Figure 5.1 shows the Blues architecture. Blues extends BLUiR to produce

statement-level results. For each defect, Blues’ inputs are the source files and the

bug report. Blues builds the AST of each source file using Eclipse Java Development

Tools (JDT). Blues processes the AST of source files to extract identifiers associated

with each program construct, such as class names, method names, variable names,

and comments. It then splits the extracted identifiers into tokens using CamelCase

splitting, which improves the matching recall. Blues then parses the bug report to

extract identifiers from the summary and description fields, storing the information

in separate structured XML documents. The XML documents created from source

files and bug report are then fed into Indri toolkit [262] for e�cient indexing and for

developing the retrieval model. Indri pre-processes the XML documents using text

normalization (remove punctuation, perform case-folding, tokenize terms), stopword

removal (remove extraneous terms such as “a”, “the”, “be”, etc.), and stemming
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(conflate variants of the same underlying term e.g., “ran”, “running”, “run”). Next,

it indexes the pre-processed documents by collecting and storing statistics, such as

term frequency (TF) (the number of times a term occurs in a given document),

document frequency (DF) (the number of documents in which a given term appears),

and Inverse Document Frequency (IDF), which is formulated as log( N
DF ), where N

is the total number of documents in the collection. Finally, Blues uses an IR model

(TF-IDF formulation based on the BM25 (Okapi) model [238]) to search and rank the

documents based on their similarity with the given bug report. The TF-IDF-based

IR model uses two tuning parameters: the term weight scaling parameter k1 and the

document normalization parameter b, which are provided as input (along with XML

documents) to the Indri toolkit. We set k1 = 1.0 and b = 0.3, as suggested in the

original BLUiR study [243] tuned using independent dataset. The output of the IR

model is the ranked list of source files along with similarity scores for the bug report.

5.2.2 Ranking Suspicious Statements

To identify the suspicious statements from the top-ranked suspicious files, Blues

takes the top-k ranked files, uses Eclipse JDT to create the AST of each source file,

and then uses AST Visitor to parse and extract AST statements from the source

file ASTs. Prior work [163] shows that localizing bugs at the expression-level can

improve APR tools. Therefore, unlike the IRFL technique used in iFixR [132],

which only extracts five kinds of AST statements (if, return, FieldDeclaration,

Expression, and VariableDeclaration), Blues extracts 32 AST expressions [231],

3 AST nodes (Annotation, SingleVariableDeclaration, AnonymousClassDeclaration),

and 22 AST statements [73], 17 of which iFixR ignores, including for loops, while

loops, do statements, array access, method invocation, and so on). For readability, we

refer to the AST node, AST expression, and AST statement as statement.
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For each statement, Blues extracts the identifier terms and the line number of that

statement. Extracting AST statements instead of natural language text from source

files enables Blues to (1) fetch compilable code statements (a single code statement may

span across multiple lines in the source file), which can be considered for replacement

by repair tools, and (2) compute separate suspiciousness scores for nested statements

that exist on the same line of the source file. Next, for each statement, Blues creates

an XML document that contains the identifiers extracted from that statement along

with the information of its source file and line number. Blues then feeds these XML

documents, along with the same tuning parameters (k1 = 1.0 and b = 0.3) used for

ranking source files, to the Indri toolkit to perform the same processing as for ranking

source files, and uses the same IR model to produce a ranked list of statements along

with their similarity scores with the bug report. Blues extracts the source file and

line number information from ranked statement results to produce a ranked list of

suspicious statements per file.

Real-world projects contain many source files, and it may be ine�ective to consider

all statements in a higher-ranked file to be more suspicious ones in lower-ranked

files. While sometimes e�ective, our experiments show that this strategy is sometimes

sub-optimal, so we also explore other strategies. Blues provides a ranker module that

uses three parameters to produce a final ranked list:

f : the number of suspicious files to consider.

m: the number of suspicious statements per file to consider.

ScoreFn: a function for combining the file and statement suspiciousness scores. We

define two such functions:

1. Scorehigh ranks the m most suspicious statements in the most suspicious

file, followed by m statements in the next file, and so on.
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2. Scorewt uses the files’ scores as weights for the associated suspicious

statements and recomputes the weighted suspiciousness scores for the

statements by multiplying the suspiciousness scores of the statements with

the suspiciousness score of the associated file. The statements are then

ranked using the weighted scores. This is same as the method used by

iFixR [132] to combine file and statement scores.

In our experiments, we use f = 50 based on the recommendation of a prior

study [132]. We experiment with using di�erent m values and scoring functions. We run

Blues’ ranker module using six di�erent configurations: five (m œ {1, 25, 50, 100, all})

with Scorehigh, and one (m = all) with Scorewt. For each of the six configurations,

Blues produces a ranked list of suspicious statements.

Figure 5.2 shows the number of defects localized in top-k (k œ {1, 25, 50, 100, all})

ranked lists obtained using the six configurations. The six configurations localize

complementary defects, as evident by the row showing the union of defects localized.

Therefore, we use Algorithm 1 to combine the six ranked lists into a single list, which

we call Blues ensemble. The intuition behind our algorithm is that a statement with

a higher suspiciousness score, considering all the six lists, be placed higher in the

combined list. We break ties based on the number of lists in which statements occur;

a statement found in more lists is ranked higher in the combined list. To fairly

compare suspiciousness scores across lists, the algorithm uses normalized scores. As

shown in Figure 5.2, for all list sizes we consider, Blues ensemble consistently localizes

more defects than all of the underlying six configurations. Note that computing the

individual configurations and ensemble is a relatively low-cost process. One only needs

to rerun Blues’s ranker module and Algorithm 1, not the entire Blues pipeline. From

here on, we use only the ensemble and refer to it as just Blues.
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m ScoreFn k = 1 25 50 100 all
1 Scorehigh 26 62 65 65 65

25 Scorehigh 26 153 219 269 384
50 Scorehigh 26 153 195 279 476

100 Scorehigh 26 153 195 241 526
all Scorehigh 26 153 195 241 593
all Scorewt 25 176 228 298 593

union 30 224 300 377 593
Blues ensemble 26 183 238 304 593

Figure 5.2: Comparing the performance of Blues ensemble with underlying Blues
configurations to localize 815 defects in Defects4J (v2.0). The six Blues configurations
localize complementary defects (evident by “union”) and Blues ensemble consistently
localizes more defects than all of the underlying six configurations.

5.3 Spectrum-Based Fault Localization
A program spectrum is a measurement of the runtime behavior of a program,

such as code coverage of developer-written tests [99]. Comparing program spectra on

passing and failing tests can be used to rank program elements (e.g., class, method,

statement). SBFL techniques calculate the suspiciousness score of an element using

some ranking strategy that considers the following four values collected from the

test execution coverage on that element: (1) number of failing tests that execute

element (ef ), (2) number of failing tests that do not execute element (nf ), (3) number

of passing tests that execute element (ep), and (4) number of passing tests that do not

execute element (np). While there are multiple ranking strategies proposed for SBFL,

including Ochiai [2], DStar [292], and Tarantula [116], many empirical studies [301,320]

have shown that Ochiai is more e�ective for object-oriented programs. Thus, most

SBFL-based repair tools use Ochiai, and so does our study.

We do not create a new SBFL technique, but combine existing tools to produce

a state-of-the-art implementation. There exist multiple frameworks that APR tools

use to compute code coverage while implementing their SBFL techniques, including
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Algorithm 1 Combining ranked lists using maximum suspiciousness scores and
breaking ties using consensus.

Input: rankedLists Ω [l1, l2, ...] Û set of individual ranked lists to be combined
Output: combinedList Û combined list of ranked suspicious statements

procedure CombineLists(rankedLists)
stmt_maxscore Ω {} Û stores max suspiciousness score of a stmt in all lists
stmt_listcount Ω {} Û stores number of lists in which a stmt occurs
combinedList Ω [ ] Û stores output combined list of stmts with scores
for lk œ rankedLists do

listn Ω NormalizeScores(lk) Û normalize stmt scores to range in [0, 1]
for (stmt, score) œ listn do

if score > 0.0 then
if stmt /œ stmt_maxscore then Û stmt is seen for the first time

stmt_maxscore[stmt] = score

stmt_count[stmt] = 1
else Û if stmt is seen before, check if new score is higher

if score > stmt_maxscore[stmt] then
stmt_maxscore[stmt] = score Û update max score if higher

stmt_count[stmt] = stmt_count[stmt] + 1 Û update count
combinedList Ω sortUsingScoreAndCount(stmt_maxscore, stmt_count)

Û sort stmts based on max scores and break ties by placing stmts with higher count
higher in the list

return combinedList

JaCoCo [103], GZoltar [34], and Cobertura [43]. Our study uses GZoltar because

most APR tools use it, and a recent study comparing 14 APR tools used multiple

GZoltar versions, showing that the latest-at-the-time version (v1.6.0) significantly

improved FL results and repair performance [164]. We use the latest version (v1.7.2)

of GZoltar. GZoltar’s inputs are the source code and test suite and its outputs are

each statement’s ef , nf , ep, and np. We use the the Ochiai ranking formula to compute

suspiciousness scores:

score = efÔ
(ef +nf )(ef +ep)

We validate our SBFL implementation by comparing it to previously reported

results [164] on Defects4J (v1.2.0) for SBFL implemented using Ochiai and older

versions of Gzoltar. Figure 5.3 shows our SBFL implementation localizes 23 more

defects than the best prior version.
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project Closure Lang Math Mockito Time Total
#defects 133 65 106 38 26 368
GZ v0.1.1 78 29 91 21 22 241
GZ v1.6.0 95 57 100 23 22 297
GZ v1.7.2 101 53 95 36 21 306

Figure 5.3: Comparing FL performance of our SBFL with prior implementations. Our
SBFL (implemented using GZoltar (v1.7.2) and Ochiai ranking strategy), in bold,
localizes more defects than prior SBFLs using older versions of Gzoltar [164].

In the remainder of this chapter, when we refer to our SBFL, we are referring to

this particular implementation.

5.4 Combining Fault Localization Techniques
Existing approaches to combine multiple FL techniques [140,155,255,301,320], are

typically based on learning to rank [32] supervised machine learning. These techniques

consider suspiciousness scores of program elements as features and train a model that

ranks defective elements higher than non-defective elements. Such approaches require

a training dataset of program elements annotated with suspiciousness scores computed

using di�erent FL techniques; each element needs to be manually labeled with the

ground truth, as “defective” or “not-defective”. Given a new defect, the trained model

uses the FL scores computed for that defect to rank the elements. Training such

models requires a large, annotated dataset, which can be hard to create. Further,

training such models is typically computationally expensive [20], and performance

depends heavily on the training dataset and features [181].

We propose an unsupervised approach that requires no training. We formulate

the problem of combining multiple FL techniques as a rank aggregation (RA) [160]

problem. RA involves combining multiple ranked lists (base rankers) into one ranked

list (aggregated ranker) [63]. The RA problem has been studied extensively in
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information retrieval [68], marketing and advertisement research [160], social choice

(elections) [68], and genomics [130]. We propose to use RA algorithms to combine

multiple FL techniques’ ranked lists of suspicious statements.

We next describe our approach to combine FL techniques (Section 5.4.1) and using

it to combine Blues and SBFL (Section 5.4.2).

5.4.1 RAFL: Rank Aggregation-Based Fault Localization

FL techniques typically assign suspiciousness scores to hundreds of program

statements. Combining multiple ranked lists, which are often inconsistent, such that

the result is as close as possible to the individual lists according to some distance metric,

can become combinatorially intractable. For example, a brute force approach to create

an ordered list of 100 statements by combining two lists of 500 statements, such that

800 of the statements are unique, will potentially require evaluating
1

800
100

2
= 3.4◊10129

possible lists! Using a brute force method to compute this is computationally infeasible.

We propose rank aggregation-based FL (RAFL), a novel approach that uses RA

algorithms to combine FL. Our technique is inspired from the research in search-based

software engineering [98], which involves applying metahueristic search techniques

to solve problems of balancing competing (and some times inconsistent) constraints.

RAFL works as follows. Let L1, L2, . . . , Lm be m ordered lists of program statements

(e.g., obtained using m FL techniques). RAFL aims to create an ordered list ” of

length k that combines the statements in the individual lists by minimizing the

weighted sum of the distances between ” and the individual lists. Formally, RAFL

minimizes the objective function:

f(”) = qm
i=1 wid(”, Li)

where wi is the importance weight associated with list Li, and d is a distance metric.

To do this, RAFL samples multiple lists of k statements from the unique statements

in the individual lists, using an algorithm-specific sampling strategy. For instance, the
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cross-entropy Monte Carlo algorithm (CE) uses the multinomial sampling method

that selects a statement to be part of a sampled list based on the statement’s selection

probability for that list. On the other hand, the genetic algorithm (GA) randomly

creates popSize (specified as input) number of sampled lists and uses weighted random

sampling to select the sampled lists where the weight for a list is determined based

on its fitness (the objective function score). RAFL computes the objective function

for each sampled list. Iteratively, RAFL updates the sampled list using the objective

function computations based on the choice of RA algorithm used. For example, the

CE algorithm updates the multinomial sampling probabilities of unique statements

for sampled lists such that the updated sampled lists created based on the updated

sampling probabilities of unique statements minimize their objective function score.

On the other hand, the GA algorithm performs cross-over and mutation operations on

the sampled lists such that the new generation of sampled lists produced as an outcome

of these operations have lower objective function scores. This iteration continues

until RAFL observes no change in the objective function scores for a fixed number of

iterations, returning the lowest-scoring list.

Our RAFL implementation is build on the RankAggreg [221] package in R, which

implements several RA algorithms (cross-entropy Monte Carlo algorithm (CE), genetic

algorithm (GA), and a brute force algorithm) and provides distance metrics (Spearman

Footrule [26], and Kendall’s tau [25]). The brute force algorithm is advised to be

used when combining lists of smaller size (k Æ 10), while CE and GA should be

used for larger size lists. The left two columns in Figure 5.4 list RAFL configuration

parameters, which can be used to select combinations of RA algorithms and distance

metrics to combine FL. In our study, we use the default values of algorithm-specific

parameters defined in the RankAggreg [221], which are tuned on independent dataset.
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parameter definition SBIR value
k size of the combined list 100
seed seed specified for reproducibility 1
distance Spearman or Kendall Spearman
method algorithm (CE or GA) CE
maxIter max # of iterations allowed (default 1000) 1000
convIn # of consecutive iterations to decide if algorithm

has converged (default: 7 for CE, 30 for GA)
7

N #samples to be generated in each iteration
(recommended to be at least k

2)
10,000

fl (fl · N) is quantile of candidate lists sorted by
the objective function scores used by the CE

0.01 if N Ø 100
and 0.1 otherwise

popSize population size in each generation for the GA
(default 100)

NA

CP Cross-over probability for the GA (default 0.4) NA
MP Mutation probability for the GA NA

Figure 5.4: RAFL configuration parameters.

5.4.2 SBIR: Combining SBFL and IRFL (Blues)

To combine the FL results from Blues (Section 5.2) and our SBFL (Section 5.3),

we use the RAFL approach to develop SBIR using the cross-entropy Monte Carlo (CE)

RA algorithm with the Spearman Footrule distance. We make these choices because

prior work found CE to be typically more e�cient than genetic algorithms [220] and

than Borda count [58,221], and because computing the Spearman Footrule distance is

faster than Kendall’s tau.

The CE algorithm represents an ordered list of k statements using a 0–1 matrix of

size n ◊ k, where n is the total number of unique statements in the ranked lists and

k is the length of the desired combined list. The algorithm imposes two constraints:

each column sums up to exactly 1, and each row sums up to at most 1. Under this

representation, an ordered list of size k is uniquely determined by reordering the

matrix’ rows (statements) such that the top k rows form the identity (that is, the

first statement is the one with the 1 in the leftmost column, and so on). For example,
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if the full list of unique statements was [S1, S2, S3, S4] (n = 4), then the following

matrix:
S

WWWWWWWWWWU

0 0 1

1 0 0

0 0 0

0 1 0

T

XXXXXXXXXXV

would translate to the top-3 candidate list of [S2, S4, S1].

The goal of the CE algorithm is to identify a matrix that results in the minimum

objective function score out of all possible matrices. The CE algorithm uses the

following four steps:

1. Initialization creates a probability matrix of size n◊k and assigns a probability

value of 1
n to all the cells of the matrix. This matrix represents the multinomial

sampling probabilities of the statements: any one of the statements (rows) is

equally likely to be in any one of the k positions. Next, CE runs steps 2 and 3

iteratively.

2. Sampling generates N 0–1 matrices using the restricted (truncated) multinomial

sampling using the current probabilities [247] . The output of this step are N

(new) randomly generated 0–1 matrices of size n ◊ k.

3. Updating computes the objective function scores for each of the N sampled

matrices, sorts the sampled matrices in the ascending order of the scores, and

identifies fl-quantiles y
t of the sorted matrices. The algorithm uses the objective

function scores of the matrices in iteration t to update the multinomial cell

probabilities of unique elements that tend to minimize the objective function

scores of the matrices sampled in the next iteration, as follows:
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p
t+1
jr = (1 ≠ w)pt

jr + w

qN
i=1 I (f (”i) Æ yt)xijr

qN
i=1 I (f (”i) Æ yt)

where 1 Æ j Æ n, 1 Æ r Æ k, p
t
jr is the probability of the unique statement at

the jr
th position in the matrix at iteration t and p

t+1
jr is its updated value at

iteration t + 1; f(”i) is the objective function score of the i
th sampled matrix

and xijr is the value of the jr
th cell of the i

th sampled matrix; w is a weight

parameter with a default value of 0.25 (from RankAggreg [221]) and I is the

indicator function.

4. Convergence stops the iteration when the minimum value of the objective

function does not change in a preset number of iterations. The matrix with

a minimum objective function score in the final iteration represents the final

combined list of statements.

Our SBIR implementation combines the ranked suspicious statement lists from

SBFL and Blues, to produce a single list of top-100 statements. The right column

in Figure 5.4 shows the values of configuration parameters we used to develop SBIR.

We set importance weight wi = 1.0 to assign equal importance to SBFL and Blues,

and use default values of other parameters including w (used in updating sampling

probabilities), and fl that are tuned by prior work [220] on independent datasets. We

select k = 100 because most APR tools consider at most 100 statements in their repair

processes, and for e�ciency: SBIR takes 10 min per defect, on average and combining

FL results, SBIR took one week to execute for all the 815 defects in our evaluation

(Section 5.6). In the final ranked list, SBIR assigns normalized suspiciousness scores

varying from [0.1, 1.0] to the statements where a statement at the top gets a score of

1.0 and subsequent statements get scores reduced by 0.1.
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5.5 Subjects of Investigation and Evaluation Metrics
This section describes the real-world defects and the metrics we use to evaluate

the performance of FL techniques.

5.5.1 Defect Benchmark

We use the latest version (version 2.0) of the Defects4J [87] benchmark that targets

Java 8 and consists of 835 reproducible defects from 17 large open-source Java projects.

Each defect comes with (1) one defective and one developer-repaired version of the

project code with the changes minimized to those relevant to the defect; (2) a set

of developer-written tests, all of which pass on the developer-repaired version and

at least one of which evidences the defect by failing on the defective version; (3) the

infrastructure to generate tests using modern automated test generation tools; and

(4) defect information, including the bug report URL. Out of the 835 defects, 817

have the bug report URL available, making IRFL possible. For 815 of the 817 defects,

the test execution information was relevant to make SBFL possible. We use these

815 defects to evaluate our FL techniques. As most APR tools are applicable to

defects that involve modifying contiguous source code statements typically in a single

source file, we characterize these 815 defects using the Defect Complexity parameters

described in Section 2.2.3 of Chapter 2. For 689 of the 815 defects, developer-written

patches modify a single source file (single-file-edit defects) while for 129 defects,

developer-written patches modify a single source statement (single-line-edit defects)

to repair the defect. Figure 5.5 shows the distribution of all 815 defects, single-file

defects, and single-line defects across the 17 Defects4J projects.

5.5.2 Metrics to Evaluate Fault Localization Performance

We use the following two metrics, which are commonly used to evaluate the

performance of FL techniques [320]:
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identifier project description all sfd sld
Chart jfreechart framework to create charts 8 8 4
Cli commons-cli API for parsing command line options 39 32 3
Closure closure-compiler JavaScript compiler 174 137 23
Codec commons-codec implementations of encoders &

decoders
18 14 8

Collections commons-collections Java Collections Framework
extensions

4 4 1

Compress commons-compress API for file compression utilities 47 43 4
Csv commons-csv API to read and write CSV files 16 15 5
Gson gson API to convert Java Objects into

JSON
18 16 2

JacksonCore jackson-core core part of the Java JSON API
(Jackson)

26 19 3

JacksonDatabind jackson-databind data-binding package for Jackson 111 91 13
JacksonXml jackson-dataformat-xml data format extension for Jackson 6 6 1
Jsoup jsoup HTML parser 93 75 18
JxPath commons-jxpath XPath (an expression language)

interpreter
22 13 1

Lang commons-lang extensions to the Java Lang API 64 64 10
Math commons-math library of mathematical utilities 106 98 23
Mockito mockito a unit-test mocking framework 38 33 7
Time joda-time date and time processing library 25 21 3
total 815 689 129

Figure 5.5: The “all” column shows the 815 defects from the 17 real-world Java
projects in the Defects4J (v2.0) benchmark localized using our FL techniques. The
“sfd” column shows the 689 single-file-edit defects and the “sld” column shows the
129 single-line-edit defects.

1. hit@k counts the number of defects localized within the top-k ranked statements.

It tells us how useful an FL technique is for an APR tool that considers the top k

ranked statements. A higher value of hit@k provides APR tools an opportunity

to repair more defects.

2. EXAM measures the fraction of ranked statements one has to inspect before

finding a defective statement. A smaller value of EXAM score means the defective

statements are ranked higher, providing APR tools an opportunity to produce

more correct patches.
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For consistency with prior studies [132,164,320], we consider a defect successfully

localized when at least one of the developer-patch-modified statements is in the top-k

statements. Unlike studies that break ties by reassigning average rank [215] or expected

rank [320], we rank same-suspiciousness statements in the order they appear in the

FL results, as this is how APR tools process them.

5.6 Evaluating Fault Localization and Key Findings
In this section, we first summarize the key findings of this study in terms of the

research questions we ask. We then describe the evaluation details that lead to the

summarized findings. We answer the following three research questions:

RQ1 Does Blues localize defects better than existing approaches?

Answer: Despite requiring no training data, for APR relevant scenarios (k Ø 25), Blues

performs better than the state-of-the-art, supervised, statement-level IRFL

technique used in iFixR. For example, Blues localizes 63% defects while iFixR

localizes 61% defects in top-100 ranked statements. Further, Blues outperforms a

statement-level BLUiR implementation that does not consider ranks of suspicious

files: Blues localizes 37% defects while BLUiR localizes 30% defects in top-100

ranked statements. Considering the fraction of ranked suspicious statements

required to be inspected to find defective statements averaged over localized

defects, Blues outperforms both iFixR (Blues 3.4% vs iFixR 5.1%) and BLUiR

(Blues 11.1% vs BLUiR 16.4%).

RQ2 Does SBIR, our combination of SBFL and Blues, localize defects better than

SBFL and Blues?

Answer: For all ranked suspicious statement list sizes we investigated (k œ {1, 25, 50, 100}),

SBIR consistently outperforms underlying SBFL and Blues by localizing more

defects and placing defective statements higher in the ranked lists. For example,
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considering top-100 suspicious statements, SBIR correctly identifies defective

statements for 557 of the 815 (68.3%) defects, whereas SBFL does so for

546 (66.9%) and Blues for 304 (37.3%).

RQ3 Does SBIR outperform state-of-the-art FL?

Answer: SBIR consistently localizes more defects and places defective statements higher

in the ranked lists than (1) 9 standalone FL techniques, (2) a supervised,

learning-to-rank technique used by existing supervised combining FL techniques,

and (3) a baseline combiner created using a simple method. Further, when

SBIR is added to CombineFL [320], a state-of-the-art supervised technique that

combines multiple FL techniques into one, CombineFL’s performance consistently

improves.

5.6.1 Blues’ Evaluation

RQ1: Does Blues localize defects better than existing approaches?

Following sections compare the performance of Blues to localize defects in real-

world programs with the state-of-the-art (Section 5.6.1.1) and baseline (Section 5.6.1.2)

IRFL technique.

5.6.1.1 Blues’s Comparison With the State-Of-The-Art

Figure 5.6 compares Blues with state-of-the-art statement-level IRFL technique

used in iFixR [132] on the 171 Lang and Math project defects in Defects4J on

which iFixR was evaluated1. As shown in Figure 5.6, considering ranked lists of

size Ø 25 (relevant for APR), Blues consistently localizes more defects (higher

hit@k) than iFixR’s IRFL . Comparing the fraction of ranked statements required to

1The iFixR FL results available at https://github.com/TruX-DTF/iFixR/tree/master/data/
stmtLoc contain multiple statements with the same rank and multiple ranks for the same statement.
We break ties by assigning the highest possible rank to each statement.
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(171 defects) hit@k EXAM
k = 1 25 50 100 all k = all

iFixR 26 74 93 104 132 0.051
Blues 11 79 97 107 149 0.034

Figure 5.6: Comparing the FL performance of Blues with the state-of-the-art. For
ranked suspicious statement lists of size Ø 25, Blues localizes more defects (hit@k)
and places buggy statements higher in the list (lower EXAM) than the state-of-the-art
IRFL technique used in iFixR when evaluated on 171 Lang and Math defects in the
Defects4J on which original iFixR was evaluated.

be inspected to identify defective statements for the localized defects, Blues places

defective statements higher (lowering EXAM) in the ranked lists than iFixR. Blues’

advantage of using a lightweight unsupervised approach outweighs iFixR’s supervised

technique that requires 6 file-level IRFL techniques.

5.6.1.2 Blues’s Comparison With a Baseline

We implement a version of statement-level BLUiR (vanilla BLUiR) that does

not consider the suspiciousness scores of the source files and instead ranks the

suspicious statements only based on their similarity to the bug reports. Figure 5.7

compares Blues’s and vanilla BLUiR performance on the 815 defects. As shown, Blues

consistently outperforms vanilla BLUiR by localizing more defects (higher hit@k) and

ranking defective statements higher (lower EXAM), for all list sizes we consider.

For APR relevant scenarios (ranked suspicious statement lists of size Ø 25),

Blues consistently localizes more defects and places defective statements higher

in the ranked lists than the state-of-the-art, supervised, statement-level IRFL

technique used in iFixR. Further, Blues outperforms a statement-level BLUiR

implementation that does not consider ranks of suspicious files.
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(815 defects) hit@k EXAM
k = 1 25 50 100 all k = all

vanilla BLUiR 22 135 187 243 591 0.164
Blues 26 183 238 304 593 0.111

Figure 5.7: Comparing FL performance of Blues’s with baseline. Blues significantly
localizes more defects (higher hit@k) than vanilla BLUiR, which does not consider
suspicious file scores for all k values and ranks defective statements higher (lower
EXAM) in the ranked lists when compared on the 815 defects in the Defects4J v2.0.

5.6.2 SBIR’s Evaluation

We evaluate SBIR on the 815 defects and two metrics from Section 5.5. This

section compares the FL performance of SBIR with the underlying SBFL and

Blues (Section 5.6.2.1) and the state-of-the-art FL techniques (Section 5.6.2.2). As

SBIR computes ranked suspicious statement lists of size 100, for this analysis we

consider ranked lists of size at most 100.

5.6.2.1 SBIR’s Comparison With the Underlying Techniques

RQ2: Does SBIR, our combination of SBFL and Blues, localize defects better than

SBFL and Blues?

Figure 5.8 shows the FL performance of SBIR, SBFL, and Blues for di�erent list

sizes we consider. As shown, for all list sizes, SBIR consistently localizes more defects

(higher hit@k) and places defective statements higher (lower EXAM) in the ranked

lists of localized defects than SBFL and Blues. For example, considering top-100

ranked suspicious statement lists, SBIR localizes 11 more defects than SBFL and 253

more defects than Blues. Comparing the ranks of defective statements in the top-100

ranked lists of defects localized, SBIR places defective statements at 20th position

(EXAM 0.197) while SBFL places them at 23rd (EXAM 0.230) and Blues at 28th

(EXAM 0.284) positions, on average. These results confirm prior findings suggesting
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(815 defects) hit@k EXAM
k = 1 25 50 100 k = 25 50 100

SBFL 88 405 472 546 0.308 0.254 0.230
Blues 26 183 238 304 0.369 0.315 0.284

SBIR 90 412 484 557 0.269 0.223 0.197

Figure 5.8: Comparing FL performance of SBIR with underlying SBFL and Blues
on 815 defects in Defects4J (v2.0). For all list sizes, SBIR consistently localizes more
defects (higher hit@k) and places buggy statements higher in the list (lower EXAM)
than underlying SBFL and Blues.

that combining FL techniques can lead to better FL [109,140,155,255,301,320]. Thus,

an APR tool using SBIR gets earlier opportunities to patch the defective statements

and a more diverse set of localized defects than using SBFL or Blues.

For all list sizes we consider, SBIR consistently localizes more defects and places

defective statements higher in the ranked lists than underlying SBFL and Blues.

5.6.2.2 SBIR’s Comparison With the State-Of-The-Art

RQ3: Does SBIR outperform state-of-the-art FL?

We first evaluate SBIR with respect to standalone FL techniques. Next, we compare

SBIR with a learning-to-rank supervised approach implemented using RankSVM [135],

which is used by multiple existing combining FL techniques. We then compare SBIR

against a baseline that we implement using Algorithm 1 to combine SBFL and Blues.

Finally, we show that when added to supervised techniques that combine multiple

standalone techniques into one, SBIR improves the results.

SBIR vs. standalone techniques. Our evaluation considers techniques that are

evaluated on Defects4J, make no assumptions about a priori knowing the defective file,

and localize defective statements (as opposed to methods or files). We compare SBIR

with 9 standalone FL techniques, used in a recent FL evaluation [320]: two SBFL —
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Ochiai and DStar; two mutation-based FL (MBFL) — Metallaxis and MUSE; three

slicing — union, intersection, and frequency; one stack trace FL; and one predicate

switching FL evaluated using CombineFL [320], a state-of-the-art FL framework. The

existing evaluation [321] provides a dataset of the 357 defects of Defects4J (v1.0)

annotated with suspiciousness scores of the 9 techniques but does not release the

implementations of the individual techniques. We use the annotated suspiciousness

scores to create ranked lists of statements for each of the 9 techniques. Of the

357 defects, 334 have bug reports available for which SBIR could be computed

therefore, we consider these 334 defects for this analysis. Figure 5.9 compares the

FL performance of the 9 techniques that includes our SBFL implementation (Ochiai

using GZoltar v1.7.2), and SBIR in terms of the hit@k and EXAM. As shown, SBIR

consistently localizes more defects (higher hit@k) than al the 9 techniques. Considering

the fraction of ranked suspicious statements required to be inspected to find defective

ones averaged over localized defects, SBIR again outperforms (lower EXAM) all the

9 techniques.

SBIR vs, supervised combining FL techniques. Supervised combining FL

techniques use learning-to-rank [32] machine learning approaches to train a model

for a ranking task and combine a large array of standalone FL techniques. However,

these techniques require a large, labeled dataset of program statements annotated

with suspiciousness scores of multiple FL techniques and the ground truth of whether

a statement is defective or not. Creating such a dataset of real-world defects can be

hard and may restrict the use of trained models on arbitrarily selected projects (e.g.,

most state-of-the-art supervised combining FL techniques including CombineFL [320],

DeepRL4FL [158], DeepFL [155], Fluccs [255], Savant [140], MULTRIC [301], and

TraPT [157] use the Defects4J benchmark for training, so their trained models can not

be used as-is to improve and evaluate APR on the Defects4J benchmark as the results

would overfit) therefore, we develop RAFL, that does not require any training dataset.
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(334 defects) hit@k EXAM
family technique k = 1 25 50 100 k = 100

SBFL
Ochiai 27 162 191 218 0.272
DStar 29 162 193 219 0.273

MBFL Metallaxis 40 148 168 185 0.232
MUSE 23 91 99 111 0.188

slicing
slicing-union 19 84 95 106 0.471

slicing-intersection 17 70 78 88 0.488
slicing-frequency 19 83 95 107 0.462

stack trace stack trace 13 23 23 23 0.660
predicate switching predicate switching 9 23 23 23 0.650

SBIR 41 174 203 226 0.181

Figure 5.9: Comparing FL performance of SBIR with 9 standalone FL techniques on
334 defects in Defects4J (v1.0). For all list sizes, SBIR consistently localizes more
defects (higher hit@k) and places defective statements higher in the ranked lists (lower
EXAM) than all of the 9 techniques.

As learning to rank is a de facto standard used by existing combining FL techniques,

we compare SBIR with the results of combining SBFL and Blues using a learning to

rank technique used by multiple combining FL techniques as described next.

We compare SBIR with RankSVM [135], a supervised approach that implements

pairwise learning to rank model to combine ranked lists and that has been used

by existing combining FL techniques such as CombineFL [320], Fluccs [255], and

Savant [140]. For this, we first create an annotated dataset of the 815 defects by

annotating program statements of each defect with normalized suspiciousness scores

obtained using our SBFL and Blues along with the ground truth information. We then

use this annotated dataset to train a model using the RankSVM that considers SBFL’s

and Blues’s scores as features. To evaluate the trained model we use the combineFL

framework [321] that uses 10–fold cross validation and computes Einspect@k and EXAM

metrics. The Einspect@k metric break ties by computing the expected rank of defective
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(815 defects) Einspect@k EXAMinspect

k = 1 25 50 100 k = 100
SBIR (RankSVM) 69 365 433 505 0.209
SBIR (RAFL) 69 383 454 509 0.188

Figure 5.10: Comparing FL performance of SBIR with a learning-to-rank
supervised technique used by multiple combining FL techniques on 815 defects from
Defects4J (v2.0). For all lists of size > 1, SBIR consistently localizes more defects
(higher Einspect@k) and places defective statements higher in the ranked lists (lower
EXAM) than combining SBFL and Blues using supervised RankSVM.

statement in the ranked lists and then counts the number of defects whose defective

statements have expected rank Æ k. Similarly, the EXAM scores are computed using

expected ranks therefore, we denote it as EXAMexpect. Figure 5.10 compares the FL

performance of SBIR with SBFL and Blues combined using RankSVM. As shown, for

all lists of size > 1, SBIR consistently localizes more defects (higher hit@k) and places

defective statements higher (lower EXAMexpect) in the ranked lists than RankSVM.

The advantage of using the unsupervised RAFL that does not require any training

dataset outweighs using supervised RankSVM.

SBIR vs. baseline. We implement a baseline (vanilla SBIR) by combining Blues

with SBFL using the Algorithm 1. When combining ranked lists obtained using FL

techniques using simple strategies that involve comparing suspiciousness scores such

as Algorithm 1 then it must be noted that the suspiciousness scores computed by

di�erent FL techniques may not be directly comparable. Therefore, it is necessary to

normalize the scores of all statements in the ranked lists before combining. Algorithm 1

computes the maximum normalized suspiciousness score assigned to each statement

considering both the lists and sorts the statements based on the decreasing scores.

The final ranked list is obtained by sorting the statements based on their maximum

suspiciousness scores and breaking the ties by placing a statement that occurs in

both lists higher than the one that occurs in one of the lists. Figure 5.11 compares
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(815 defects) hit@k EXAM
k = 1 25 50 100 k =100

vanilla SBIR 61 222 273 332 0.240
SBIR 91 414 485 560 0.198

Figure 5.11: Comparing FL performance of SBIR with a baseline on 815 defects in
Defects4J (v2.0). For all list sizes, SBIR consistently localizes more defects (higher
hit@k) and placing defective statements higher (lower EXAM) in the ranked lists than
a baseline created by combining SBFL and Blues using Algorithm 1.

the FL performance of SBIR with this baseline on the 815 defects. As shown, SBIR

consistently outperforms vanilla SBIR by localizing more defects (higher hit@k) and

ranking defective statements higher (lower EXAM) in the ranked lists.

Adding SBIR to supervised combining FL techniques. We further evaluate

whether adding SBIR to the set of standalone techniques existing supervised approaches

combine improves overall performance. CombineFL [320] and DeepFL [155] outperform

other approaches that include Fluccs [255], Savant [140], MULTRIC [301], and

TraPT [157]. DeepFL’s [156] implementation is public, but its data is not, making

it impossible for us to integrate SBIR with the underlying techniques for a proper

comparison. CombineFL makes public its data [321] for 9 techniques from 5 FL

families (SBFL (Ochiai, DStar), MBFL (Metallaxis, MUSE), slicing-based (union,

intersection, frequency), stack-trace-based FL, and predicate-switching-based FL;

data for BugLocator and Bugspots is not released). We are, thus, able to evaluate

adding SBIR to those 9 techniques, directly using CombineFL’s implementation [321]

that uses RankSVM [135] to combine these techniques. To perform this analysis,

we use CombineFL’s dataset of 357 defects from Defects4J (v1.0) that contains

program statements covered by one or more of the 9 techniques annotated using the

suspiciousness scores of those techniques. We augment this dataset by annotating

each statement with the suspiciousness scores obtained using SBIR as well as add

statements that are were missing from the original annotated dataset but were covered
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Einspect@k EXAMinspect

technique time k = 1 25 50 100 k = 100
ST seconds 11 23 23 23 0.665
ST + SBIR 40 175 205 227 0.178
ST + S + SBFL minutes 29 175 202 228 0.250
ST + S + SBFL + SBIR 46 187 213 231 0.158
ST + S + SBFL + PS ≥10 min 28 178 208 230 0.243
ST + S + SBFL + PS + SBIR 45 187 212 234 0.160
ST + S + SBFL + PS + MBFL hours 44 190 212 239 0.211
ST + S + SBFL + PS + MBFL + SBIR 55 201 220 244 0.148

Figure 5.12: Comparing FL performance of adding SBIR in a supervised technique
using 334 defects in Defects4J (v1.0). “time” indicates the e�ciency of standalone FL
techniques considered for combining. Adding SBIR to the five families of FL techniques
(ST = stack trace, S = slicing-based (union, intersection, frequency), SBFL = (Ochiai,
DStar), MBFL = (Metallaxis, MUSE), and PS = predicate switching) improves the
EXAM score in all cases, and increases the number of defects localized.

by SBIR. We annotate a statement with score 0.0 when that statement is not covered

by an FL technique. As SBIR could compute ranked suspicious statement lists for

334 of the 357 defects for which both Blues and SBIR produce ranked lists, we use

these 334 defects to perform this analysis. We follow the original evaluations [320] by

training RankSVM model and using 10–fold cross validation to compute Einspect@k

and EXAMinspect scores to analyze how adding SBIR to the set of techniques being

combined a�ects FL performance. As shown in Figure 5.12, adding SBIR consistently

localizes more defects (higher Einspect@k) for all ranked suspicious statements lists

sizes we consider. Further, in all combinations, adding SBIR enables CombineFL to

rank defective statements higher (lower EXAMinspect) in the ranked lists.

SBIR outperforms 9 standalone FL techniques, a supervised learning-to-rank

technique used in multiple combining FL techniques, and a baseline created

using a simple combining approach. Further, integrating SBIR consistently

improves FL performance of a supervised technique that combines multiple

standalone techniques.
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5.7 Discussion
Recent studies have shown the e�ect of using di�erent technologies, assumptions,

and adaptations of test-suite-based FL techniques on the performance of repair

tools [5, 11, 110,164,263,286,304]. Often, program repair researchers omit FL tuning

used by their repair tools while presenting repair performance, which leads to bias in

comparing performance of di�erent repair tools [164]. Further, the FL implementations

are often tightly coupled to the repair tool implementations, which makes it hard to

use the FL for other repair tools, or improve the FL. Our FL techniques can be used

to mitigate this bias as they can serve as a plugin by future repair tools to decouple

their FL implementations from their repair algorithm implementation, as is done in

some frameworks, including JaRFly [200].

The main goal of our study is not to develop a combining FL technique that

outperforms existing supervised ones. Our goal is to combine FL to test the hypothesis

that using combined SBFL and IRFL improves APR quality. We could, in theory,

use existing supervised techniques, but we didn’t because most existing techniques

(e.g., DeepFL [155], Fluccs [255], Savant [140], MULTRIC [301], TraPT [157]) do

not use bug-report-based IRFL and use Defects4J benchmark for training, so using

their trained models cannot be used as-is for APR evaluation on Defects4J. To re-

train the models used by these supervised techniques we require a large, labeled bug

dataset independent of projects used in the Defects4J. Instead of this, we create a

novel unsupervised technique requiring no training data. While we show that RAFL

outperforms RankSVM, which is used in multiple existing combining FL techniques,

analyzing if RAFL outperforms all other learning-to-rank approaches is out of scope

for this study.
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5.8 Threats to Validity
We address the threat to construct and content validity by using standard FL

evaluation metrics that measure both, if a defect is localized or not within the top-k

ranked statements (hit@k) and how precise is the ranking of the statements (EXAM).

Further, unlike some of the existing studies that break ties between ranked statements

by reassigning average rank [215] or expected rank [320], we rank same-suspiciousness

statements in the order they appear in the FL results, as this is a more realistic

usage. We address the threat to internal validity by reusing the publicly available

implementations of rank aggregation algorithms instead of reimplementing them. We

address the threat to external validity by using Defects4J (v2.0) that has significantly

more projects and defects than earlier versions. We make all code and data available

to help others reproduce our results.

5.9 Contributions
In this study, we created Blues, the first statement-level, IRFL technique that

outperforms the state-of-the-art without needing training dataset, and is reusable

for APR. We created RAFL, a novel unsupervised technique to combine multiple FL

techniques and SBIR, an FL technique that uses both bug reports and tests to localize

defects, which consistently localizes more defects and places defective statements

higher in the ranked suspicious statement lists than underlying FL techniques and the

state-of-the-art. Finally, we have released the open-source implementations of Blues

and RAFL, and evaluation of SBIR, Blues, and SBFL on Defects4J (v2.0), showing

that using SBIR outperforms the other FL techniques and state-of-the-art FL.

This work is joint with Yuriy Brun, and credit for this work is shared between the

two of us. All of our data, source code, and documentation to produce the results

presented in this study are available at https://bit.ly/3fs3d99 and the pre-print

version of this study [198] is available at https://arxiv.org/abs/2011.08340.
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CHAPTER 6

BETTER AUTOMATIC PROGRAM REPAIR
BY USING BUG REPORTS AND TESTS TOGETHER

6.1 Introduction
A recent study [166] shows that using perfect FL (manually specifying the defective

program locations) enables repair tools to patch more defects. We also made the

observation that manually improving FL accuracy improves APR quality for SOSRepair

and enables it to correctly patch significantly more defects (from 41% to 70%) (recall

Section 3.3.4 in Chapter 3). However, manually improving FL for APR is unrealistic

in practice and therefore in this chapter, we investigate whether using a more precise

automated FL technique improves APR quality.

Analyzing the cause of why APR tools produce incorrect or plausible patches (that

overfit the tests used during the repair process) or not produce any patch at all even

though a correct patch exists in the search space revealed that APR tools sometimes:

(1) produce plausible patches because of using non-defective program statements

ranked higher than defective statements in the output ranked list of FL technique

used by repair tools or (2) do not produce any patch at all either because they timeout

while attempting to construct patches using non-defective statements that are ranked

higher in the list, or the list does not provide all the defective statements are required

to construct a correct patch. These are known as localization errors in the APR

literature and are investigated in recent studies [132,164] as the problem of FL bias in

APR. We hypothesize that APR tools using an FL technique, which identifies and

places defective statements higher in the ranked list of suspicious program statements,

should improve APR quality. The study described in this chapter tests this hypothesis.
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While there exists a variety of FL techniques that use di�erent kinds of defect

information sources (recall Chapter 5), most APR tools typically use spectrum-based

FL (SBFL) techniques that uses test execution coverage to compute the suspiciousness

scores of program elements such as classes, methods, and statements. The elements

are ranked based on their scores, and repair tools use top-ranked (typically Æ 100)

elements to patch defects. Most repair tools use SBFL because they rely on test

suites, which are readily available for defects. While FL researchers are actively

working on improving FL by using multiple defect information sources, to the best

of our knowledge, there does not exist any repair tool that uses these advancements

to localize defects in their repair process. The work closest to experimenting with

FL in APR is a repair technique iFixR [132] that internally uses bug reports and an

information-retrieval-based FL (IRFL) technique to localize defects. iFixR patches

defects that 16 SBFL-based repair tools cannot, and vice versa.

Because combining FL techniques that use di�erent information sources (e.g.,

test execution coverage, bug reports, and stack trace) can significantly outperform

underlying individual FL techniques [140,155,320], we, therefore, test our hypothesis

by using combined SBFL and IRFL (SBIR) in APR. To the best of our knowledge, this

is the first investigation of the e�ect of combined FL on APR. To test our hypothesis,

we use our FL techniques (SBFL, Blues, and SBIR) described in Chapter 5. Instead

of creating a new repair techniques, we experiment with using multiple existing state-

of-the-art APR tools, which enables us to evaluate the e�ectiveness of our proposed

approach across di�erent types of repair tools.

This chapter is organized as follows. Section 6.2 describes the APR tools we evaluate.

Section 6.3 describes the real-world defects, metrics used to evaluate repair quality,

and our methodology to execute repair experiments using multiple FL techniques.

Section 6.4 describes the key findings and results in terms of the research questions

we ask. Section 6.5 describes two case studies of real-world defects showing how using

173



the combined FL improves repair quality. Section 6.6 discusses the assumptions we

make in this study. Section 6.7 addresses the threats to validity of our results and

Section 6.8 summarizes our contributions.

6.2 Program Repair Using Multiple Fault Localization
Our APR tool selection criteria require that tools apply to general defects, rather

than specialized, and have public implementations available so that they can be

customized to take precomputed FL results. Instead of developing a new APR tool or

arbitrarily selecting tools from state-of-the-art, we select Arja [313] and SimFix [111]

that are the most (Sen = 66.9%) and least (Sen = 29.5%) FL-sensitive general purpose

repair tools out of the 11 APR tools evaluated in a recent study [166] for their FL

sensitiveness. We select a third tool, SequenceR [41], which uses fundamentally di�erent

repair approach than Arja and SimFix, and whose FL-sensitiveness (Sen = 39.5%)

lies between Arja and SimFix. Although there are more e�ective APR tools (e.g.,

CURE [113]) than SequenceR, which is only applicable to single-line-edit defects, we

use SequenceR because its implementation is public and can be customized. We next

describe details of the three APR tools and how we customize them.

Arja [313] uses genetic-programming-based [133] repair approach to construct

patches, and is the most FL-sensitive (Sen = 66.9%) general purpose APR tool

of the 11 APR tools evaluated for FL sensitivity [166]. It e�ectively prunes the

search space of candidate patches by using a novel patch representation for genetic

programming, multi-objective search, test filtering procedure, type matching, and

several other strategies. Arja implementation [312] uses GZoltar (v0.1.1) test execution

framework to implement SBFL with Ochiai technique. It takes as input: (1) path to

the directory of source code, (2) path to the directory of compiled classes of the source

code, (3) path to the directory of compiled classes of test code, and (4) paths to the

dependencies (jar files), and optionally, configuration parameters such path to the
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directory containing GZoltar output. We customize Arja’s internal FL implementation

to read precomputed FL result from a file instead of executing and processing the

output of GZoltar. We build a wrapper over Arja’s implementation to execute it

using multiple FL techniques and the Defects4J benchmark. Our wrapper takes as

input project name and bug id (associated with each defect in Defects4J), and the

path to the FL results file computed using di�erent FL techniques, and executes Arja

using these inputs. The original Arja evaluation [313] considered statement with

suspiciousness score higher than 0.1 to repair a defect. We set this threshold to 0 to

make Arja attempt to contruct patches using all 100 suspicious program statements.

SimFix [111] uses fix pattern mining-based [165] repair approach to construct

patches. It is the least (Sen = 29.5%) FL sensitive general purpose APR tool of the

11 repair tools evaluated for FL sensitivity [166]. The SimFix implementation [108]

is hard-coded to work with the Defects4J benchmark. Its input is a project name

and bug id (associated with each defect in Defects4J), and, optionally, precomputed

statement-level FL results. (Without providing FL results, SimFix runs SBFL with

Ochiai implemented using GZoltar (v1.6), employing a test purification technique [302]

to improve FL accuracy). To patch a defect, SimFix uses code patterns mined from

frequently occurring code changes in developer-written patches. SimFix identifies code

snippets similar to the suspicious code, defining similarity using structural properties,

variable names, and method names. SimFix ranks the identified code snippets based

on the number of mined patterns applied to replace the buggy code, and then selects

the snippets (one at a time) from the ranked list of the top 100, applies the pattern-

based modifications to produce a candidate patch, and validates the patch against the

purified failing tests. SimFix can stop once a patch passes the test suite [111] but its

implementation [108] generates all the patches that pass at least one of the purified

failing tests. In this study, we use only the patches that pass all of the developer tests

provided with the defect. Similar to customizing Arja’s implementation, we customize
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SimFix to make it read from the precomputed FL result files. We build a wrapper over

SimFix implementation to execute it using multiple FL techniques and the Defects4J

benchmark. Our wrapper takes as input Defects4J project name, bug id, and path to

the file storing precomputed FL result, and executes SimFix using these inputs. The

original SimFix evaluation [111] does not specify the number of suspicious statements

it used, but its implementation [108] uses top-200 suspicious program statements. To

fairly evaluate SimFix concerning all three FL techniques (SBFL, Blues, and SBIR),

we limit it to using top-100 statements of SBFL and Blues.

SequenceR [41] uses neural machine translation-based [272] repair approach

to construct patches. Its FL sensitiveness (Sen = 39.5%) lies in between Arja and

SimFix. To patch a defect, it uses a pre-trained model trained on 35,578 single-line

commits, carefully curated from commits in open-source projects. The model takes as

input a defective line location in a defective source file, abstracts the defect context

around the defective line, and translates the defective line into a fixed line. SequenceR

implementation [40] takes as inputs: path to the pre-trained model, path to a defective

source file, line number indicating where the defect is in the source file, beam size

for prediction (default value = 50), and output directory to store the generated

patches. The original SequenceR evaluation [41] used (manually created) perfect

FL and estimates its e�ciency using top-10 suspicious statements to repair a defect.

SequenceR’s implementation requires defective statement location as input. Therefore,

in our study, we execute SequenceR with perfect FL and record the information about

defects it patches plausibly or correctly. For each correctly patched defect, we check if

the list of top-10 ranked suspicious statements obtained using multiple FL techniques

includes the defective statement modified by SequenceR to produce a plausible or

correct patch. If an FL technique does not localize the modified defective statement in

its top-10 ranked list, SequenceR can not patch that defect using that FL technique.
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6.3 Subjects of Investigation and Experimental Methodology
This section describes the real-world defects used in our experiments, the metric

we use to evaluate repair quality, and the methodology of executing repair experiments

using di�erent APR tools and FL techniques.

6.3.1 Defect Benchmark

We use the defects available in the latest version of Defects4J (v2.0) benchmark

for this study (recall Section 5.5). Because manually assessing the correctness of

automatically produced patches that modify multiple files is error-prone and su�ers

from bias [141,308], we consider the 689 single-file-edit defects from the 815 defects

described in Section 5.5. Our subset includes defects from all the Defects4J projects.

As SequenceR is applicable on single-line-edit defects, we use the 129 single-line-edit

defects that are a subset of the 689 defects.

6.3.2 Metric to Evaluate Repair Quality

Prior repair tools’ evaluations that measure patch correctness use either manual

inspection [141, 184, 297] or automatically-generated evaluation test suites [5, 141,

200, 296, 298] (recall Chapter 3). While manual inspection is subjective and could

be biased, using low-quality evaluation test-suites could inaccurately measure patch

correctness [141]. In Chapter 3, we described a methodology to generate high-quality

evaluation test suites to measure patch correctness. In this study, we use that

methodology and refine it by incorporating manual inspection of produced patches

as described next. Our novel patch evaluation methodology enables us to reap the

benefits of both the methods of evaluating the patch correctness.

For each patch, we consider the developer-written patch (available for all Defects4J

defects) as an oracle, and use EvoSuite [81] to generate 10 test-suites using 10 seeds,

a search budget of 12 minutes per seed, and a coverage criterion of maximizing line
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coverage of the developer-modified classes. This methodology is the state-of-the-art

objective (but potentially incomplete [141]) automated test-driven patch correctness

methodology [200]. To evaluate the correctness of a patch, we first execute the held-out

evaluation tests on the patch. If a test fails, we annotate such patch as plausible

(the term used for a patch that passes developer-written tests but is incorrect [227]).

Otherwise, we manually inspect the patch and compare it against the developer’s

patch. If the patch is semantically equivalent to the developer’s patch, we annotate it

as correct. If it is not, we annotate it as plausible. If a patch is partially correct or

we cannot determine its semantic equivalence to developer patch because it requires

extensive domain knowledge, which often happens when the modifications are made

in di�erent methods, we conservatively annotate the patch as plausible, but keep a

record of such scenarios. Thus, our patch evaluation methodology is conservative as we

only consider a patch to be correct if it passes all evaluation tests and is semantically

equivalent to the developer’s patch. To study the e�ect of improving FL on APR, we

compare the defects a repair tool correctly patches out of all the defects attempted,

using di�erent FL techniques.

6.3.3 Experimental Methodology

Using the dataset described in Section 6.3.1, we use Arja and SimFix to repair

689 single-file-edit defects and SequenceR to repair 129 single-line-edit defects using

SBFL, Blues, and SBIR for FL. We execute each repair tool separately using SBFL,

Blues, and SBIR. The patches produced by repair tools using di�erent FL techniques

are first automatically evaluated to filter out patches that modify files di�erent from

developer modified ones. Next, the remaining patches are evaluated for correctness

using the methodology described in Section 6.3.2. We do not otherwise modify the

implementations of APR tools described in Section 6.2 except customizing them to

use our precomputed FL results.
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We run our experiments using a cluster of 50 compute nodes, each with a Xeon

E5-2680 v4 CPU with 28 cores (2 processors, 14 cores each) running at 2.40GHz.

Each node had 128GB of RAM and 200GB of local SSD. We launched multiple repair

attempts in parallel, each requesting 2 cores on one compute node. We specify a

timeout of 24 hours per FL techniques for each repair attempt to ensure that repair

tools can try out all suspicious statements. Note that the focus of this study is repair

quality (how many defects can be correctly repaired) and not repair e�ciency (how

quickly defects can be repaired).

6.4 Evaluating Repair Quality and Key Findings
In this section, we first summarize the key findings of this study in terms of the

research questions we ask. We then describe the evaluation details that lead to the

summarized findings.

We answer the following three research questions.

RQ1 Does SBIR, our combination of SBFL and Blues, improve APR quality?

Answer: Yes. SBIR improves the quality of Arja and SequenceR, more FL-sensitive tools,

and enables correctly repairing some defects that they do not fix using other

FL. For less FL-sensitive SimFix, using SBIR leads to the same repair quality

as using SBFL but more than using Blues.

RQ2 Does APR using Blues outperform state-of-the-art IRFL-based APR?

Answer: The tools are complementary. Arja correctly patches 9 defects, 8 of which iFixR

fails to patch. SequenceR correctly patches 2 defects, 1 of which iFixR fails to

patch. SimFix correctly patches 7 defects, 6 of which iFixR fails to patch. iFixR

correctly repairs 8 defects, 5 of which none of the other three tools repair.
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RQ3 Does overuse of the Defects4J benchmark a�ect our study?

Answer: Recent research has found that results from old Defects4J versions do not

generalize to new defects [66]. We confirm this finding. For example, Arja

correctly repairs 3–5% of the 343 old Defects4J defects, but only 1–3% of the

346 new defects. However, SBIR improves APR quality on old and new defects,

supporting the generalizability of our results.

We next describe the results in detail for each of the above listed research questions.

6.4.1 E�ect of Using SBIR on Repair Quality

RQ1: Does SBIR, our combination of SBFL and Blues, improve APR tools?

The top of Figure 6.1 compares repair quality of the three repair tools using the

three FL techniques. As shown, Arja and SequenceR correctly patch more defects

when using SBIR than when using SBFL or Blues. Specifically, Arja using SBIR

correctly repairs 7 (33.3%) more defects than using SBFL and 13 (86.7%) more defects

than using Blues. SequenceR using SBIR correctly patches 2 (22.2%) (out of a smaller

subset of single-line defects) more defects than using SBFL and 8 (266.7%) more

defects than using Blues. SimFix unsurprisingly correctly patches the same number of

defects when using SBFL but 17 (130.8%) more defects than using Blues.

More FL-sensitive repair tools, Arja and SequenceR, correctly patch complementary

defects using SBFL and Blues, as evident by the row showing the union of defects

they patch using SBFL and Blues. However, as the less FL-sensitive SimFix uses test

case purification [302] and expands each suspicious statement at most by ±5 lines to

address inaccurate FL, it does not patch complementary defects.

As described earlier, one of the the reason why repair tools produce incorrect

patches or do not produce any patch at all is that the tools attempt to construct

patches using irrelevant suspicious statements placed before the defective ones in the

ranked FL results. This phenomenon is known as the FL bias or localization error in
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Arja SequenceR SimFix
(689 defects) (129 defects) (689 defects)

repair quality assessment
SBFL 21 10 30
Blues 15 4 13

SBFL fi Blues 25 12 30
SBIR 28 12 30

localization error assessment
perfect FL 21 24 21

upper bound 35 24 32
¿ # of defects not correctly patched due to localization error ¿

SBFL 14 14 2
Blues 20 20 19
SBIR 7 12 2

Figure 6.1: The e�ect of using combined FL on repair quality. SBIR improves repair
quality and reduces localization errors for more FL-sensitive APR tools. Arja and
SequenceR, more FL-sensitive tools, correctly patch complementary defects using
SBFL and Blues, and benefit more from using SBIR. SimFix, a less FL-sensitive repair
tool, correctly patches the same defects using SBIR as SBFL but more than Blues.

the APR literature. We compare the usefulness of SBFL, Blues, and SBIR in reducing

the localization error in APR. For this, we execute each of the three repair tools

using perfect FL (by providing only the defective statement locations) and measure

their quality. As shown in Figure 6.1, for Arja and SimFix, which can use multiple

suspicious statements to patch multi-line bugs, using a perfect FL patches fewer defects

than when using SBIR. We found that this happens because their repair algorithms

fail to construct correct patches for some defects in the absence of the non-defective

statements that are closely related to the defective ones. We next compute the total
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number of defects a repair tool can correctly patch by taking the union of defects

correctly patched using the perfect FL and using the three FL techniques. We call

this optimistic number of correctly patched defects an “upper bound”, the term used

in a prior study [166]. The localization error of an FL technique is then the di�erence

between the upper bound and the number of defects correctly patched using that FL

technique. As shown in Figure 6.1, localization error is significantly reduced using

SBIR, specially for more FL-sensitive repair tools, than using SBFL or Blues.

Overall, Arja and SequenceR, significantly benefit from SBIR. Arja using SBIR

correctly patches 28 (80%) of the 36 upper bound defects, whereas using SBFL, it only

patches 21 (60%) and using Blues only 15 (43%). SequenceR using SBIR correctly

patches 12 (50%) of the 24 upper bound defects, whereas using SBFL, it patches

10 (42%) and using Blues 4 (17%). SimFix, correctly patches 30 (94%) of the 32 upper

bound defects using both SBIR and SBFL, and patches 13 (41%) using Blues.

Repair quality using SBIR vs. union of SBFL and Blues. This tells us

whether using SBIR provides any benefit over executing repair tools separately using

SBFL and Blues and combining their results. Arja patches a total of 25 defects

(row 3 in Figure 6.1) using SBFL and Blues. These 25 defects include 4 defects

(Compress 27, Jsoup 33, Jsoup 55, and Time 15) that Arja could not patch using

SBIR. However, Arja using SBIR patches 28 defects that include 7 defects (Closure 78,

Gson 7, Jsoup 39, Jsoup 68, Jsoup 85, JxPath 5, and Lang 7) that Arja could not

patch using SBFL or Blues. Thus, for Arja, SBIR is even more beneficial than using

both SBFL and Blues. SequenceR patches 12 defects using both SBFL and Blues.

These 12 defects include one defect (Cli 40) that SequenceR could not patch using

SBIR. However, SequenceR using SBIR also patches 12 defects that includes one

defect (JacksonCore 25) that SequenceR could not patch using SBFL or Blues. Thus,

SBIR provides the same benefit to SequenceR as using both SBFL and Blues. SimFix

correctly patches 30 defects using both SBFL and Blues. These 30 defects are the
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same as defects correctly patched using SBIR. Thus, for SimFix, using SBIR provides

the same benefit as using just SBFL or both SBFL and Blues.

Repair quality using SBIR vs. original published versions. Arja using

SBIR correctly patches 4 defects (Lang-7, Lang-10, Lang-59, and Math-35) original

Arja did not. Of the defects in our dataset, the original Arja correctly patched 15

defects [313] (plus 3 others that either had no bug reports (Chart-3) or were multi-file-

edit defects (Math-22 and Math-98)). Of these 15, Arja using SBIR correctly patches

12, but not the other 3 (Lang-35, Math-39, and Math-86). We examined the original

evaluation’s patches1 and found that for these 3 defects, Arja had produced only a

single patch, which is highly uncommon for Arja (it produced many patches for all

other defects it patched), suggesting that there is something special about these defects

or the process the Arja evaluation followed in repairing them. Overall, Arja with SBIR

correctly patches 1 more defect than the original Arja. SimFix using SBIR correctly

patches 3 defects (Closure-68, Closure 92, and Closure-126) original SimFix did not.

Of the defects in our dataset, original SimFix correctly patched 21 defects [111] (plus

6 others that either had no bug reports (Chart-3, Chart-7, Chart-20) or were multi-

file-edit defects (Closure-63, Math-71, and Math-98)). Of these 22, SimFix with SBIR

correctly patches 19. (Note that the original evaluation [111] listed 7 more defects

(Closure-115, Lang-16, Lang-27, Lang-39, Lang-41, Lang-50, and Lang-60) as patched

correctly. The authors subsequently identified one of those (Lang-27) as incorrect2,

and our analysis revealed that the six others are also incorrect. SimFix with SBIR

could not patch the remaining two defects (Math-35 and Math-63). Overall, SimFix

with SBIR correctly patches 1 more defect than the original SimFix. SequenceR’s

original evaluation used perfect FL [41], so a direct comparison is not appropriate.

With perfect FL, original SequenceR patched 14 defects correctly, and with SBIR,

1https://github.com/yyxhdy/defects4j-patches/tree/master/Arja

2https://github.com/xgdsmileboy/SimFix/tree/master/final/result
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it patches 6 (Chart-11, Closure-73, Closure-86, Lang-59, Math-58, and Math-75) of

those 14.

SBIR significantly improves repair quality and reduces localization errors for

more FL-sensitive APR tools and enables correctly repairing some defects that

they cannot repair with other FL techniques. For less FL-sensitive APR, it

provides the same repair quality as other FL techniques.

6.4.2 Comparing Repair Quality Using Blues With the State-Of-The-Art

RQ2: Does APR using Blues outperform state-of-the-art IRFL-based APR?

We compare the defects correctly patched by Arja, SequenceR, and SimFix using

Blues against the published evaluation of iFixR [132], the state-of-the-art IRFL-based

APR tool, on the 156 defects from the Lang and Math projects (the only ones used in

iFixR’s evaluation [132]). iFixR correctly patches 8 of the 156 defects. Arja correctly

patches 9, SimFix 7, and SequenceR only 2 (out of a smaller subset of single-line

defects). Figure 6.2 shows the defects correctly patched by the APR tools. The

techniques produce complementary patches. For example, only 1 (Math-35) out of

9 defects correctly patched by Arja is patched by iFixR. Similarly, only 1 (Math-

75) out of 2 defects correctly patched by SequenceR is patched by iFixR, and only

1 (Math-57) out of 7 defects correctly patched using SimFix is patched by iFixR. And

only three (Math-35, Math-57, and Math-75) of 8 defects correctly patched by iFixR

are patched using our APR tools with Blues.

We conclude that iFixR (the state-of-the-art IRFL-based repair tool) and repair

tools using Blues correctly patch a comparable number of complementary defects.
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Figure 6.2: Comparison of repair quality using Blues with the state-of-the-art.
Comparing the correctly patched defects from the 156 Lang (L) and Math (M)
project defects by Arja, SequenceR, and SimFix using Blues against the ones patched
by iFixR [132] shows complementary results.

6.4.3 Comparing Repair Quality Across New and Old Defects4J

RQ3: Does overuse of the Defects4J benchmark a�ect our study?

Figure 6.3 compares the repair quality of the three APR tools using three FL

techniques across 17 projects available in Defects4J (v2.0) along with the old and new

defects added in Defects4J. The bottom of Figure 6.3 shows evidence that past APR

evaluations of Arja and SimFix overfit to the defects on which they were evaluated,

and fail to generalize to new defects. SequenceR, which can patch only single-line-

edit defects, generalizes better than Arja and SimFix. Comparing repair quality

on defects in the older version of the Defects4J with the newly added defects in

Defects4J (v2.0) shows that the repair quality is significantly higher on old defects

than on new ones. This is consistent with a prior study [66] that shows that existing

evaluations of repair tools overfit on older Defects4J versions. For example, Arja

correctly patches 3–5% (3% Blues, 4% when using SBFL, 5% SBIR) of the 343 defects

in the older version of Defects4J, but only 1–3% (1% Blues, 2% SBFL, 3% SBIR)

of the 346 new defects. Similarly, SimFix correctly patches 3–6% (3% Blues, 6%
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Arja (689 defects) SequenceR (129 defects) SimFix (689 defects)
project Blues SBFL SBIR Blues SBFL SBIR Blues SBFL SBIR
Chart 1 2 2 0 1 1 1 1 1
Closure 1 2 3 0 1 1 2 7 7
Lang 3 4 6 1 1 1 2 3 3
Math 6 6 7 2 2 3 5 10 10
Mockito 0 0 0 0 0 0 0 0 0
Time 0 1 0 0 0 0 0 1 1

¿ new defects added in Defects4J (v2.0) ¿

Cli 1 1 1 0 3 2 0 0 0
Closure 0 0 0 0 0 0 0 1 1
Codec 2 1 2 0 2 2 0 0 0
Collections 0 0 0 0 0 0 0 0 0
Compress 0 1 0 1 0 1 0 1 1
Csv 0 0 0 0 0 0 1 1 1
Gson 0 0 1 0 0 0 1 1 1
JacksonCore 0 0 0 0 0 1 0 0 0
JacksonDatabind 0 0 0 0 0 0 0 2 2
JacksonXml 0 0 0 0 0 0 0 0 0
Jsoup 1 3 5 0 0 0 0 1 1
JxPath 0 0 1 0 0 0 1 1 1
all defects 15

689 = 2.2% 21
689 = 3.1% 28

689 = 4.1% 4
129 = 3.1% 10

129 = 7.8% 12
129 = 9.3% 13

689 = 1.9% 30
689 = 4.3% 30

689 = 4.3%

old defects 11
343 = 3.2% 15

343 = 4.4% 18
343 = 5.2% 3

69 = 4.3% 5
69 = 7.2% 6

69 = 8.7% 10
343 = 2.9% 22

343 = 6.4% 22
343 = 6.4%

new defects 4
346 = 1.2% 6

346 = 1.7% 10
346 = 2.9% 1

60 = 1.7% 5
60 = 8.3% 6

60 = 10.0% 3
346 = 0.9% 8

346 = 2.3% 8
346 = 2.3%

Figure 6.3: Comparing repair quality across old and new defects in Defects4J. The
figure compares the repair quality of Arja, SequenceR, and SimFix using SBFL, Blues,
and SBIR. SequenceR is evaluated on the 129 single-line-edit defects while Arja and
SimFix are evaluated on 689 single-file-edit defects. Arja and SimFix correctly patch
significantly more defects in older version of Defects4J than new defects added in
Defects4J (v2.0). SimFix, while can patch only single-line-edit defects, generalizes
better than Arja and SimFix. Using SBIR improves the quality of all repair tools on
both old defects and new defects showing that our results generalize.

when using SBFL, 6% SBIR) of the 343 defects in the older version of Defects4J, but

only 1–2% (1% Blues, 2% SBFL, 2% SBIR) of the 346 new defects. SequenceR gives

comparable performance by correctly patching 4–9% (4% when using Blues,7% SBFL,

9% SBIR) of the 69 defects in the older version of Defects4J and 2–10% (2% Blues,

8% SBFL, 10% SBIR) of the 60 new defects. Nevertheless, using SBIR improves the

repair quality on both new and old defects showing that our results generalize.

We conclude that although repair quality overfits to the older Defects4J versions,

using SBIR improves the repair quality on both old and new defects added in

Defects4J (v2.0).
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6.5 Case Studies
This section describes two real-world examples from our experiments to illustrate

how SBIR helps in reducing localization errors and improving quality of APR.

6.5.1 Example-1: Codec-5 Defect

This example illustrates how a repair tool using SBFL produces a plausible patch

using non-defective program statements before the defective statements, whereas when

using Blues and SBIR, repair tool generates a correct patch using actual defective

statement.

The Codec-5 defect in Defects4J v2.0 involves repairing a null pointer exception

that occurs while using the decode method in which the code accesses buffer that is

null or has reached end of file.3 Figure 6.4 shows the defective decode method along

with actual line numbers and the statements localized by the three FL techniques

along with the ranks of the localized statements in their respective ranked lists of

suspicious statements. Figure 6.5(a) shows the developer patch for the defect that

adds a null-pointer check. To correctly repair this defect, the null-pointer check

must be inserted before the switch statement on line#588 because both cases of the

switch-statement modify buffer. Thus, developer adds it on line#586. However, the

check could also be added before line#551, 554, 557, 585, 587, or 588 resulting in

semantically equivalent programs.

RAFL takes as input the top 100 suspicious statements obtained by applying the

SBFL and Blues to localize the defect. The two lists have 32 statements in common

providing SBIR with 168 unique statements from which it needs to select and rank the

top 100 statements that are as close as possible (measured using Spearman distance

metric) to both SBFL’s and Blues’ lists. Note that
1

168
100

2
= 1.1 ◊ 1048 are a lot of

3https://issues.apache.org/jira/browse/CODEC-98
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550 void decode ( byte [ ] in , i n t inPos , i n t i n A v a i l ) {

551 i f ( e o f ) { //++ SBFL( 7 0 )

552 r e t u r n ;

553 }

554 i f ( i n A v a i l < 0) { //++ SBFL( 7 1 )

555 e o f = t r u e ;

556 }

557 f o r ( i n t i = 0 ; i < i n A v a i l ; i ++) { //++ SBFL( 7 2 ) Blues ( 1 7 ) SBIR ( 7 )

558 i f ( b u f f e r == n u l l | | b u f f e r . l e n g t h ≠ pos < d e c o d e S i z e ) {

559 r e s i z e B u f f e r ( ) ;

560 }

561 byte b = i n [ inPos ++];

562 i f ( b == PAD) {

563 // We ’ r e done .

564 e o f = t r u e ;

565 break ;

566 } e l s e {

567 i f ( b >= 0 && b < DECODE_TABLE. l e n g t h ) {

568 i n t r e s u l t = DECODE_TABLE[ b ] ;

569 i f ( r e s u l t >= 0) {

570 modulus = (++modulus ) % 4 ;

571 x = ( x << 6) + r e s u l t ;

572 i f ( modulus == 0) {

573 b u f f e r [ pos++] = ( byte ) ( ( x >> 16) & MASK_8BITS) ;

574 b u f f e r [ pos++] = ( byte ) ( ( x >> 8) & MASK_8BITS) ;

575 b u f f e r [ pos++] = ( byte ) ( x & MASK_8BITS) ;

576 }

577 }

578 }

579 }

580 }

581
582 // Two forms o f EOF as f a r as base64 decoder i s concerned : a c t u a l

583 // EOF ( ≠1) and f i r s t time ’= ’ c h a r a c t e r i s encountered i n stream .

584 // This approach makes the ’= ’ padding c h a r a c t e r s c o m p l e t e l y o p t i o n a l .

585 i f ( e o f && modulus != 0) { //++ SBFL( 7 3 ) Blues ( 4 5 ) SBIR ( 4 6 )

586
587 x = x << 6 ; //++ SBFL( 5 6 )

588 s w i t ch ( modulus ) { //++ SBFL( 5 7 )

589 c a s e 2 :

590 x = x << 6 ;

591 b u f f e r [ pos++] = ( byte ) ( ( x >> 16) & MASK_8BITS) ;

592 break ;

593 c a s e 3 :

594 b u f f e r [ pos++] = ( byte ) ( ( x >> 16) & MASK_8BITS) ; // SBFL( 4 2 )

595 b u f f e r [ pos++] = ( byte ) ( ( x >> 8) & MASK_8BITS) ;

596 break ;

597 }

598 }

599 }

Figure 6.4: Localization of program statements that can be used to repair the Codec-5
defect in Defects4J (v2.0) using the three FL techniques. The annotations “SBFL”,
“Blues”, and “SBIR” in comments show which FL technique covers the statement
in their respective ranked lists of the suspicious statements and the numbers inside
parenthesis show the ranks of the statements in the respective lists. The method
throws a null pointer exception on line#594 while updating buffer, which causes a
developer test to fail. SBFL ranks this statement higher than all statements (annotated
with“//++”) that can be used to repair defect. Developer patch (Figure 6.5(a)) adds
a null-pointer check on line#586.
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(a) Developer’s patch for Codec-5 defect. (b) Correct patch produced by Arja using
Blues for Codec-5 defect.

(c) Plausible patch produced by Arja using
SBFL for Codec-5 defect.

(d) Correct patch produced by Arja using SBIR for
Codec-5 defect.

Figure 6.5: Example illustrating how SBIR enables APR to correctly patch a defect
that it patches plausibly when using SBFL. The figure shows patches for the Codec-5
defect in Defects4J (v2.0). (a) Developer’s patch adds an null-pointer check before
the switch-statement. (b) Arja using Blues correctly patches the defect by adding
the check at a correct location (before the switch-statement). (c) Arja using SBFL
incorrectly patches the defect by adding the check at an incorrect location (specific
switch case that throws null pointer exception). (d) Arja using SBIR patches the defect
correctly by adding the check at a correct location (before the switch-statement).

possible combinations to test and using a brute force method to find the solution

is computationally infeasible. RAFL uses the CE algorithm to iteratively sample

multiple lists containing 100 of the 168 unique suspicious statements that minimize

the objective function defined in terms of the Spearman Footrule distance between

the sampled lists and the input lists. RAFL takes 157 iterations to converge reducing

the value of the objective function from 5346 to 4154. The top left plot in Figure 6.6

shows the decreasing objective function scores with each iteration and the top-right

chart shows the histogram of the objective function scores in the last iteration. Based

on these two plots, we can get a general idea about the rate of convergence and the

distribution of candidate lists at the last iteration. The bottom chart in Figure 6.6

shows how the suspicious statements obtained in the final ranked list of SBIR are

ranked in the SBFL and Blues’s lists along with their average ranks. Comparing the
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Figure 6.6: Using RAFL to combine SBFL’s and Blues’s FL results of Codec-5 defect
in Defects4J (v2.0). RAFL combines the ranked lists of SBFL and Blues to produce
top-100 ranked suspicious statement list. The top left chart shows how the objective
function scores are minimized by RAFL and converge in 157 iterations placing a
defective statement at the 7th position in SBIR’s list. The top right chart shows the
histogram of the objective function scores in the last iteration. The bottom chart
shows how the statements in final SBIR’s list are ranked in the SBFL and Blues’s lists
along with their average ranks.

ranks of defective statements (line#551, 554, 557, 585, 587, 588) where the correct

patch can be applied to repair the defect in Figure 6.4, it can be realized that SBIR

improves the ranks of defective statements, and places a defective statement (line#557)

at the 7th position. Thus, if a repair tool considered only top-10 suspicious statements

to repair the Codec-5 defect, it would likely find the correct patch only using SBIR

but not using SBFL or Blues. Blues identifies a defective statement (line#557 in

Figure 6.4) as the 17th most suspicious statement. Figure 6.5(b) shows the patch

produced by Arja using Blues. As shown, the patch adds the same if-statement as the

developer patch (Figure 6.5(a)) before line#557 instead of line#587. SBFL ranks a
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non-defective statement (line#594 in Figure 6.4) at the 42nd position and places all

the defective statements below this statement. This makes Arja using SBFL produce

a plausible patch shown in Figure 6.5(c), which applies the correct modification to the

non-defective statement. Even though the patch passes all the developer tests used

in the repair process, it is incorrect because it only fixes the case 3 of the switch

statement that causes the null pointer exception. SBIR ranks a defective statement

(line#557 in Figure 6.5(a)) as the 7th most suspicious statement. Figure 6.5(d) shows

the patch produced by Arja using SBIR. The patch is correct and is semantically

equivalent to the developer patch.

Note that all three patches constructed by Arja using SBFL, Blues, and SBIR use

the correct modifications required to repair the defect. However, the location of the

program where the patch is applied makes them correct or plausible. Thus, APR tools

using the FL techniques that place the defective statements higher in the ranked list

of suspicious statements are more likely to produce correct patches. This example

shows that using SBIR, which ranks the defective statements higher than SBFL and

Blues can enable repair tools to produce more correct patches.

6.5.2 Example-2: Closure-78 Defect

This example illustrates why a repair tool is unable to produce any patch for a

defect when using SBFL or Blues whereas it correctly patches that defect using SBIR.

The Closure-78 defect in the Defects4J v2.0 involves fixing the closure JavaScript

compiler to return a null value when a number is divided by zero instead of throwing

the JSC_DIVIDE_BY_0_ERROR error4 because JavaScript allows divide by zero

operations. Figure 6.7 shows a portion of the defective method private Node

performArithmeticOp(int opType, Node left, Node right) that throws a divide

4https://storage.googleapis.com/google-code-archive/v2/code.google.com/
closure-compiler/issues/issue-381.json
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709 c a s e Token .MOD:

710 i f ( r v a l == 0) {

711 e r r o r ( DiagnosticType . e r r o r ( "JSC_DIVIDE_BY_0_ERROR" , " Divide by 0 " ) , r i g h t ) ; //++ Blues ( 3 9 )

SBIR ( 3 9 )

712 r e t u r n n u l l ;

713 }

714 r e s u l t = l v a l % r v a l ;

715 break ;

716 c a s e Token . DIV :

717 i f ( r v a l == 0) {

718 e r r o r ( DiagnosticType . e r r o r ( "JSC_DIVIDE_BY_0_ERROR" , " Divide by 0 " ) , r i g h t ) ; //++ SBFL( 1 )

Blues ( 3 7 ) SBIR ( 1 )

719 r e t u r n n u l l ;

720 }

721 r e s u l t = l v a l / r v a l ;

722 break ;

Figure 6.7: Localization of program statements that can be used to repair the Closure-
78 defect in Defects4J (v2.0) using the three FL techniques. The two non-consecutive
defective statements annotated with “//++” cause the divide-by-zero error of Closure-
78 defect. The annotations show which of the three FL techniques cover the statements
and their ranks in the respective suspicious statement lists.

(a) Developer’s patch for Closure-78 defect. (b) Correct patch produced by Arja using SBIR.

Figure 6.8: Example illustrating how SBIR enables APR to correctly patch a defect
that it cannot patch when using SBFL and Blues. The left code snippet shows the
developer patch that deletes defective program statements and the right shows the
exact same patch produced by Arja only using SBIR.

by zero error while computing division and modulus operations. None of the existing

14 APR tools [164] can correctly or plausibly patch this defect. Most APR tools do not

apply to this defect because the repair of this defect involves editing non-consecutive

statements. As Arja uses multi-objective genetic programming-based repair approach,

it can potentially repair this defect. Figure 6.8(a) shows the developer-written patch

for the defect, which deletes the two defective statements.

Applying Blues identifies the defective statements, line#711 and line#718 in

Figure 6.7, at the 39th and 37th positions respectively. Applying the SBFL technique
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only identifies one of the defective statement (line#718 in Figure 6.7) at the 1st

position. SBIR ranks the defective statements at the 1st (line#718) and 39th (line#711)

positions. Arja using SBFL produces only a partially correct patch that deletes the

line#718 while Arja using Blues did not produce any patch because it timed out

while attempting to modify the 38 non-defective statements ranked higher in the

Blues’s list. Arja using SBIR produces a correct patch that is exactly the same as

the developer patch shown in Figure 6.8(b). Thus, even though the FL evaluations

consider identifying at least one defective statement as FL success, APR tools may

not be able to repair a defect unless all defective statements are identified and are

ranked higher in the list of suspicious statements.

6.6 Discussion
We assume that both bug-exposing tests and bug reports are available to repair

tools. Our assumption may not always hold (e.g., several defects in Defects4J (v2.0)

have no documented bug reports, and prior studies [121, 132] show that for 92% of

defects, the bug-exposing tests are added after the bug is reported). However, existing

repair tools cannot function without either a failing test or bug reports. Further, repair

tools that use only bug reports are not fully automatic, as they require a human to

validate their proposed patches. By contrast, test-driven APR can be fully automated

but a large fraction of their patches are incorrect [200,206,252], meanwhile developers

are likely not interested in APR with a human in the loop [207]. Our extending

of repair tools to use SBIR, which uses both bug reports and test suites, enables

repair tools to be fully automated and to produce better quality patches. This is a

worthwhile achievement even if not all defects in industrial settings have the requisite

artifacts, and may motivate developers to create the artifacts in the future, which

reinforces an already recommended practice.
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6.7 Threats to Validity
Arja, one of the APR tools we use in our study is stochastic and results may vary

on runs. We mitigate this threat by running Arja two times for each of the three FL

techniques. Our study’s large computational requirements (running three repair tools

using three FL techniques with a 24-hour timeout required eight weeks of wall-clock

time on a cluster) making running many replications di�cult. We make all code and

data available to help others reproduce our results.

We address the threat to internal validity by reusing the publicly available

implementations of repair tools instead of reimplementing them. We address the

threat to external validity by selecting diverse repair tools and using Defects4J (v2.0),

which has significantly more projects and defectsthan earlier versions.

6.8 Contributions
In this study, we present an evaluation of three state-of-the-art APR tools (Arja,

SequenceR, and SimFix) that use fundamentally di�erent repair algorithms using

multiple FL techniques (SBIR, Blues, and SBFL) on Defects4J (v2.0) benchmark,

showing that using the combined FL technique (SBIR) improves the repair performance

of APR tools. Our results demonstrate that combining bug reports and tests leads to

better FL, and enables higher-quality APR, even repairing defects that have not been

repaired using existing FL. Our findings suggest further research to improve APR by

combining bug-report-based, test-based, and other sources of bug information.

This work is joint with Yuriy Brun, and credit for this work is shared between the

two of us. All of our data, source code, and documentation to produce the results

presented in this study are available at https://bit.ly/3fs3d99 and the pre-print

version of this study [198] is available at https://arxiv.org/abs/2011.08340.
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CHAPTER 7

RELATED WORK

This chapter describes the existing research work organized in the context of

automatic program repair (Section 7.1), studies of repair quality and other properties

of automatic program repair (Section 7.2), automated fault localization (Section 7.3),

and automated test generation (Section 7.4).

7.1 Automatic Program Repair
APR techniques can be categorized into two types based on the kind of specifications

they use to repair programs. The first category is the verification-based APR, which

uses formally specified program specifications to repair programs. For example,

these repair techniques use first-order logic specifications [61, 62], separation logic

specifications [273], Hoare-style specifications [48, 222, 228], linear-temporal logic

specifcations [76, 115], SAT-based specifications [92], deductive synthesis [127, 144],

contracts [173], and model checking for Boolean programs [93, 245] to fix defects. The

second category is the test-suite-based APR, which uses developer-written test suites

as program specifications and produces a patch that passes all the tests in the test

suite. As test suites are readily available and developers write tests more often than

formal program specifications, APR predominantly uses developer-written test suites

as specifications to fix defects. This dissertation focuses on such test-suite-based APR

techniques.

The APR techniques typically follow a three-step process: identifying the location

of a defect, producing candidate patches, and validating those patches. The method
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used for each of these steps can significantly a�ect the tool’s success. To improve APR,

researchers have proposed to use di�erent kinds of fault localization strategies [11,110,

132, 178, 263, 304], patch generation algorithms (e.g., heuristics-based [111, 150, 177,

218, 269, 287], semantic-based [5, 95, 188, 275], and learning-based [41, 96, 244]), and

patch validation methodologies [268,277,305,308,311].

We next describe the three classes of repair approaches to repairing defects using

failing tests to identify faulty behavior and passing tests to encode desirable behavior:

heuristics-based, semantic-based, and learning-based repair. The heuristics-based

techniques use search-based software engineering [97] to generate many candidate

patches and then validate them against tests. GenProg [147,150,284] uses a genetic

programming heuristic [133] to search the space of candidate repairs. TrpAutoRepair

[224] limits its patches to a single edit, uses random search instead of genetic

programming, and heuristics to select which tests to run first, improving e�ciency.

Prophet [177] and HDRepair [145] automatically learn bug-fixing patterns from prior

developer-written patches and use them to produce candidate patches for new defects.

AE [282] is a deterministic technique that uses heuristic computation of program

equivalence to prune the space of possible repairs, selectively choosing which tests to

use to validate intermediate patch candidates. ErrDoc [269] uses insights obtained

from a comprehensive study of error handling bugs in real-world C programs to

automatically detect, diagnose, and repair the potential error handling bugs in C

programs. JAID [39] uses automatically derived state abstractions from regular Java

code without requiring any special annotations and employs them, similar to the

contract-based techniques to generate candidate repairs for Java programs. Qlose [53]

optimizes a program distance, a function of syntactic and semantic di�erences between

the original defective and the patched programs, while generating candidate patches.

DeepFix [96] and ELIXIR [244] use learned models to predict erroneous program

locations along with patches. ssFix [296] uses existing code that is syntactically
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related to the context of a bug to produce patches. CapGen [287] works at the

AST node level and uses context and dependency similarity (instead of semantic

similarity) between the suspicious code fragment and the candidate code snippets to

produce patches. SapFix [183] and Getafix [249], two tools deployed on production

code at Facebook, e�ciently produce correct repairs for large real-world programs.

SapFix [183] uses prioritized repair strategies, including pre-defined fix templates,

mutation operators, and bug-triggering change reverting, to produce repairs in realtime.

Getafix [249] learns fix patterns from past code changes to suggest repairs for bugs that

are found by Infer, Facebook’s in-house static analysis tool. SimFix [111] considers the

variable name and method name similarity, as well as structural similarity between

the suspicious code and candidate code snippets. Similar to CapGen, it prioritizes

the candidate modifications by removing the ones that are found less frequently

in existing patches. SketchFix [104] optimizes the candidate patch generation and

evaluation by translating faulty programs to sketches (partial programs with holes)

and lazily initializing the candidates of the sketches while validating them against the

test execution. Par [123] and SOFix [168] use predefined repair templates to generate

candidate patches. These repair templates are created based on the repair patterns

mined from StackOverflow posts by comparing code samples in questions and answers

for fine-grained modifications. Synthesis techniques can also construct new features

from examples [45,94], rather than address existing bugs.

The semantic-based techniques use semantic reasoning to synthesize patches to

satisfy an inferred specification. Nopol [299], Semfix [204], DirectFix [189], and

Angelix [190] use SMT or SAT constraints to encode test-based specifications. S3 [143]

extends the semantics-based family to incorporate a set of ranking criteria such

as the variation of the execution traces similar to Qlose [53]. JFIX [142] extends

Angelix [190] to target Java programs. SemGraft [188] infers specifications by

symbolically analyzing a correct reference implementation instead of using test
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cases. Genesis [174], Refazer [239], NoFAQ [54], Sarfgen [275], and Clara [95]

process correct patches to automatically infer code transformations to generate

patches. SearchRepair [122] blurs the line between heuristics-based and semantic-

based techniques by using constraint-based encoding of the desired behavior to replace

suspicious code with semantically-similar human-written code from elsewhere.

The learning-based APR techniques (e.g., CURE [113], DeepFix [96], DeepRepair

[289], SequenceR [40], CoCoNut [179]) frame APR as neural machine translation (NMT)

problem (translating defective program into patched program similar to translating

one language into another) and use modern deep-learning-based algorithms to produce

candidate patches. For example, CoCoNut uses a context-aware NMT architecture

that represents the defective program and its surrounding context separately, to

automatically fix bugs in multiple programming languages. These techniques require

additional training data (i.e, the tuples of defective program statements, context, and

fixed program statements) to capture complex relations between defective and patched

program.

The methods presented in this dissertation can be used to design a new APR

technique as well as improve the existing techniques. We also present evaluation

frameworks that aim to help researchers to properly evaluate their techniques’ ability

to produce high-quality patches for real-world defects. Our work enables properly

comparing techniques with respect to patch quality, and encourages the creation of

new techniques whose focus is producing high-quality patches on real-world defects.

Empirical studies of fixes of real bugs in open-source projects can also improve repair

techniques by helping designers select change operators and search strategies [119,318].

Understanding how repair techniques handles particular classes of errors, such as

security vulnerabilities [150,217] can guide tool design. For this reason, some automated

repair techniques focus on a particular defect class, such as bu�er overruns [250,251],

unsafe integer use in C programs [46], single-variable atomicity violations [114],
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deadlock and livelock defects [161], concurrency errors [167], and data input errors [7]

while other techniques tackle generic bugs. Although our evaluation focused on tools

that fix generic bugs, our methodology can be applied to focused repair as well.

7.2 Empirical Studies Evaluating Automatic Program Repair
Prior work has argued the importance of evaluating the types of defects APR

techniques can repair [199], and evaluating the generated patches for understandability,

correctness, and completeness [195]. Yet many of the prior evaluations of repair

techniques have focused on what fraction of a set of defects the technique can produce

patches for (e.g., [35, 52, 67, 114, 150,184, 282, 284]), how quickly they produce patches

(e.g., [147,282]), how maintainable the patches are (e.g., [83]), and how likely developers

are to accept them (e.g., [1, 123]).

However, some recent studies have focused on evaluating the quality of repair and

developing approaches to mitigate patch overfitting. For example, on 204 Ei�el defects,

manual patch inspection showed that AutoFix produced high-quality patches for 51

(25%) of the defects, which corresponded to 59% of the patches it produced [216].

While AutoFix uses contracts to specify desired behavior, by contrast, the patch

quality produced by techniques that use tests has been found to be much lower.

Manual inspection of the patches produced by GenProg, TrpAutoRepair (referred to

as RSRepair in that paper), and AE on a 105-defect subset of ManyBugs [227], and by

GenProg, Nopol, and Kali on a 224-defect subset of Defects4J showed that patch quality

is often lacking in automatically produced patches [184]. An automated evaluation

approach that uses a second, independent test suite not used to produce the patch to

evaluate the quality of the patch similarly showed that GenProg, TrpAutoRepair, and

AE all produce patches that overfit to the supplied specification and fail to generalize

to the intended specification [29, 252]. This work has led to new techniques that

improve the quality of the patches [122,175,177,296,297,311]. For example, Di�TGen
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generates tests that exercise behavior di�erences between the defective version and a

candidate patch, and uses a human oracle to rule out incorrect patches. This approach

can filter out 49.4% of the overfitting patches [296]. Using heuristics to approximate

oracles can generate more tests to filter out 56.3% of the overfitting patches [297].

UnsatGuided uses held-out tests to filter out overfitting patches for synthesis-based

repair, and is e�ective for patches that introduce regressions but not for patches that

only partially fix defects [311]. Automated test generation techniques that generate test

inputs along with oracles [22, 90, 197, 265] or use behavioral domain constraints [9, 85],

data constraints [75, 201, 202], or temporal constraints [15, 16, 18, 69, 208] as oracles

could potentially address the limitations of the above-described approaches.

Using independent test suites to measure patch quality is imperfect, as test suites

are partial and may identify some incorrect patches as correct. On a dataset of

189 patches produced by 8 repair techniques applied to 13 real-world Java projects,

independent tests identify fewer than one fifth of the incorrect patches, underestimating

the overfitting problem [141]. However, on other benchmarks, the results are much

more positive. For example, on the QuixBugs benchmark, combining test-based and

manual-inspection-based quality evaluation could identify 33 overfitting patches, while

test-based evaluation alone identified 29 of the 33 (87.9%) [307]. While the human

judgment is a criterion not used by the repair tools for patch construction, it is

fundamentally di�erent from the correctness criterion we use in our evaluation, as

it is often di�cult for humans to spot bugs even when told exactly where to look

for them [214]. Further, using independently generated test suites instead of using

the subset of the original test suite to evaluate patch quality ensures that we do not

ignore regressions a patch is most likely to introduce. Poor-quality test suites result in

patches that overfit to those suites [227]. Our evaluation goes further, demonstrating

that high-quality, high-coverage test suites still lead to overfitting, and identifying

other relationships between test suite properties and patch quality.
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Our work has focused on understanding the e�ectiveness of repair techniques to

patch large real-world Java programs correctly and to identify what factors a�ect the

generation of high-quality patches. Studying the e�ects of test suite size, coverage,

number of failing tests, and test provenance on the quality of the patches generated

by Angelix on the IntroClass [149] and Codeflaws [266] benchmarks of defects in small

programs finds results consistent with ours. By contrast, our work focuses on real-world

defects in real-world projects and heuristics-based repair. Further, prior work has

shown that the selection of test subjects (defects) can introduce evaluation bias [21,223].

Our evaluation focuses precisely on the limits and potential of repair techniques on a

large dataset of defects, and controls for a variety of potential confounds, addressing

some of Monperrus’ concerns [195].

7.3 Automated Fault Localization
Fault Localization [2,27,51,117,159,196,215,240,241] aims to precisely identify

potential defective program elements that cause the defects to facilitate bug fixing.

The most widely studied class of fault localization techniques is spectrum-based fault

localization (SBFL) which usually apply statistical analysis (e.g., Tarantula [117],

Ochiai [2], and Ample [51]) or learning techniques [27,240,241,242] to the execution

traces of both passed and failed tests to identify the most suspicious program elements

(e.g., statements/methods). The insight behind these techniques is that program

elements primarily executed by failed tests are more suspicious than the elements

primarily executed by passed tests. However, a program element executed by a failed

test does not necessarily indicate that the element has impact on the test execution and

has caused the test failure. To bridge the gap between coverage and impact information,

researchers proposed mutation-based fault localization (MBFL) [196, 213,315], which

injects changes to each program element (based on mutation testing [60,107]) to check

its impact on the test outcomes. MBFL has been applied to both general bugs (e.g.,
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Metallaxis [213]) and regression bugs (e.g., FIFL [315]). Besides SBFL and MBFL,

researchers have proposed to utilize various other information for fault localization

such as program slicing (e.g., [6, 234]) that use dynamic program dependencies, stack

trace analysis (e.g., [291,294]) to use error messages, predicate switching (e.g., [317])

to use test results from mutating the results of conditional expressions, information

retrieval-based fault localization (IR–based FL) (e.g., [319], [243]) that use bug

report information, and history-based fault localization (e.g., [124,229]) that use the

development history to identify the suspicious program elements that are likely to be

defective.

Existing FL techniques can be classified into two categories. The first category is

the standalone techniques. For example, PRoFL [178] improves SBFL using patch

execution results from APR, PREDFL [109] uses runtime statistics from statistical

debugging to improve SBFL, PRFL [316] uses the PageRank algorithm, XGB-FL [303]

uses a classifier to learn the importance of program statements and features, such

as execution sequence and semantics, and UniVal [136] uses execution profiles and

the success and failure information from program executions, in conjunction with

statistical inference. SBIR, our presented FL technique, outperforms the techniques

that fall in this category. The second category is supervised techniques that combine

multiple FL techniques, such as CombinedFL [320], DeepRL4FL [158], DeepFL [155],

Fluccs [255], Savant [140], MULTRIC [301], and TraPT [157]. These techniques

typically use learning to rank [32] algorithms such as RankSVM [135] that consider

the suspiciousness scores from multiple FL techniques as features, and train a model

to predict if a given program element is defective. SBIR outperforms RankSVM.

Fault Localization in Program Repair. Most program repair tools use

SBFL implemented using o�-the-shelf coverage tracking tools and the Ochiai ranking

strategy [5,41,95,96,111,150,177,188,244,269,275,287]. R2Fix [162] and iFixR [132] are

the only two IRFL-based repair tools, and no prior repair tool uses combined SBFL and
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IRFL. Although, using patch-execution results from repair tools to refine FL results

can outperform state-of-the-art SBFL and MBFL techniques [178]. Recent studies have

shown the e�ect of using di�erent technologies, assumptions, and adaptations of test-

suite-based FL techniques on the performance of repair tools [5,11,110,164,263,286,304].

Often, program repair researchers omit FL tuning used by their repair tools while

presenting repair performance, which leads to bias in comparing performance of

di�erent repair tools [164]. Further, the FL implementations are often tightly coupled

to the repair tool implementations, which makes it hard to use the FL for other repair

tools, or improve the FL. Our FL techniques can be used to mitigate this bias as they

can serve as a plugin by future repair tools to decouple their FL implementations from

their repair algorithm implementation, as is done in our JaRFly [200] framework.

7.4 Automated Test Generation
Test generation techniques that extract oracles from Javadoc specifications are the

closest prior work to Swami, our proposed approach of automatically generating tests

with oracles from natural language specifications. Toradacu [90] and Jdoctor [22] do

this for exceptional behavior, and @tComment [265] for null pointers. These tools

interface with EvoSuite or Randoop to reduce their false alarms. JDoctor, the latest

such technique, combines pattern, lexical, and semantic matching to translate Javadoc

comments into executable procedure specifications for pre-conditions, and normal and

exceptional post-conditions. Our approach builds on these ideas but applies to more

general specifications than Javadoc, with more complex natural language. Unlike

these tools, Swami does not require access to the source code and generates tests only

from the specification, while also handling boundary conditions. When structured

specifications, Javadoc, and source code are all available, these techniques are likely

complementary. Meanwhile, instead of generating tests, runtime verification of Java

API specifications can discover bugs, but with high false-alarm rates [154].
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Requirements tracing maps specifications, bug reports, and other artifacts to code

elements [65, 101, 293], which is related to Swami’s Section Identification using the

Okapi model [237,262]. Static analysis techniques typically rely on similar information-

retrieval-based approaches as Swami, e.g., BLUiR [243], for identifying code relevant

to a bug report. Swami’s model is simpler, but works well in practice; recent studies

have found it to outperform more complex models on both text and source code

artifacts [230,267].

Dynamic analysis can also aid tracing, e.g., in the way Cerberus uses execution

tracing and dependency pruning analysis [71]. Machine learning can aid tracing, e.g.,

via word embeddings to identify similarities between API documents, tutorials, and

reference documents [309]. Unlike Swami, these approaches require large ground-truth

training datasets. Future research will evaluate the impact of using more involved

information retrieval models.

Automated test generation (e.g., EvoSuite [81] and Randoop [211]) and test

fuzzing (e.g., afl [4]) generate test inputs. They require manually-specified oracles

or oracles manually encoded in the code (e.g., assertions), or generate regression

tests [81]. Swami’s oracles can complement these techniques. Di�erential testing can

also produce oracles by comparing behavior of multiple implementations of the same

specification [28,38,77,246,257,306] (e.g., comparing the behavior of Node.js to that

of Rhino), but requires multiple implementations, whereas Swami requires none.

Specification mining techniques use execution data to infer (typically) FSM-based

specifications [16, 17, 18, 89, 134, 138, 139, 169, 170, 171, 172, 208, 233, 248]. tautoko

uses such specifications to generate tests, e.g., of sequences of method invokations

on a data structure [50], then iteratively improving the inferred model [50, 274].

These dynamic approaches rely on manually-written or simple oracles (e.g., the

program should not crash) and are complementary to Swami, which uses natural

language specifications to infer oracles. Work on generating tests for non-functional
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properties, such as software fairness, relies on oracles inferred by observing system

behavior, e.g., by asserting that the behavior on inputs di�ering in a controlled way

should be su�ciently similar [85], [30], [9]. Meanwhile, assertions on system data can

also act as oracles [201,202], and inferred causal relationships in data management

systems [82,191,192] can help explain query results and suggest oracles for systems

that rely on data management systems [194]. Such inference can also help debug

errors [278,279,280] by tracking and using data provenance [193].

Dynamic invariant mining, e.g., Daikon [75], can infer oracles from test executions

by observing arguments’ values method return values [205]. Such oracles are a kind

of regression testing, ensuring only that behavior does not change during software

evolution. Korat uses formal specifications of pre- and post-conditions (e.g., written

by the developer or inferred by invariant mining) to generate oracles and tests [24]. By

contrast, Swami, our technique of generating tests, infers oracles from the specification

and neither requires source code nor an existing test suite.
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CHAPTER 8

CONTRIBUTIONS AND FUTURE WORK

In this chapter, I will summarize the contributions presented in this dissertation,

and present future directions of my research, some of which I intend to follow.

8.1 Contributions
While existing APR techniques can fix a large number of bugs in real-world software,

most of the repairs produced are not “correct” or acceptable to the developers. This

is a critical concern which prevents program repair techniques to be used in real-life

software development processes. This dissertation presented multiple methods to

address this problem.

We defined objective evaluation frameworks to evaluate the applicability and

quality of the APR techniques and evaluated state-of-the-art repair techniques using

our frameworks. We also developed and evaluated the repair quality of SOSRepair,

a novel semantics-based repair technique that produces high-quality patches for

real-world defects in large C programs. Further, we analyzed various factors that

could a�ect the quality of APR. The key findings from these evaluations revealed

that developer-written test suites (used in the repair process), and fault localization

accuracy can significantly a�ect the quality of repair techniques.

This motivated us develop methods to improve developer-written test suites and

automated fault localization used to guide the repair process. We improved developer

tests and fault localization by extracting information from natural-language software

artifacts such as specification documents and bug reports, which are not typically
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used by APR techniques. Finally, we demonstrated that by using both tests and

bug reports together to guide the repair process can significantly improve the quality

of multiple state-of-the-art APR techniques that use fundamentally di�erent repair

approaches.

8.2 Future work
In this section, I will describe the work that remains to be done in the areas of

fault localization, test generation, and program repair. Further, I will describe some

of the ideas I plan to work on in the future.

8.2.1 End-To-End Automated Software Debugging

The goal of this research is to automate the end-to-end software debugging process

by developing tools that can automatically synthesize or repair software requirements,

design, source code, and tests from natural language software specifications. While

there exists decades of research in automated FL to help developers in e�ciently

localizing bugs in their programs, most of these techniques are not much useful to

practitioners because it is often not su�cient to just know the defective location to

understand the root cause of the bug and developers end up spending the same amount

of time inspecting the ranked list of suspicious statements as they would spend in

understanding the bug information sources such as failing tests or bug report. On

the other hand, APR research focuses mostly on fixing bugs without focusing much

on understanding and e�ectively localizing bugs. Similar to the FL techniques, APR

techniques are not much used by practitioners because developers are reluctant to

review multiple patches and they find it hard to trust the correctness of patches [207].

While researchers in FL and APR are independently and actively working to improve

the state-of-the-art, it is important to work together in devising end-to-end debugging

techniques that are actually useful for practitioners. In this dissertation, I demonstrate
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how advancements in the FL research can improve APR. A recent study [178] shows

the reverse, i.e., how APR can improve FL. I plan to conduct research that synthesizes

knowledge from independent yet closely related research areas.

8.2.2 Improving Software Quality Using Unstructured Text

While Swami (Chapter 4 uses a rule-based natural language processing (NLP)

approach to generate tests, which limits its generalization to all kinds of natural

language specifications, it can be used to synthesize large datasets for training the

modern NLP techniques that can then be used to generate tests from more kinds of

natural language specifications that what Swami can currently process. The modern

deep-learning based NLP approaches, did not perform well for our problem because:

(a) we did not have a large dataset of specifications available for a software, and (b) for

a single specification there are many test cases with varying test inputs but same test

oracles. These two factors posed a new challenge of training a deep-learning model

on the many-to-one mappings between specifications and test cases. I plan to solve

these challenges by using Swami-generated tests and the advancements made in NLP

research area.

8.2.3 Automatic Repair for Hard and Important Defects

Before attempting to repair defects, developers often ask questions such as “How

di�cult will this defect be to fix?” and “Is the defect worth fixing?”. Thus, to make

program repair tools useful for practitioners, researchers need to know what kind of

defects developers find worth fixing and are hard to fix. To that end, I developed

a framework [199] to objectively characterize defects that are hard and important

from developers’ perspective and used the framework to evaluate repair tools. I found

that modern repair tools fix defects that are simple yet important for developers.

Researchers [166,253] have built on my work to produce more evaluation metrics and

frameworks that aim to boost the development of practical and reliable program repair

208



tools. I plan to work on extending the capability of repair techniques to fix defects

that are hard and important for developers.

8.2.4 Debugging Tools for New Programming Paradigms

Practitioners are increasingly shifting to develop software using new programming

paradigms such as machine learning, deep learning, and quantum computing techniques.

As the software using these new techniques are fundamentally di�erent from traditional

ones, existing software debugging techniques (techniques to automatically localize and

fix bugs, and validate correctness of produced patches) do not directly apply to such

software. For example, fixing bugs in an ML-based software requires inspecting both

source code and the dataset used for training the software. Methods to automatically

test, detect and fix bugs in ML-based software are active research areas. I plan to

develop techniques that can be used to debug such new kinds of software.

8.2.5 Software Debugging Considering Socio-Technical Aspects

Studies [129] show that not all defects are considered equally by developers. For

example, before attempting to fix defects developers often ask questions such as Is

this a legitimate defect?, How di�cult will this defect be to fix?, and Is the defect worth

fixing?. The answers to such questions do not only relate to the expertise of developers

in the program in question but also on several factors that may a�ect the developers’

motivation to fix defects. For example, developers may only care to fix defects in the

production code to be shipped in the current release cycle, or only fix the ones that

would satisfy the the compliance their team cares about. The utility of automated

debugging tools can be severely a�ected by such socio-technical factors and thus, it is

not su�cient to just improve the accuracy of tools in detecting and fixing defects. I

plan to develop techniques that are cognizant of such factors and provide customized

experience to developers based on the their development context.
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APPENDIX A

DEFECT IMPORTANCE AND DIFFICULTY DATA

Figure A.1 describes the relevant concrete parameters for each of the bug tracking

systems, project-hosting platforms, and defect benchmarks. We omit the semantics of

the specific names the various systems and platforms use. This information is available

from the underlying bug tracking systems and project-hosting platforms. Figure A.2

shows the mapping from concrete parameters to abstract parameters and to the five

defect characteristics.
Issue tracking system Concrete parameters relevant to importance or di�culty Other relevant concrete parameters
Bugzilla importance (priority and severity), target milestone, dependencies (depends on and blocks),

reported, modified, time tracking (orig. est., current est., hours worked, hours left, %complete, gain,
deadline), priority, components

hardware (platform and OS), keywords, personal tags

FogBugz priority, milestones, die, subcases areas, category
GitHub - labels
Google code open, closed, blockedon, blocking, priority, reproducible, star summary+labels
HP ALM/Quality Center severity, closing date, detected on date, priority, reproducible, estimated fix time, view linked entities —
IBM Rational ClearQuest severity, priority keywords
JIRA component/s, votes, watchers, due, created, updated, resolved, estimate, remaining, logged, priority,

severity, a�ects versions, fix versions
environment, labels

Mantis reproducibility, date submitted, last update category, profile, platform, OS, tags
Redmine priority, updated, related issues, associated revisions, start, due date, estimated time(hours) category
SourceForge created, updated, priority, milestone keywords, milestone
Trac component, priority, milestone keywords
Defects4J # of files in the developer-written patch, # of lines in the developer-written patch, # of relevant

tests, # of triggering tests, coverage information of test suit
—

ManyBugs # of files in the developer-written patch, # of lines in the developer-written patch, # of positive
tests, # of negative tests

developer-written patch modifications types, defect types

Figure A.1: We used grounded theory to extract from bug tracking systems, project-
hosting platforms, and defect benchmarks the concrete parameters relevant to defect
importance and di�culty, as well as several other parameters interesting to correlate
with automated repair techniques’ ability to repair the defect.
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Defect Abstract Concrete
characteristic parameter parameters

Importance Time to fix: the amount of time (days) taken by
developer(s) to fix a defect. This is computed as the time
di�erence between when the issue was reported and when
the issue was resolved. Depending on the issue tracking
system, di�erent concrete parameters are used to obtain
these two timestamps.

reported, modified, time tracking (orig. est.,
current est., hours worked, hours left, %complete,
gain, deadline), due, created, updated, resolved,
estimate, remaining, logged, date submitted, last
update, start, due date, estimated time (hours),
closing date, detected on date, estimated fix time,
opened, closed, milestone

Priority: importance of fixing a defect in terms of defect
priority. This is obtained using priority assigned to the
defect. Di�erent issue tracking systems use di�erent values
to denote low, normal, high, critical, blocker defects. We use
a scale of 1 to 5 corresponding to these priority values (1 is
the lowest priority and 5 is the highest) and map the values
used by issue tracking systems to our scale. Significance is
measured using the number of watchers for a defect, or the
number of votes.

priority, importance (priority and severity),
watchers, votes, stars

Versions: e�ect of defect on di�erent versions of a project
or other project modules and components.

components, linked entities, a�ects versions, fix
versions

Complexity File count:the number of files containing non-comment,
non-blank-line edits in the developer-written fix

information available from commits on issue
tracking systems and helper scripts provided by
Defects4J repository.

Line count: the total number of non-comment, non-blank
lines of code in the developer-written fix

information obtained using di� between buggy
and fixed source code files. Helper scripts provided
with Defects4J

Reproducibility: how easy it is to reproduce the defect reproducible, reproducibility

Test E�ectiveness Statement coverage: the fraction of the lines in the files
edited by the developer-written patches that are executed
by the test suite

provided by Defects4J framework

Triggering test count: number of defect triggering test
cases

information provided in test.sh script in
ManyBugs and triggering_tests in Defects4J

Relevant test count: number of test cases that execute
at least one statement in at least one file edited by the
developer-written patch

information provided in test.sh script in
ManyBugs and relevant_tests in Defects4J

Independence Dependents: number of defects (also with URLs to issue
tracking systems) on which the fixing of a given defect
depends

Dependencies (depends on and blocks), blockedon,
related issues, subcases

Characteristics of the
developer-written patch

Patch characteristics: characteristics of the developer-
written patch in terms of the type of code modifications
done to fix the defect

information about bug type available within the
ManyBugs metadata

Figure A.2: Mapping of the concrete parameters from Figure A.1 to the eleven abstract
parameters and then to the five defect characteristics.
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APPENDIX B

AVAILABILITY OF APPLICABILITY DATA FOR
ANNOTATING DEFECT BENCHMARKS

Figure B.1 describes information about which abstract parameters were available

in di�erent issue tracking systems used by ManyBugs and Defects4J projects and how

the corresponding concrete parameters were used to annotate the defects. Figure B.2

shows the number of defects annotated for each abstract parameter using concrete

parameters from bug trackers and benchmarks.
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ManyBugs
project issue

tracking
system

time to fix priority versions dependents reprodu-
cibility

PHP php bugs di�erence between
timestamps of
“Modified” and
“Submitted”

NA number of
values in
“PHP Version”

NA NA

python python
bugs

di�erence between
timestamps of
“Last changed” and
“created on”

value of “Priority”
scaled to our range
of [1,5] as: low æ 1;
normal æ 2; high æ 3;
critical æ 4; deferred
blocker æ 5; release
blocker æ 5

number of
versions in
“Versions”

number
of values in
“Dependencies”

NA

gzip mail
archive

NA NA number of
versions in
“Version”

NA NA

Debian
bugs

NA value of “Severity”
scaled to our range of
[1,5] as: critical æ 5;
grave æ 5; serious æ 4;
important æ 3; normal
æ 2; minor æ 1

number of
versions in
“Version”

NA NA

libti� Bugzilla
Map
Tools

di�erence in
timestamps of
“Modified” and
“Reported”

NA number of
versions in
“Version”

value of
“Depends on:”

NA

valgrind KDE Bug
tracking
System

di�erence in
timestamps of
“Modified” and
“Reported”

value of “Importance” number of
versions in
“Version” field

information
in
“Dependency
tree/graph”

NA

lighttpd Redmine NA value of “Priority:”
scaled to our range
of [1,5] as: low æ 1;
normal æ 2; high æ 3;
urgent æ 4; immediate
æ 5

values in
“Target
version:”

NA NA

Defects4J
Commons
Math

Apache
issues

value of “Open æ
Resolved” field in
“Transitions” tab

value of “Priority” number of
versions in
“A�ected
versions” and
“fix versions”

number of
“Issue Links”

NA

Commons
Lang

Apache
issues

value of,“Open æ
Resolved” field in
“Transitions” tab

value of “Priority” number of
versions
in,“A�ected
versions” and
“fix versions”

number of
“Issue Links”

NA

JFreeChart Sourceforge di�erence between
timestamps of
“Updated” and
“Created”

value of “Priority”
scaled to our range of
[1,5] as: 4 æ 1; 5 æ 2;
6 æ 3,7; 8 æ 4;9 æ 5

NA NA NA

JodaTime Github di�erence between
timestamps of
“Created” and “Last
Commit”

NA NA NA NA

Sourceforge di�erence between
timestamps of
“Updated” and
“Created”

value of “Priority”
scaled to our range [1,5]
as: 4 æ 1; 5 æ 2; 6 æ
3,7; 8 æ 4;9 æ 5

NA NA NA

Figure B.1: Information about abstract parameters obtained from the issue tracking
systems.
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ManyBugs
time to fix: 105 file count: 185 statement coverage: 133 dependents: 88
priority: 25 line count: 185 triggering test count: 185 patch characteristics: 185
versions: 111 reproducibility: 0 relevant test count: 185

Defects4J
time to fix: 203 file count: 224 statement coverage: 224 dependents: 169
priority: 191 line count: 224 triggering test count: 224 patch characteristics: 224
versions: 169 reproducibility: 0 relevant test count: 224

Figure B.2: The number of defects annotated for each abstract parameter using the
information described in Figure B.1 and data available in the ManyBugs and Defects4J
benchmarks.

214



APPENDIX C

SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH
FOR REAL-WORLD PROGRAM REPAIR

Automated program repair holds the potential to significantly reduce software

maintenance e�ort and cost. However, recent studies have shown that it often

produces low-quality patches that repair some but break other functionality. We

hypothesize that producing patches by replacing likely faulty regions of code with

semantically-similar code fragments, and doing so at a higher level of granularity

than prior approaches can better capture abstraction and the intended specification,

and can improve repair quality. We create SOSRepair, an automated program repair

technique that uses semantic code search to replace candidate buggy code regions with

behaviorally-similar (but not identical) code written by humans. SOSRepair is the

first such technique to scale to real-world defects in real-world systems. On a subset of

the ManyBugs benchmark of such defects, SOSRepair produces patches for 22 (34%)

of the 65 defects, including 3, 5, and 6 defects for which previous state-of-the-art

techniques Angelix, Prophet, and GenProg do not, respectively. On these 22 defects,

SOSRepair produces more patches (9, 41%) that pass all independent tests than the

prior techniques. We demonstrate a relationship between patch granularity and the

ability to produce patches that pass all independent tests. We then show that fault

localization precision is a key factor in SOSRepair’s success. Manually improving fault

localization allows SOSRepair to patch 23 (35%) defects, of which 16 (70%) pass all

independent tests. We conclude that (1) higher-granularity, semantic-based patches

can improve patch quality, (2) semantic search is promising for producing high-quality

real-world defect repairs, (3) research in fault localization can significantly improve
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the quality of program repair techniques, and (4) semi-automated approaches in which

developers suggest fix locations may produce high-quality patches.

C.1 Introduction
Automated program repair techniques (e.g., [19, 39, 42, 53,54, 123,142,143,145,150,

174,177,180,190,239,264,269,273,296,300]) aim to automatically produce software

patches that fix defects. For example, Facebook uses two automated program repair

tools, SapFix and Getafix, in their production pipeline to suggest bug fixes [183,249].

The goal of automated program repair techniques is to take a program and a suite of

tests, some of which that program passes and some of which it fails, and to produce a

patch that makes the program pass all the tests in that suite. Unfortunately, these

patches can repair some functionality encoded by the tests, while simultaneously

breaking other, undertested functionality [252]. Thus, quality of the resulting patches

is a critical concern. Recent results suggest that patch overfitting — patches that pass

a particular set of test cases supplied to the program repair tool but fail to generalize

to the desired specification — is common [252], [146, 176,227]. The central goal of this

work is to improve the ability of automated program repair to produce high-quality

patches on real-world defects.

We hypothesize that producing patches by (1) replacing likely faulty regions of

code with semantically-similar code fragments, and (2) doing so at a higher level of

granularity than prior approaches can improve repair quality. There are two underlying

reasons for this hypothesis:

1. The observation that human-written code is highly redundant [14,35,36,84,186],

suggesting that, for many buggy code regions intended to implement some

functionality, there exist other code fragments that seek to implement the same

functionality, and at least one does so correctly.
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2. Replacing code at a high level of granularity (e.g., blocks of 3–7 consecutive

lines of code) corresponds to changes at a higher level of abstraction, and is thus

more likely to produce patches that correctly capture the implied, unwritten

specifications underlying desired behavior than low-level changes to tokens or

individual lines of code.

For example, suppose a program has a bug in a loop that is intended to sort an

array. First, consider another, semantically similar loop, from either the same project,

or some other software project. The second loop is semantically similar to the buggy

loop because, like the buggy loop, it sorts some arrays correctly. At the same time,

the second loop may not be semantically identical to the buggy loop, especially on

the inputs that the buggy loop mishandles. We may not know a priori if the second,

similar loop is correct. However, sorting is a commonly implemented subroutine. If we

try to replace the buggy code with several such similar loops, at least one is likely to

correctly sort arrays, allowing the program to pass the test cases it previously failed.

In fact, the high redundancy present in software source code suggests such commonly

implemented subroutines are frequent [14,35,36,84]. Second, we posit that replacing

the entire loop with a similar one is more likely to correctly encode sorting than what

could be achieved by replacing a + with a -, or inserting a single line of code in the

middle of a loop.

Our earlier work on semantic-search-based repair [122] presented one instance that

demonstrated that higher-granularity, semantic-based changes can, in fact, improve

quality. On short, student-written programs, on average, SearchRepair patches passed

97.3% of independent tests not used during patch construction. Meanwhile, the

relatively lower-granularity patches produced by GenProg [150], TrpAutoRepair [224],

and AE [282] passed 68.7%, 72.1%, and 64.2%, respectively [122]. Unfortunately, as

we describe next, SearchRepair cannot apply to large, real-world programs.
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This chapter presents SOSRepair, a novel technique that uses input-output-based

semantic code search to automatically find and contextualize patches to fix real-

world defects. SOSRepair locates likely buggy code regions, identifies similarly-

behaving fragments of human-written code, and then changes the context of those

fragments to fit the buggy context and replace the buggy code. Semantic code search

techniques [232,259,260,261] find code based on a specification of desired behavior.

For example, given a set of input-output pairs, semantic code search looks for code

fragments that produce those outputs on those inputs. Constraint-based semantic

search [259,260,261] can search for partial, non-executable code snippets. It is a good

fit for automated program repair because it supports searching for code fragments

that show the same behavior as a buggy region on initially passing tests, while looking

for one that passes previously-failing tests as well.

While SOSRepair builds on the ideas from SearchRepair [122], to make SOSRepair

apply, at scale, to real-world defects, we redesigned the entire approach and developed

a conceptually novel method for performing semantic code search. The largest

program SearchRepair has repaired is a 24-line C program written by a beginner

programmer to find the median of three integers [122]. By contrast, SOSRepair patches

defects made by professional developers in real-world, multi-million-line C projects.

Since SearchRepair cannot run on these real-world defects, we show that SOSRepair

outperforms SearchRepair on the IntroClass benchmark of small programs.

We evaluate SOSRepair on 65 real-world defects of 7 large open-source C projects

from the ManyBugs benchmark [149]. SOSRepair produces patches for 22 defects,

including 1 that has not been patched by prior techniques (Angelix [190], Prophet [177],

and GenProg [150]). We evaluate patch quality using held-out independent test

suites [252]. Of the 22 defects for which SOSRepair produces patches, 9 (41%)

pass all the held-out tests, which is more than the prior techniques produce for

these defects. On small C programs in the IntroClass benchmark [149], SOSRepair

218



generates 346 patches, more than SearchRepair [122], GenProg [150], AE [284], and

TrpAutoRepair [224]. Of those patches, 239 pass all held-out tests, again, more than

the prior techniques.

To make SOSRepair possible, we make five major contributions to both semantic

code search and program repair:

1. A more-scalable semantic search query encoding. We develop a novel,

e�cient, general mechanism for encoding semantic search queries for program

repair, inspired by input-output component-based program synthesis [106]. This

encoding e�ciently maps the candidate fix code to the buggy context using a

single query over an arbitrary number of tests. By contrast, SearchRepair [122]

required multiple queries to cover all test profiles and failed to scale to large

code databases or queries covering many possible permutations of variable

mappings. Our new encoding approach provides a significant speedup over the

prior approach, and we show that the speedup grows with query complexity.

2. Expressive encoding capturing real-world program behavior. To apply

semantic search to real-world programs, we extend the state-of-the-art constraint

encoding mechanism to handle real-world C language constructs and behavior,

including structs, pointers, multiple output variable assignments, console output,

loops, and library calls.

3. Search for patches that insert and delete code. Prior semantic-search-

based repair could only replace buggy code with candidate fix code to a�ect

repairs [122]. We extend the search technique to encode deletion and insertion.

4. Automated, iterative search query refinement encoding negative

behavior. We extend the semantic search approach to include negative

behavioral examples, making use of that additional information to refine queries.

We also propose a novel, iterative, and counter-example-guided search-query
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Figure C.1: Overview of the SOSRepair approach.

refinement approach to repair buggy regions that are not covered by the passing

test cases. When our approach encounters candidate fix code that fails to repair

the program, it generates new undesired behavior constraints from the new

failing executions and refines the search query, reducing the search space. This

improves on prior work, which could not repair buggy regions that no passing

test cases execute [122].

5. Evaluation and open-source implementation. We implement and release

SOSRepair (https://github.com/squaresLab/SOSRepair), which reifies the

above mechanisms. We evaluate SOSRepair on the ManyBugs benchmark [149]

commonly used in the assessment of automatic patch generation tools (e.g., [177,

190, 224, 282]). These programs are four orders of magnitude larger than the

benchmarks previously used to evaluate semantic-search-based repair [122]. We

show that, as compared to previous techniques applied to these benchmarks

(Angelix [190], Prophet [177], and GenProg [150]), SOSRepair patches one

defect none of those techniques patch, and produces patches of comparable

quality to those techniques. We measure quality objectively, using independent

test suites held out from patch generation [252]. We therefore also release

independently-generated held-out test suites we use to evaluate SOSRepair.

(https://github.com/squaresLab/SOSRepair-Replication-Package)
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Based on our experiments, we hypothesize that fault localization’s imprecision on

real-world defects hampers SOSRepair. We create SOSRepairü, a semi-automated

version of SOSRepair that is manually given the code location in which a human would

repair the defect. SOSRepairü produces patches for 23 defects. For 16 (70%) of the

defects, the produced patches pass all independent tests. Thus, SOSRepairü is able to

produce high-quality patches for twice the number of defects than SOSRepair produces

(16 versus 9). This suggests that semantic code search holds promise for producing

high-quality repairs for real-world defects, perhaps in a semi-automated setting in

which developers suggest code locations to attempt fixing. Moreover, advances in

automated fault localization can directly improve automated repair quality.

To directly test the hypothesis that patch granularity a�ects the ability to produce

high-quality patches, we alter the granularity of code SOSRepair can replace when

producing patches, allowing for replacements of 1 to 3 lines, 3 to 7 lines, or 6 to 9

lines of code. On the IntroClass benchmark, using the 3–7-line granularity results in

statistically significantly more patches (346 for 3–7-, 188 for 1–3-, and 211 for 6–9-line

granularities) and statistically significantly more patches that pass all the held-out

tests (239 for 3–7-, 120 for 1–3-, and 125 for 6–9-line granularities).

The rest of this chapter is organized as follows. Section C.2 describes the SOSRepair

approach and Section C.3 our implementation of that approach and Section C.4

evaluates SOSRepair, and Section C.5 summarizes our contributions.

C.2 The SOSRepair Approach
Figure C.1 overviews the SOSRepair approach. Given a program and a set of test

cases capturing correct and buggy behavior, SOSRepair generates patches by searching

over a database of snippets of human-written code. Unlike keyword or syntactic search

(familiar to users of standard search engines), semantic search looks for code based

on a specification of desired and undesired behavior. SOSRepair uses test cases to
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construct a behavioral profile of a potentially buggy code region. SOSRepair then

searches over a database of snippets for one that implements the inferred desired

behavior, adapts a matching snippet to the buggy code’s context, and patches the

program by replacing the buggy region with patch code, inserting patch code, or

deleting the buggy region. Finally, SOSRepair validates the patched program by

executing its test cases.

We first describe an illustrative example and define key concepts (Section C.2.1).

We then detail SOSRepair’s approach that (1) uses symbolic execution to produce static

behavioral approximations of a set of candidate bug repair snippets (Section C.2.2),

(2) constructs a dynamic profile of potentially-buggy code regions, which serve as

inferred input-output specifications of desired behavior (Section C.2.3), (3) constructs

an SMT query to identify candidate semantic repairs to be transformed into patches

and validated (Section C.2.4), and (4) iteratively attempts to produce a patch until

timeout occurs (Section C.2.5). This section focuses on the conceptual approach;

Section C.3 will describe implementation details.

C.2.1 Illustrative example and definitions

Consider the example patched code in Figure C.2 (top), which we adapt (with minor

edits for clarity and exposition) from php interpreter bug issue #60455, concerning a bug

in the streams API.1 Bug #60455 reports that streams mishandles files when the EOF

character is on its own line. The fixing commit message elaborates: “stream_get_line

misbehaves if EOF is not detected together with the last read.” The change forces

the loop to continue such that the last EOF character is consumed. The logic that

the developer used to fix this bug is not unique to the stream_get_record function;

indeed, very similar code appears in the php date module (bottom of Figure C.2). This

1https://bugs.php.net/bug.php?id=60455
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1 // len holds current position in stream
2 while (len < maxlen ) {
3 php_stream_fill_read_buffer (stream ,
4 len + MIN(maxlen - len chunk_size ));
5 just_read =
6 (stream -> writepos - stream -> readpos )-len;
7 - if ( just_read < toread ) {
8 + if ( just_read == 0) {
9 break ;

10 } else {
11 len = len + just_read ;
12 }
13 }

1 if ( bufflen > 0)
2 mylen += bufflen ;
3 else break ;

Figure C.2: Top: Example code, based on php bug # 60455, in function
stream_get_record. The developer patch modifies the condition on line 7, shown
on line 8. Bottom: A snippet appearing in the php date module, implementing the
same functionality as the developer patch (note that just_read is never negative in
this code), with di�erent variable names.

is not unusual: there exists considerable redundancy within and across open-source

repositories [14, 84,102,271].

Let F refer to a code snippet of 3–7 lines of C code. F can correspond to either

the buggy region to be replaced or a snippet to be inserted as a repair. In our example

bug, a candidate buggy to-be-replaced region is lines 7–11 in top of Figure C.2; the

snippet in the bottom of Figure C.2 could serve as a repair snippet. We focus on

snippets of size 3–7 lines of code because patches at a granularity level greater than

single-expression, -statement, or -line may be more likely to capture developer intuition,

producing more-correct patches [122], but code redundancy drops o� sharply beyond

seven lines [84, 102]. We also verify these findings by conducting experiments that use

code snippets of varying sizes (Section C.4.3).

F ’s input variables X̨f are those whose values can ever be used (in the classic

dataflow sense, either in a computation, assignment, or predicate, or as an argument
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to a function call); F ’s output variables R̨f are those whose value may be defined

with a definition that is not killed by the end of the snippet. In the buggy region of

Figure C.2, X̨f is {just_read, toread, len}; R̨f is {len}. R̨f may be of arbitrary

size, and X̨f and R̨f are not necessarily disjoint, as in our example. V̨f is the set of

all variables of interest in F : V̨f = X̨f fi R̨f .

To motivate a precise delineation between variable uses and definitions, consider a

concrete example that demonstrates correct behavior for the buggy code in Figure C.2:

if just_read = 5 and len = 10 after line 6, at line 12, it should be the case that

just_read = 5 and len = 15. A naive, constraint-based expression of this desired

behavior, e.g., (just_read = 5) · (len = 10) · (just_read = 5) · (len = 15) is

unsatisfiable, because of the conflicting constraints on len.

For the purposes of this explanation, we first address the issue by defining a static

variable renaming transformation over snippets. Let Uf (x) return all uses of a variable

x in F and Df(x) return all definitions of x in F that are not killed. We transform

arbitrary F to enforce separation between inputs and outputs as follows:

F Õ= F [Uf (x)/xi] s.t.x œ Vf , xi œ Xin, xi fresh

Ft=F
Õ[Df (x)/xi] s.t.x œ Rf , xiœXout, xi fresh

All output variables are, by definition, treated also as inputs, and we choose fresh

names as necessary. Xin and Xout refer to the sets of newly-introduced variables.

C.2.2 Candidate snippet encoding

In an o�ine pre-processing step, we prepare a database of candidate repair snippets

of 3–7 lines of C code. This code can be from any source, including the same project, its

previous versions, or open-source repositories. A naive lexical approach to dividing code

into line-based snippets generates many implausible and syntactically invalid snippets,

such as by crossing block boundaries (e.g., lines 10–12 in the top of Figure C.2).
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Instead, we identify candidate repair snippets from C blocks taken from the code’s

abstract syntax tree (AST). Blocks of length 3–7 lines are treated as a single snippet.

Blocks of length less than 3 lines are grouped with adjacent blocks. We transform

all snippets F into Ft (Section C.2.1). In addition to the code itself (pre- and post-

transformation) and the file in which it appears, the database stores two types of

information per snippet:

1. Variable names and types. Patches are constructed at the AST level, and

are thus always syntactically valid. However, they can still lead to compilation

errors if they reference out-of-scope variable names, user-defined types, or called

functions. We thus identify and store names of user-defined structs and called

functions (including the file in which they are defined). We additionally store

all variable names from the original snippet F (V̨f , X̨f , R̨f), as well as their

corresponding renamed versions in Ft (Xin and Xout).

2. Static path constraints. We symbolically execute [33,125] Ft to produce a

symbolic formula that statically overapproximates its behavior, described as

constraints over snippet input and outputs. For example, the fix snippet in

Figure C.2 can be described as:

((bufflenin > 0) · (mylenout = mylenin + bufflenin))

‚(¬(bufflenin > 0) · (mylenout = mylenin))

We query an SMT solver to determine whether such constraints match desired

inputs and outputs.

The one-time cost of database construction is amortized across many repair e�orts.

C.2.3 Profile construction

SOSRepair uses spectrum-based FL (SBFL) [117] to identify candidate buggy code

regions. SBFL uses test cases to rank program entities (e.g., lines) by suspiciousness.
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We expand single lines identified by SBFL to the enclosing AST block. Candidate

buggy regions may be smaller than 3 lines if no region of fewer than 7 lines can be

created by combining adjacent blocks.

Given a candidate buggy region F , SOSRepair constructs a dynamic profile of

its behavior on passing and failing tests. Note that the profile varies by the type

of repair, and that SOSRepair can either delete the buggy region; replace it with a

candidate repair snippet; or insert a piece of code immediately before it. We discuss

how SOSRepair iterates over and chooses between repair strategies in Section C.2.5.

Here, we describe profile generation for replacement and insertion (the profile is not

necessary for deletion).

SOSRepair first statically substitutes Ft for F in the buggy program, declaring fresh

variables Xin and Xout. SOSRepair then executes the program on the tests, capturing

the values of all local variables before and after the region on all covering test cases.

(For simplicity and without loss of generality, this explanation assumes that all test

executions cover all input and output variables.) Let Tp be the set of all initially passing

tests that cover Ft and Tn the set of all initially failing tests that do so. If t is a test

case covering Ft, let valIn(t, x) be the observed dynamic value of x on test case t before

Ft is executed and valOut(t, x) its dynamic value afterwards. We index each observed

value of each variable of interest x by the test execution on which the value is observed,

denoted x
t. This allows us to specify desired behavior based on multiple test executions

or behavioral examples at once. To illustrate, assume a second passing execution of

the buggy region in Figure C.2 on which len is 15 on line 6 and 25 on line 12 (ignoring

just_read for brevity).
1
(lenin = 10)·(lenout = 15)

2
·

1
(lenin = 15)·(lenout = 25)

22

is trivially unsatisfiable;
1
(lenin

1 = 10)· (lenout
1 = 15)

2
·

1
(lenin

2 = 15)· (lenout
2 =

25)
22

, which indexes the values by the tests on which they were observed, is not. The

dynamic profile is then defined as follows:
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P := Pin · P
p
out · P

n
out

Pin encodes bindings of variables to values on entry to the candidate buggy region

on all test cases; P
p
out enforces the desired behavior of output variables to match that

observed on initially passing test cases; P
n
out enforces that the output variables should

not match to those observed on initially failing test cases. Pin is the same for both

replacement and insertion profiles:

Pin :=
fi

tœTpfiTn

fi

xiœXin

x
t
i = valIn(t, xi)

Pout combines constraints derived from both passing and failing executions, or

P
p
out · P

n
out . For replacement queries:

P
p
out :=

fi

tœTp

fi

xiœXout

x
t
i = valOut(t, xi)

P
n
out :=

fi

tœTn

¬(
fi

xiœXout

x
t
i = valOut(t, xi))

For insertion queries, the output profile specifies that the correct code should

simply preserve observed passing behavior while making some observable change to

initially failing behavior:

P
p
out :=

fi

tœTp

fi

xiœXout

x
t
i = valIn(t, xi)

P
n
out :=

fi

tœTn

¬(
fi

xiœXout

x
t
i = valIn(t, xi))

Note that we neither know, nor specify, the correct value for these variables on

such failing tests, and do not require annotations or developer interaction to provide

them such that they may be inferred.
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C.2.4 Query construction

Assume candidate buggy region C (a context snippet), candidate repair snippet S,

and corresponding input variables, output variables, etc. (as described in Section C.2.1).

Our goal is to determine whether the repair code S can be used to edit the buggy

code, such that doing so will possibly address the buggy behavior without breaking

previously-correct behavior. This task is complicated by the fact that candidate repair

snippets may implement the desired behavior, but use the wrong variable names for

the buggy context (such as in our example in Figure C.2). We solve this problem

by constructing a single SMT query for each pair of C, S, that identifies whether a

mapping exists between their variables (V̨c and V̨s) such that the resulting patched

code (S either substituted for or inserted before C) satisfies all the profile constraints

P . An important property of this query is that, if satisfiable, the satisfying model

provides a variable mapping that can be used to rename S to fit the buggy context.

The repair search query is thus comprised of three constraint sets: (1) mapping

components Âmap and Âconn, which enforce a valid and meaningful mapping between

variables in the candidate repair snippet and ones in the buggy context, (2) functionality

component „func, which statically captures the behavior of the candidate repair

snippet, and (3) the specification of desired behavior, captured in a dynamic profile P

(Section C.2.3). We now detail the mapping and functionality components, as well as

how patches are constructed and validated based on satisfiable semantic search SMT

queries.

C.2.4.1 Mapping component

Our approach to encoding semantic search queries for APR takes inspiration

from SMT-based input-output-guided component-based program synthesis [106]. The

original synthesis goal is to connect a set of components to construct a function f

that satisfies a set of input-output pairs È–i, —iÍ (such that ’i, f(–i) = —i). This
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is accomplished by introducing a set of location variables, one for each possible

component and function input and output variable, that define the order of and

connection between components. Programs are synthesized by constructing an SMT

query that constrains location variables so that they describe a well-formed program

with the desired behavior on the given inputs/outputs. If the query is satisfiable, the

satisfying model assigns integers to locations and can be used to construct the desired

function. See the prior work by Jha et al. for full details [106].

Mapping queries for replacement. We extend the location mechanism to map

between the variables used in a candidate repair snippet and those available in the

buggy context. We first describe how mapping works for replacement queries, and

then the di�erences required for insertion. We define a set of locations as:

L = {lx|x œ V̨c fi V̨s}

The query must constrain locations so that a satisfying assignment tells SOSRepair

how to suitably rename variables in S such that a patch compiles and enforces desired

behavior. The variable mapping must be valid: Each variable in S must uniquely

map to some variable in C (but not vice versa; not all context snippet variables need

map to a repair snippet variable). The Âmap constraints therefore define an injective

mapping from V̨s to V̨c:

Âmap :=
1 fi

xœV̨cfiV̨s

1 Æ lx Æ |V̨c|
2

· distinct(L, V̨c) · distinct(L, V̨s)

distinct(L, V̨ ) :=
fi

x,yœV̨ ,x ”©y

lx ”= ly

This exposition ignores variable types for simplicity; in practice, we encode them

such that matched variables have the same types via constraints on valid locations.

Next, Âconn establishes the connection between location values and variable values as

well as between input and output variables X̨s, R̨s and their freshly-renamed versions in
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Xin and Xout across all covering test executions t œ Tp fiTn. This is important because

although the introduced variables eliminate the problem of trivially unsatisfiable

constraints over variables used as both inputs and outputs, naive constraints over the

fresh variables — e.g., (lenin
1 = 10) · (lenout

1 = 15) — are instead trivially satisfiable.

Thus:
Âconn := Âout · Âin

Âout :=
fi

xœXC
out ,yœXS

out

lx = ly =∆

1 |TpfiTn|fi

t=1
x

t
in = y

t
in · x

t
out = y

t
out

2

Âin :=
fi

xœXC
in ,yœXS

in

lx = ly =∆
1 |TpfiTn|fi

t=1
x

t
in = y

t
in

2

Where X
C
in and X

S
in refer to the variables in the context and repair snippet

respectively and xin refers to the fresh renamed version of variable x, stored in Xin

(and similarly for output variables).

Insertion. Instead of drawing V̨c from the replacement region (a heuristic design

choice to enable scalability), insertion queries define V̨c as the set of local variables

live after the candidate insertion point. They otherwise are encoded as above.

C.2.4.2 Functionality component

„func uses the path constraints describing the candidate repair snippet S such that

the query tests whether S satisfies the constraints on the desired behavior described

by the profile constraints P . The only complexity is that we must copy the symbolic

formula to query over multiple simultaneous test executions. Let Ïc be the path

constraints from symbolic execution. Ïc(i) is a copy of Ïc where all variables xin œ X
S
in

and xout œ X
S
out are syntactically replaced with indexed versions of themselves (e.g.,

x
i
in for xin). Then:

„func :=
|TpfiTn|fi

i=1
Ïc(i)

„func is the same for replacement and insertion queries.
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C.2.4.3 Patch construction and validation

The repair query conjoins the above-described constraints:

Âmap · Âconn · „func · P

Given S and C for which a satisfiable repair query has been constructed, the satisfying

model assigns values to locations in L and defines a valid mapping between variables

in the original snippets S and C (rather than their transformed versions). This

mapping is used to rename variables in S and integrate it into the buggy context.

For replacement edits, the renamed snippet replaces the buggy region wholesale; for

insertions, the renamed snippet is inserted immediately before the buggy region. It

is possible for the semantic search to return satisfying snippets that do not repair

the bug when executed, if either the snippet fails to address the bug correctly, or if

the symbolic execution is too imprecise in its description of snippet behavior. Thus,

SOSRepair validates patches by running the patched program on the provided test

cases, reporting the patch as a fix if all test cases pass.

C.2.5 Patch iteration

Traversal. SOSRepair iterates over candidate buggy regions and candidate repair

strategies, dynamically testing all snippets whose repair query is satisfiable. SOSRepair

is parameterized by a fault localization strategy, which returns a weighted list of

candidate buggy lines. Such strategies can be imprecise, especially in the absence

of high-coverage test suites [258]. To avoid getting stuck trying many patches in

the wrong location, SOSRepair traverses candidate buggy regions using breadth-

first search. First, it tries deletion at every region. Deletion is necessary to repair

certain defects [318], though it can also lead to low-quality patches [227]. However,

simply disallowing deletion does not solve the quality problem: even repair techniques

that do not formally support deletion can do so by synthesizing tautological if
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1: procedure refineProfile(program, Tests, Xout)
2: constraints Ω ÿ
3: for all t œ Tests do Û all tests t œ Tests failed
4: c Ω ¬( w

xœXout

x
t = valOut(t, x, program))

5: constraints Ω constraints fi c

6: return constraints

Figure C.3: Incremental, counter-example profile refinement. refineProfile receives
a program with the candidate snippet incorporated, a set of Tests that fail on
program, and the set of output variables Xout. It computes new constraints to refine
the profile by excluding the observed behavior. valOut(t, xi, program) returns the
output value of variable xi when test t is executed on program.

conditions [175,190]. Similarly, SOSRepair can replace a buggy region with a snippet

with no e�ect. Because patches that e�ectively delete are likely less maintainable

and straightforward than those that simply delete, if a patch deletes functionality,

it is better to do so explicitly. Thus, SOSRepair tries deleting the candidate buggy

region first by replacing it with an empty candidate snippet whose only constraint is

TRUE. We envision future improvements to SOSRepair that can create and compare

multiple patches per region, preferring those that maintain the most functionality.

Next, SOSRepair attempts to replace regions with identified fix code, in order of

ranked suspiciousness; finally, SOSRepair tries to repair regions by inserting code

immediately before them. We favor replacement over insertion because the queries

are more constrained. SOSRepair can be configured with various database traversal

strategies, such as trying snippets from the same file as the buggy region first, as well

as trying up to N returned matching snippets per edit type per region. SOSRepair

then cycles through buggy regions and matched snippets N-wise, before moving to

the next edit type.

Profile refinement. Initially-passing test cases partially specify the expected behavior

of a buggy code region, thus constraining which candidate snippets quality to be

returned by the search. Initially-failing test cases only specify what the behavior

should not be (e.g., “given input 2, the output should not be 4”). This is significantly
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less useful in distinguishing between candidate snippets. Previous work in semantic

search-based repair disregarded the negative example behavior in generating dynamic

profiles [122]. Such an approach might be suitable for small programs with high-

coverage test suites. Unfortunately, in real-world programs, buggy regions may only

be executed by failing test cases [258]. We observed this behavior in our evaluation

on real-world defects.

To address this problem, other tools, such as Angelix [190], require manual

specification of the correct values of variables for negative test cases. By contrast, we

address this problem in SOSRepair via a novel incremental, counter-example-guided

profile refinement for candidate regions that do not have passing executions. Given an

initial profile derived from failing test cases (e.g., “given input 2, the output should

not be 4”), SOSRepair tries a single candidate replacement snippet S. If unsuccessful,

SOSRepair adds the newly discovered unacceptable behavior to the profile (e.g., “given

input 2, the output should not be 6”). Figure C.3 details the algorithm for this

refinement process. Whenever SOSRepair tries a snippet and observes that all tests

fail, it adds one new negative-behavior constraint to the constraint profile for each

failing test. Each constraint is the negation of the observed behavior. For example,

if SOSRepair observes that test t fails, it computes its output variable values (e.g.,

x1 = 3, x2 = 4) and adds the constraint ¬ ((xt
1 = 3) · (xt

2 = 4)) to the profile, which

specifies that the incorrect observed behavior should not take place. Thus, SOSRepair

gradually builds a profile based on negative tests without requiring manual e�ort.

SOSRepair continues on trying replacement snippets with queries that are iteratively

improved throughout the repair process. Although this is slower than starting with

passing test cases, it allows SOSRepair to patch more defects.
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C.3 The SOSRepair Implementation
We implement SOSRepair using KLEE [33], Z3 [55], and clang [44] infrastructure;

the latter provides parsing, name and type resolution, and rewriting facilities, among

others. Section C.3.1 describes the details of our implementation. Section C.3.2

summarizes the steps we took to release our implementation and data, and to make

our experiments reproducible.

C.3.1 SOSRepair implementation design choices

In implementing SOSRepair, we made a series of design decisions, which we now

describe.

Snippet database. SOSRepair uses the symbolic execution engine in KLEE [33] to

statically encode snippets. SOSRepair uses KLEE’s built-in support for loops, using a

two-second timeout; KLEE iterates over the loop as many times as possible in the

allocated time. We encode user-defined struct types by treating them as arrays of

bytes (as KLEE does). SOSRepair further inherits KLEE’s built-in mechanisms for

handling internal (GNU C) function calls. As KLEE does not symbolically execute

external (non GNU C) function calls, SOSRepair makes no assumptions about such

functions’ side-e�ects. SOSRepair instead makes a new symbolic variable for each

of the arguments and output, which frees these variables from previously generated

constraints. These features substantially expand the expressive power of the considered

repair code over previous semantic search-based repair. We do sacrifice soundness

in the interest of expressiveness by casting floating point variables to integers (this

is acceptable because unsoundness can be caught in testing). This still precludes

the encoding of snippets that include floating point constants, but future SOSRepair

versions can take advantage of KLEE’s recently added floating point support.

Overall, we encode snippets by embedding them in a small function, called from

main, and defining their input variables as symbolic (using klee_make_symbolic). We
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use KLEE o�-the-shelf to generate constraints for the snippet-wrapping function,

using KLEE’s renaming facilities to transform F into Ft for snippet encoding. KLEE

generates constraints for nearly all compilable snippets. Exceptions are very rare, e.g.,

KLEE will not generate constraints for code containing function pointers. However,

KLEE will sometimes conservatively summarize snippets with single TRUE constraints

in cases where it can technically reason about code but is still insu�ciently expressive

to fully capture its semantics.

Console output. Real-world programs often print meaningful output. Thus,

modeling console output in semantic search increases SOSRepair applicability. We

thus define a symbolic character array to represent console output in candidate repair

snippets. Because symbolic arrays must be of known size, we only model the first 20

characters of output. We transform calls to printf and fprintf to call sprintf with

the same arguments. KLEE handles these standard functions natively. We track

console output in the profile by logging the start and end of the buggy candidate

region, considering anything printed between the log statements as meaningful.

Profile construction. For consistency with prior work [122], we use Tarantula [117]

to rank suspicious source lines. We leave the exploration of other fault localization

mechanisms to future work. To focus our study on SOSRepair e�cacy (rather than

e�ciency, an orthogonal concern), we assume the provision of one buggy method

to consider for repair, and then apply SBFL to rank lines in the method. Given

such a ranked list, SOSRepair expands the identified lines to surrounding regions of

3–7 lines of code, as in the snippet encoding step. The size of the region is selected

by conducting an initial experiment on small programs presented in Section C.4.3.

SOSRepair attempts to repair each corresponding buggy region in rank order, skipping

lines that have been subsumed into previously-identified and attempted buggy regions.

Queries and iteration. Z3 [55] can natively handle integers, booleans, reals, bit

vectors, and several other common data types, such as arrays and pairs. To determine
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whether a candidate struct type is in scope, we match struct names syntactically.

For our experiments, we construct snippet databases from the rest of the program

under repair, pre-fix, which supports struct matching. Additionally, programs are

locally redundant [271], and developers are more often right than not [74], and thus

we hypothesize that a defect may be fixable via code elsewhere in the same program.

However, this may be unnecessarily restrictive for more broadly-constructed databases.

We leave a more flexible matching of struct types to future work. SOSRepair is

configured by default to try repair snippets from the same file as a buggy region first,

for all candidate considered regions; then the same module; then the same project.

C.3.2 Open-source release and reproducibility

To support the reproduction of our results and help researchers build on our

work, we publicly release our implementation: https://github.com/squaresLab/

SOSRepair. We also release a replication package that includes all patches our

techniques found on the ManyBugs benchmark and the necessary scripts to rerun the

experiment discussed in Section C.4.4, and all independently generated tests discussed

in Section C.4.1.2:

https://github.com/squaresLab/SOSRepair-Replication-Package.

Our implementation includes Docker containers and scripts for reproducing the

evaluation results described next in Section C.4. The containers and scripts use

BugZoo [270], a decentralized platform for reproducing and interacting with software

bugs. These scripts both generate snippet databases (which our release excludes due

to size) and execute SOSRepair.

SOSRepair uses randomness to make two choices during its execution: the order in

which to consider equally suspicious regions returned by SOSRepair’s fault localization,

and the order in which to consider potential snippets returned by the SMT solver that

satisfy all the query constraints. SOSRepair’s configuration includes a random seed
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that controls this randomness, making executions deterministic. However, there remain

two sources of nondeterminism that SOSRepair cannot control. First, SOSRepair sets

a time limit on KLEE’s execution on each code snippet (recall Section C.3.1). Due

to CPU load and other factors, in each invocation, KLEE may be able to execute

the code a di�erent number of times in the time limit, and thus generate di�erent

constraints. Second, if a code snippet contains uninitialized variables, those variables’

values depend on the memory state. Because memory state may di�er between

executions, SOSRepair may generate di�erent profiles on di�erent executions. As a

result of these two sources of nondeterminism, SOSRepair’s results may vary between

executions. However, in our experiments, we did not observe this nondeterminism

a�ect SOSRepair’s ability to find a patch, only its search space and execution time.

C.4 Evaluation
This section evaluates SOSRepair, answering several research questions. The

nature of each research question informs the appropriate dataset used in its answering,

as we describe in the context of our experimental methodology (Section C.4.1). We

begin by using IntroClass [149], a large dataset of small, well-tested programs, to

conduct controlled evaluations of:

• Comparison with prior work: How does SOSRepair perform when compared to

SearchRepair [122], the prior semantic-based repair approach (Section C.4.2)?

• Tuning: What granularity level is best for the purposes of finding high-quality

repairs (Section C.4.3)?

Next, in Section C.4.4, we address our central experimental concern by evaluating

SOSRepair on real-world defects taken from the ManyBugs benchmark [149], by

addressing:
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• Expressiveness: How expressive and applicable is SOSRepair in terms of the

number and uniqueness of defects it can repair?

• Quality: What is the quality and e�ectiveness of patches produced by SOSRepair?

• The role of fault localization: What are the limitations and bottlenecks of

SOSRepair’s performance?

Section C.4.5 discusses informative real-world example patches produced by

SOSRepair.

Finally, we isolate and evaluate two key SOSRepair features:

• Performance improvements: How much performance improvements does the

novel query encoding approach of SOSRepair a�ord (Section C.4.6)?

• Profile refinement: How much is the search space reduced by the negative profile

refinement approach (Section C.4.7)?

Finally, we discuss threats to the validity of our experiments and SOSRepair’s

limitations in Section C.4.8.

C.4.1 Methodology

We use two datasets to answer the research questions outlined above. SOSRepair

aims to scale semantic search repair to defects in large, real-world programs. However,

such programs are not suitable for most controlled large-scaled evaluations, necessary

for, e.g., feature tuning. Additionally, real-world programs preclude a comparison to

previous work that does not scale to handle them. For such questions, we consider

the IntroClass benchmark [149] (Section C.4.1.1). However, where possible, and

particularly in our core experiments, we evaluate SOSRepair on defects from large,

real-world programs taken from the ManyBugs [149] benchmark (Section C.4.1.2).

We run all experiments on a server running Ubuntu 16.04 LTS, consisting of 16

Intel(R) Xeon(R) 2.30 GHz CPU E5-2699 v3s processors and 64 GB RAM.
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C.4.1.1 Small, well-tested programs

The IntroClass benchmark [149] consists of 998 small defective C programs

(maximum 25 lines of code) with multiple test suites, intended for evaluating automatic

program repair tools. Because the programs are small, it is computationally feasible

to run SOSRepair on all defects multiple times, for experiments that require several

rounds of execution on the whole benchmark. Since our main focus is applicability to

real-world defects, we use the IntroClass benchmark for tuning experiments, and to

compare with prior work that cannot scale to real-world defects.

Defects. The IntroClass benchmark consists of 998 defects from solutions submitted

by undergraduate students to six small C programming assignments in an introductory

C programming course. Each problem class (assignment) is associated with two

independent test suites: One that is written by the instructor of the course (the black-

box test suite), and one that is automatically generated by KLEE [33], a symbolic

execution tool that automatically generates tests (the white-box test suite). Figure C.6

shows the number of defects in each program assignment group that fail at least one

test case from the black-box test suite. The total number of such defects is 778.

Patch quality. For all repair experiments on IntroClass, we provide the black-box

tests to the repair technique to guide the search for a patch. We then use the white-box

test suite to measure patch quality, in terms of the percent of held-out tests the patched

program passes (higher is better).

C.4.1.2 Large, real-world programs

The ManyBugs [149] benchmark consists of 185 defects taken from nine large,

open-source C projects, commonly used to evaluate automatic program repair tools

(e.g., [177,190,224,282]).

Defects. The first four columns of Figure 3.2 show the project, size of source

code, number of developer-written tests, and the number of defective versions of
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program kLOC tests defects patched
gmp 145 146 2 0
gzip 491 12 4 0
libtiff 77 78 9 8
lighttpd 62 295 5 1
php 1,099 8,471 39 9
python 407 355 4 2
wireshark 2,814 63 2 2
total 5,095 9,420 65 22

Figure C.4: Subject programs and defects in our study, and the number of each for
which SOSRepair generates a patch.

snippet size # of functions called constraints time to build
program snippets (# characters) variables in the snippet per snippet the DB (h)

mean median mean median mean median mean median
gmp 6,003 95.4 88 4.0 4 0.9 0 32.7 3 26.3
gzip 2,028 103.2 93 2.6 2 1.1 1 25.4 2 2.3
libtiff 3,010 114.8 108 3.0 3 1.2 1 29.9 2 5.8
lighttpd 797 90.6 82 2.0 2 1.4 1 24.8 2 2.3
php 22,423 113.5 100 2.7 2 1.4 1 19.8 2 51.6
python 20,960 116.1 108 2.4 2 1.0 1 26.9 1 41.9
wireshark 90,418 157.7 145 4.3 4 1.6 1 6.4 2 115.1

Figure C.5: The code snippet database SOSRepair generates for each of the
ManyBugs programs. SOSRepair generated a total of 145,639 snippets, with means
of 140 characters, 4 variables, 1 function call, and 13 SMT constraints. On average,
SOSRepair builds the database in 35 hours, using a single thread.

the ManyBugs programs we use to evaluate SOSRepair. Prior work [195] argues

for explicitly defining defect classes (the types of defects that can be fixed by a

given repair method) while evaluating repair tools, to allow for fair comparison of

tools on comparable classes. For instance, Angelix [190] cannot fix the defects that

require adding a new statement or variable, and therefore all defects that require

such modification are excluded from its defect class. For SOSRepair, we define a

more general defect class that includes all the defects that can be fixed by editing

one or more consecutive lines of code in one location, and are supported by BugZoo
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(version 2.1.29) [270]. As mentioned in Section C.3.2, we use Docker containers

managed by BugZoo to run experiments in a reproducible fashion. BugZoo supports

ManyBugs scenarios that can be configured on a modern, 64-bit Linux system; we

therefore exclude 18 defects from valgrind and fbc, which require the 32-bit Fedora

13 virtual machine image originally released with ManyBugs. Further, automatically

fixing defects that require editing multiple files or multiple locations within a file is

beyond SOSRepair’s current capabilities. We therefore limit the scope of SOSRepair’s

applicability only to the defects that require developers to edit one or more consecutive

lines of code in a single location. In theory, SOSRepair can be used to find multi-

location patches, but considering multiple locations increases the search space and is

beyond the scope of this paper.

SOSRepair’s defect class includes 65 of the 185 ManyBugs defects. We use method-

level fault localization by limiting SOSRepair’s fault localization to the method edited

by the developer’s patch, which is sometimes hundreds of lines long. We construct

a single snippet database (recall Section C.3) per project from the oldest version of

the buggy code among all the considered defects. Therefore, the snippet database

contains none of the developer-written patches.

Figure C.5 shows, for each ManyBugs program, the mean and median snippet size,

the number of variables in code snippets, the number of functions called within the

snippets, the number of constraints for the code snippets stored in the database, and

the time spent on building the database. For each program, SOSRepair generates

thousands of snippets, and for each snippet, on average, KLEE generates tens of

SMT constraints. SOSRepair generated a total of 145,639 snippets, with means of

140 characters, 4 variables, 1 function call, and 13 SMT constraints. The database

generation is SOSRepair’s most time-consuming step, which only needs to happen

once per project. The actual time to generate the database varies based on the size of

the project. It takes from 2.3 hours for gzip up to 115 hours for wireshark, which is
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the largest program in the ManyBugs benchmark. On average, it takes 8.2 seconds

to generate each snippet. However, we collected these numbers using a single thread.

This step is easily parallelizable, representing a significant performance opportunity in

generating the database. We set the snippet granularity to 3–7 lines of code, following

the results of our granularity experiments (Section C.4.3) and previous work on code

redundancy [84].

Patch quality. A key concern in automated program repair research is the quality

of the produced repairs [227,252]. One mechanism for objectively evaluating patch

quality is via independent test suites, held out from patch generation. The defects

in ManyBugs are released with developer-produced test suites of varying quality,

often with low coverage of modified methods. Therefore, we construct additional

held-out test suites to evaluate the quality of generated patches. For a given defect,

we automatically generate unit tests for all methods modified by either the project’s

developer or by at least one of the automated repair techniques in our evaluation. We

do this by constructing small driver programs that invoke the modified methods:

• Methods implemented as part of an extension or module can be directly invoked

from a driver’s main function (e.g., the substr_compare method of php string

module.)

• Methods implemented within internal libraries are invoked indirectly by using

other functionality. For example, the method do_inheritance_check_on_method of

zend_compile library in php is invoked by creating and executing php programs

that implement inheritance. For such methods, the driver’s main function sets

the values of requisite global variables and then calls the functionality that

invokes the desired method.

We automatically generate random test inputs for the driver programs that then

invoke modified methods. We generate inputs until either the tests fully cover the target
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method or until adding new test inputs no longer significantly increases statement

coverage. For four php and two lighttpd scenarios for which randomly generated

test inputs were unable to achieve high coverage, we manually added new tests to

that e�ect. For libtiff methods requiring ti� images as input, we use 7,214 ti�

images randomly generated and released by the AFL fuzz tester [4]. We use the

developer-patched behavior to construct test oracles, recording logged, printed, and

returned values and exit codes as ground truth behavior. If the developer-patched

program crashes on an input, we treat the crash as the expected behavior.

We release these generated test suites (along with all source code, data, and

experimental results) to support future evaluations of automated repair quality on

ManyBugs. All materials may be downloaded from

https://github.com/squaresLab/SOSRepair-Replication-Package. This release

is the first set of independently-generated quality-evaluation test suites for ManyBugs.

Baseline approaches. We compare to three previous repair techniques that have been

evaluated on (subsets) of ManyBugs, relying on their public data releases. Angelix [190]

is a state-of-the-art semantic program repair approach; Prophet [177] is a more recent

heuristic technique that instantiates templated repairs [175], informed by machine

learning; and GenProg [150] uses genetic programming to combine statement-level

program changes in a repair search. GenProg has been evaluated on all 185 ManyBugs

defects; Angelix, on 82 of the 185 defects; Prophet, on 105 of 185. Of the 65 defects

that satisfy SOSRepair’s defect class, GenProg is evaluated on all 65 defects, Angelix

on 30 defects, and Prophet on 39 defects.

C.4.2 Comparison to SearchRepair

To substantiate SOSRepair’s improvement over previous work in semantic search-

based repair, we empirically compare SOSRepair’s performance with SearchRepair [122].

Because SearchRepair does not scale to the ManyBugs programs, we conduct this
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experiment on the IntroClass dataset (Section C.4.1.1). We use the black-box tests

to guide the search for repair, and the white-box tests to evaluate the quality of the

produced repair.

Figure C.6 shows the number of defects patched by each technique. SOSRepair

patches more than twice as many defects as SearchRepair (346 versus 150, out of

the 778 total repairs attempted). This di�erence is statistically significant based on

Fisher’s exact test (p < 10≠15). The bottom row shows the mean percent of the

associated held-out test suite passed by each patched program. Note that SOSRepair’s

average patch quality is slightly lower than SearchRepair’s (91.5% versus 97.3%).

However, 239 of the 346 total SOSRepair patches pass 100% of the held-out tests,

constituting substantially more very high-quality patches than SearchRepair finds

total (150). Overall, however, semantic search-based patch quality is quite high,

especially as compared to patches produced by prior techniques as evaluated in the

prior work: AE [282] finds patches for 159 defects with average quality of 64.2%,

TrpAutoRepair [224] finds 247 patches with 72.1% quality, and GenProg [284] finds

287 patches with average quality of 68.7% [122]. Overall, SOSRepair outperforms

these prior techniques in expressive power (number of defects repaired, at 346 of 778),

and those patches are of measurably higher quality.

C.4.3 Snippet Granularity

Snippet granularity informs the size and preparation of the candidate snippet

database, as well as SOSRepair’s expressiveness. Low granularity snippets may

produce prohibitively large databases and influence patch quality. High granularity

(i.e., larger) snippets lower the available redundancy (previous work suggests that

the highest code redundancy is found in snippets of 1–7 lines of code [84]) and may

reduce the probability of finding fixes. Both for tuning purposes and to assess one

of our underlying hypotheses, we evaluate the e�ect of granularity on repair success
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problem class defects SearchRepair SOSRepair
checksum 29 0 3
digits 91 0 24
grade 226 2 37
median 168 68 87
smallest 155 73 120
syllables 109 4 75
total 778 150 346
mean quality 97.3% 91.5%

Figure C.6: Number of defects repaired by SearchRepair and SOSRepair in IntroClass
dataset. “Mean quality” denotes the mean percent of the associated held-out test
suite passed by each patched programs.

and patch quality by systematically altering the granularity level of both the code

snippets in the SOSRepair database and the buggy snippet to be repaired. Because

this requires a large number of runs on many defects to support statistically significant

results, and to reduce the confounds introduced by real-world programs, we conduct

this experiment on the IntroClass dataset, and use SOSRepair to try to repair all

defects in the dataset using granularity level configuration of 1–3 lines, 3–7 lines, and

6–9 lines of code.

Figure C.7 shows the number of produced patches, the number of those patches

that pass all the held-out tests, and the mean percent of held-out test cases that

the patches pass, by granularity of the snippets in the SOSRepair database. The

granularity of 3–7 lines of code produces the most patches (346 versus 188 and 211

with other granularities), and the most patches that pass all the held-out tests (239

versus 120 and 125 with other granularities). Fisher’s exact test confirms that these

di�erences are statistically significant (all p < 10≠70).

While the number of patches that pass all defects is significantly higher for the 3–7

granularity, and the fraction of patches that pass all held-out tests is higher for that
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patches passing mean % of
patches all held-out tests held-out tests passing

program 1–3 3–7 6–9 1–3 3–7 6–9 1–3 3–7 6–9
checksum 0 3 8 0 3 8 — 100.0% 100.0%
digits 26 24 17 14 9 5 91.5% 89.5% 92.9%
grade 1 37 2 1 37 2 100.0% 100.0% 100.0%
median 14 87 52 1 63 44 84.5% 95.0% 95.5%
smallest 60 120 132 27 57 54 80.4% 82.2% 78.5%
syllables 87 75 17 77 70 12 97.0% 98.6% 97.0%
Total 188 346 211 120 239 125

Figure C.7: A comparison of applying SOSRepair to IntroClass defects with three
di�erent levels of granularity: 1–3, 3–7, and 6–9 lines of code.

granularity (69.1% for 3–7, 63.8% for 1–3, and 59.2% for 6–9), the mean patch quality

is similar for all the three levels of granularity. We hypothesize that this observation

may be a side-e�ect of the small size of the programs in the IntroClass benchmark

and the high redundancy induced by many defective programs in that benchmark

attempting to satisfy the same specification. We suspect this observation will not

extend to benchmarks with more diversity and program complexity, and thus make

no claims about the e�ect of granularity on average quality.

We configure our database in subsequent experiments to use snippets of 3–7 lines,

as these results suggest that doing so may provide a benefit in terms of expressive

power. The results of this study may not immediately extend to large, real-world

programs; we leave further studies exploring repair granularity for large programs to

future work.

C.4.4 Repair of large, real-world programs

A key contribution of our work is a technique for semantic search-based repair

that scales to real-world programs; we therefore evaluate SOSRepair on defects from

ManyBugs that fall into its defect class (as described in Section C.4.1.2). The
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“patched” column in Figure C.4 summarizes SOSRepair’s ability to generate patches.

Figure 3.5 presents repair e�ectiveness and quality for all considered defects in the

class, comparing them with patches produced by previous evaluations of Angelix,

Prophet, and GenProg. Figure 3.5 enumerates defects for readability and maps each

“program ID” to a revision pair of the defect and developer-written repair.

C.4.4.1 Repair expressiveness and applicability

SOSRepair patches 22 of the 65 defects that involved modifying consecutive lines

by the developer to fix those defects. The Angelix, Prophet, and GenProg columns

in Figure 3.5 indicate which approaches succeed on patching those defects (8 for not

patched, and NA for not attempted, corresponding to defects outside the defined defect

class for a technique). There are 5 defects that all four techniques patch. SOSRepair is

the only technique that repaired libtiff-4. SOSRepair produces patches for 3 defects

that Angelix cannot patch, 5 defects that Prophet cannot patch, and 6 defects that

GenProg cannot patch. These observations corroborate results from prior work on

small programs, which showed that semantic search-based repair could target and

repair defects that other techniques cannot [122].

Even though e�ciency is not a focus of SOSRepair’s design, we measured the

amount of time required to generate a patch with SOSRepair. On average, it took

SOSRepair 5.25 hours to generate patches reported in Figure 3.5. E�ciency is separate

from, and secondary to the ability to produce patches and can be improved by taking

advantage of parallelism and multithreading in SOSRepair’s implementation. On

average, 57.6% of the snippets in the database (satisfying type constraints) matched

the SMT query described in Section C.2.4. Of the repaired defects, seven involve

insertion, seven involve replacement, and eight involve deletion.
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C.4.4.2 Repair e�ectiveness and quality

Figure 3.5 shows the percent of evaluation tests passed by the SOSRepair, Angelix,

Prophet, and GenProg patches. “Coverage” is the average statement-level coverage of

the generated tests on the methods modified by either the developer or by at least one

automated repair technique in our evaluation. SOSRepair produces more patches (9,

41%) that pass all independent tests than Angelix (4), Prophet (5) and, GenProg (4).

For the defects patched in-common by SOSRepair and other techniques, Angelix

and SOSRepair patch 9 of the same defects; both SOSRepair and Angelix produce

4 patches that pass all evaluation tests on this set. Prophet and SOSRepair patch

11 of the same defects; both SOSRepair and Prophet produce 5 patches that pass all

evaluation tests on this set. GenProg and SOSRepair patch 16 of the same defects;

4 out of these 16 GenProg patches and 8 SOSRepair patches pass all evaluation

tests. Thus, SOSRepair produces more patches that pass all independent tests than

GenProg, and as many such patches as Angelix and Prophet. This suggests that

semantic code search is a promising approach to generate high-quality repairs for real

defects, and that it has potential to repair defects that are outside the scope of other,

complementary repair techniques.

C.4.4.3 Improving patch quality through fault localization

Although these baseline results are promising, most of the patches previous semantic

search-based repair produced on small program defects passed all held-out tests [122].

We investigated why SOSRepair patch quality is lower than this high bar. We

hypothesized that two possible reasons are that real-world buggy programs do not

contain code that can express the needed patch, or that fault localization imprecision

hampers SOSRepair success. Encouragingly, anecdotally, we found that many buggy

programs do contain code that can express the developer patch. However, fault

localization is the more likely culprit. For example, for gmp-1, fault localization reports
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59 lines as equally-highly suspicious, including the line modified by the developer, but

as part of its breadth-first strategy, SOSRepair only tries 10 of these 59.

We further observed that in some cases, more than one mapping between variables

satisfies the query, but only one results in a successful patch. Since trying all possible

mappings is not scalable, SOSRepair only tries the first mapping selected by the

solver. Including more variables in the mapping query increases the number of patch

possibilities, but also the complexity of the query.

We created SOSRepairü, a semi-automated version of SOSRepair that can take

hints from the developer regarding fault location and variables of interest. SOSRepairü

di�ers from SOSRepair in the following two ways:

1. SOSRepair uses spectrum-based fault localization [117] to identify candidate

buggy code regions. SOSRepairü uses a manually-specified candidate buggy

code region. In our experiments, SOSRepairü uses the location of the code

the developer modified to patch the defect as its candidate buggy code region,

simulating the developer suggesting where the repair technique should try to

repair a defect.

2. SOSRepair considers all live variables after the insertion line in its query. While

multiple mappings may exist that satisfy the constraints, not all such mappings

may pass all the tests. SOSRepair uses the one mapping the SMT solver returns.

SOSRepairü can be told which variables not to consider, simulating the developer

suggesting to the repair technique which variables likely matter for a particular

defect. A smaller set of variables of interest increases the chance that the

mapping the SMT solver returns and SOSRepairü tries is a correct one. We

found that for 6 defects (gzip-1, libtiff-4, libtiff-8, php-10, php-12, and gmp-1),

SOSRepair failed to produce a patch because it attempted an incorrect mapping.

For these 6 defects, we instructed SOSRepairü to reduce the variables of interest

to just those variables used in the developer-written patch.
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On our benchmark, SOSRepairü patches 23 defects and 16 (70%) of them pass all

independent tests. While it is unsound to compare SOSRepairü to prior, fully-

automated techniques, our conclusions are drawn only from the comparison to

SOSRepair; the quality results for the SOSRepairü-patched defects for the prior

tools in Figure 3.5 are only for reference.

Our experiments show that precise fault localization allows SOSRepairü to patch

7 additional defects SOSRepair could not (bottom of Figure 3.5), and to improve

the quality of 3 of SOSRepair’s patches. Overall, 9 new patches pass 100% of the

independent tests.

SOSRepair and SOSRepairü sometimes attempt to patch defects at di�erent

locations: SOSRepair using spectrum-based fault localization and SOSRepairü at the

location where the developer patched the defect. For 6 defects, SOSRepair finds a

patch, but SOSRepairü does not. Note that defects can often be patched at multiple

locations, and developers do not always agree on a single location to patch a particular

defect [23]. Thus, the localization hint SOSRepairü receives is a heuristic, and may

be neither unique nor optimal. In each of these 6 cases, the patch SOSRepair finds it

at an alternate location than where the developer patched the defect.

Because SOSRepair and SOSRepairü sometimes patch at di�erent locations, the

patches they produce sometimes di�er, and accordingly, so does the quality of those

patches. In our experiments, in all but one case (php-5) SOSRepairü patches were at

least as high, or higher quality than SOSRepair patches for the same defect.

We conclude that research advancements that produce more accurate FL or elicit

guidance from developers in a lightweight manner are likely to dramatically improve

SOSRepair performance. Additionally, input (or heuristics) on which variables are

likely related to the buggy functionality (and are thus appropriate to consider) could

limit the search to a smaller but more expressive domain, further improving SOSRepair.
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C.4.5 Example patches

In this section, we present several SOSRepair patches produced on the ManyBugs

defects (Section C.4.4), comparing them to developer patches and those produced

by other tools. Our goal is not to be comprehensive, but rather to present patches

highlighting various design decisions.

Example 1: python-1. The python interpreter at revision #69223 fails a test case

concerning a variable that should never be negative. The developer patch is as follows:
}
+ if ( timeout < 0) {
+ PyErr_SetString ( PyExc_ValueError ,
+ " timeout must be non - negative ");
+ return NULL;
+ }
seconds = (long) timeout ;

Fault localization correctly identifies the developer’s insertion point for repair. Several

snippets in the python project perform similar functionality to the fix, including the

following, from the IO module:
if (n < 0) {
PyErr_SetString ( PyExc_ValueError ,
" invalid key number ");
return NULL;
}

SOSRepair correctly maps variable n to timeout and inserts the code to repair the

defect. Although the error message is not identical, the functionality is, and suitable

to satisfy the developer tests. However, unlike the developer tests, the generated

tests do consider the error message, explaining the patch’s relatively low success on

the held-out tests. Synthesizing good error messages is an open problem; such a

semantically meaningful patch could still assist developers in more quickly addressing

the underlying defect [281].

GenProg did not patch this defect; Angelix was not attempted on it, as the defect

is outside its defect class. The Prophet patch modifies an if-check elsewhere in the

code to include a tautological condition:
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- if ((! rv)) {
+ if ((! rv) && !(1)) {
if ( set_add_entry (( PySetObject *) ...

This demonstrates how techniques that do not delete directly can still do so, motivating

our explicit inclusion of deletion.

Example 2: php-2. We demonstrate the utility of explicit deletion with our second

example, from php-2 (recall Figure 3.5). At the buggy revision, php fails two test cases

because of an incorrect value modification in its string module. Both the developer

and SOSRepair delete the undesired functionality:
- if (len > s1_len - offset ) {
- len = s1_len - offset ;
- }

Angelix and Prophet correctly eliminate the same functionality by modifying the if

condition such that it always evaluates to false. GenProg inserts a return; statement

in a di�erent method.

Example 3: php-1. Finally, we show a SOSRepair patch that captures a desired

semantic e�ect while syntactically di�erent from the human-written repair. Revision

74343ca506 of php-1 (recall Figure 3.5) fails 3 test cases due to an incorrect condition

around a loop break, which the developer modifies:
- if ( just_read < toread ) {
+ if ( just_read == 0) {
break ;
}

This defect inspired our illustrative example (Section C.2.1). Using default settings,

SOSRepair first finds a patch identical to the developer fix. To illustrate, we present

a di�erent but similar fix that SOSRepair finds if run beyond the first repair:
if (( int) box_length <= 0) {
break ;
}

SOSRepair maps box_length to just_read, and replaces the buggy code. In this code,

just_read is only ever greater than or equal to zero, such that this patch is acceptable.
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Figure C.8: The speedup of the new encoding approach over the previous approach
grows with query complexity.

Angelix and Prophet were not attempted on this defect; GenProg deletes other

functionality.

C.4.6 Query encoding performance

To answer our final two research questions, we isolate and evaluate two key novel

features of SOSRepair. First, this section evaluates the performance improvements

gained by SOSRepair’s novel query encoding approach. Second, Section C.4.7 evaluates

the e�ects of SOSRepair’s negative profile refinement approach on reducing the search

space.

In the repair search problem, query complexity is a function of the number of

test inputs through a region and the number of possible mappings between a buggy

region and the repair context. To understand the di�erences between SOSRepair’s

and the old approach’s encodings, consider a buggy snippet C with two input variables

a and b and a single output variable c. Suppose C is executed by two tests, t1 and

t2. And suppose S is a candidate repair snippet with two input variables x and y, a

single output variable z, and path constraints Ïc generated by the symbolic execution

engine. SOSRepair’s encoding uses location variables to discover a valid mapping

between variables a, b and x, y that satisfy Ïc constraints for both test cases t1 and

t2, with a single query (recall Section C.2.4.1). Meanwhile, the prior approach [122]
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traverses all possible mappings between variables (m1 : (a = x) · (b = y) · (c = z)

and m2 : (a = y) · (b = x) · (c = z)), and creates a query for every test case, for every

possible variable mapping. A satisfiable query implies its mapping is valid for that

particular test. For example, to show that mapping m1 is a valid mapping, two queries

are required (one for t1 and one for t2), and only if both are satisfiable is m1 considered

valid. The number of queries required for this approach grows exponentially in the

number of variables, as there is an exponential number of mappings (permutation) of

the variables. In our example, there are two possible mappings and two tests, so four

queries are required, unlike SOSRepair’s one.

To evaluate the performance impact of SOSRepair’s new encoding, we reimplement

the previous encoding approach [122]. We then compare SMT solver speed on the same

repair questions using each encoding. Running on two randomly-selected ManyBugs

defects, we measured the response time of the solver on more than 10,000 queries for

both versions of encoding techniques. Figure C.8 shows the speed up using the new

encoding as compared to the old encoding, as a function of query complexity (number

of tests times the number of variable permutations). The new encoding approach

delivers a significant speed up over the previous approach, and the speed up increases

linearly with query complexity (R2 = 0.982).

Looking at the two approaches individually, query time increases linearly with

query complexity (growing slowly slope-wise, but with a very high R
2 = 0.993) with

the previous encoding, and is significantly more variable with the new encoding and

does not appear linearly related to query complexity (R2 = 0.008). Overall, Figure C.8

shows the speed up achieved with the new encoding, and its linear increase as query

complexity grows.
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Figure C.9: Fraction of defects that can reject fractions of the search space (measured
via SMT queries) using only iteratively-constructed negative examples. Profile
refinement improves scalability by reducing the number of candidate snippets to
consider. Console output that relies on symbolic values a�ects this performance.

C.4.7 Profile refinement performance

The profile refinement approach (recall Section C.2.5) uses negative tests to

iteratively improve a query, reduce the number of attempted candidate snippets, and

repair defects without covering passing test cases. By default, SOSRepair uses the

automated, iterative query refinement on all defects whenever at least one faulty region

under consideration is covered only by negative test cases. In our experiments, for 2

ManyBugs defects (libtiff-8 and lighttpd-2), the patches SOSRepair and SOSRepairü

produce cover a region only covered by negative test cases, though SOSRepair and

SOSRepairü use the refinement process while attempting to patch other defects as

well.

In this experiment, we evaluate the e�ect of iterative profile refinement using

negative examples on the size of the considered SMT search space. We conduct

this experiment on a subset of the IntroClass dataset to control for the e�ect of

symbolic execution performance (which is highly variable on the real-world programs

in ManyBugs). We ran SOSRepair on all the defects in the median, smallest, and grade

programs, only using the initially failing test cases, with profile refinement, for repair.

For every buggy line selected by the fault localization and expanded into a region
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with granularity of 3–7 lines of code, we measured the number of candidate snippets

in the database that can be rejected by the SMT-solver (meaning the patch need not

be dynamically tested to be rejected, saving time) using only negative queries.

Figure C.9 shows the percent of the search space excluded after multiple iterations

for all buggy regions. For example, the first bar shows that on 68% of buggy regions

tried, fewer than 20% of candidate snippets were eliminated by the solver when only

negative tests are available, leaving more than 80% of possible candidates for dynamic

evaluation. We find that approach e�ectiveness depends on the nature of the defect

and snippets. In particular, the approach performs poorly when desired snippet

behavior involves console output that depends on a symbolic variable. This makes

sense: KLEE produces random output in the face of symbolic console output, and

such output is uninformative in specifying undesired behavior. Our results show that

on 14% of the defects (that are dependent on console output), more than 40% of

database snippets can be rejected using only the test cases that the program initially

failed. We also transformed the defects in the dataset to capture console output by

variable assignments, treating those variables as the output (rather than the console

printout); Figure C.9 also shows the results of running the same study on the modified

programs. More than 40% of the possible snippets can be eliminated for 66% of the

preprocessed programs. Overall, profile refinement can importantly eliminate large

amounts of the search space, but its success depends on the characteristics of the code

under repair.

C.4.8 Threats and limitations

Even though SOSRepair works on defects that require developers to modify a single

(potentially multi-line) location in the source code, we ensure that it generalizes to all

kinds of defects belonging to large unrelated projects by evaluating SOSRepair on a

subset of the ManyBugs benchmark [149], which consists of real-world, real-developer
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defects, and is used extensively by prior program repair evaluations [149, 177, 190, 199,

224,282]. The defects in our evaluation also cover the novel aspects of our approach,

e.g., defects with only negative profiles, console output, and various edit types.

Our work inherits KLEE’s limitations: SOSRepair cannot identify snippets that

KLEE cannot symbolically execute, impacting patch expressiveness nevertheless, the

modified buggy code can include KLEE-unsupported constructs, such as function

pointers. Note that this limitation of KLEE is orthogonal to our repair approach.

As KLEE improves in its handling of more complex code, so will SOSRepair. Our

discussion of other factors influencing SOSRepair success (recall Section C.4.4) suggests

directions for improving applicability and quality.

Our experiments limit the database of code snippets to those found in the same

project, based on observations of high within-project redundancy [14]. Anecdotally,

we have observed SOSRepair failing to produce a patch when using snippets only

from the same project, but succeeding with a correct patch when using snippets from

other projects. For example, for gzip-1 defect, the code in gzip lacks the necessary

snippet to produce a patch, but that snippet appears in the python code. Extending

SOSRepair to use snippets from other projects could potentially improve SOSRepair’s

e�ectiveness, but also creates new scalability challenges, including handling code

snippets that include custom-defined, project-specific types and structures.

Precisely assessing patch quality is an unsolved problem. As with other repair

techniques guided by tests, we use tests, a partial specification, to evaluate the quality

of SOSRepair’s patches. Held-out, independently generated or written test suites

represent the state-of-the-art of patch quality evaluation [252], along with manual

inspection [177,227]. Although developer patches (which we use as a functional oracle)

may contain bugs, in the absence of a better specification, evaluations such as ours

must rely on the developers.
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We conduct several experiments (e.g., Sections C.4.3 and C.4.7) on small programs

from the IntroClass benchmark [149], since these experiments require controlled,

large-scale executions of SOSRepair. Even though these experiments provide valuable

insights, their results may not immediately extend to large, real-world programs.

To mitigate the risk of errors in our implementation or setup, we publicly release

our code, results, and new test suites to support future evaluation, reproduction, and

extension. All materials are available at:

https://github.com/squaresLab/SOSRepair (SOSRepair’s implementation), and

https://github.com/squaresLab/SOSRepair-Replication-Package

(SOSRepair’s replication package).

C.5 Contributions
Automated program repair may reduce software production costs and improve

software quality, but only if it produces high-quality patches. While semantic code

search can produce high-quality patches [122], such an approach has never been

demonstrated on real-world programs. In this study, we have designed SOSRepair, a

novel approach to using semantic code search to repair programs, focusing on extending

expressiveness to that of real-world C programs and improving the search mechanism’s

scalability. We evaluate SOSRepair on 65 defects in large, real-world C programs, such

as php and python. SOSRepair produces patches for 22 (34%) of the defects, and 9 (41%)

of those patches pass 100% of independently-generated, held-out tests. SOSRepair

repairs a defect no prior techniques have, and produces higher-quality patches. In

a semi-automated approach that manually specifies the fault’s location, SOSRepair

patches 23 defects, of which 16 (70%) pass all independent tests. Our results suggest

semantic code search is a promising approach for automatically repairing real-world

defects.
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