
Automated Program
Repair & Verification

Coming up

• This Thursday, Beta presentations!

• Next week:

• Tuesday, Lecture on ethics in software engineering

• Thursday, no class — at home, online assignment/activity

• Graded — part of the participation grade (3% of overall class grade)

• Can optionally opt into sharing anonymized data with researchers

• Also Thursday, Beta due!

The Cost of Poor Software Quality in the US

Herb Krasner, The Cost of Poor Software Quality in the US: A 2020 Report. https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf

Software engineers spend 35-50% of their time
validating and debugging software.

Cost of debugging, testing, and verification accounts
for 50-75% of the software development budgets.

- Devon H. O'Dell, The Debugging Mindset. ACM QUEUE, http://doi.org/10.1145/3055301.3068754

Machine Learning in Software Engineering

https://github.com/features/copilot

A simpler problem: Automated program repair

test suite

source code patched program

test suite

A simpler problem: Automated program repair

test suite

source code

Automated
 Program

 Repair
patched program

test suite

• Tweak the program

• Check if tests pass

• If not, repeat

Automated
 Program

 Repair

test suite

source code

Program repair techniques Program repair techniques APR is a form of machine learning

• first, many techniques rely on ML to learn

• where to edit the code

• how to edit the code

• how to decide which patches are good

• second, the underlying problem is  
learning a function (program) using training data (tests)

 Automated
 Program

Repair
deep unicorn

• Evaluated 4 techniques

• GenProg

• Par

• TrpAutoRepair

• SimFix

• Measured patch quality

• Measured what affects  
patch quality

How well does APR work? Quality vs. quantity

When applied to real-world Java code,
APR produces patches for 10.6-19.0% of the defects

Quality vs. quantity

Potential problem: Overfitting
APR uses a set of tests to guide repair.
Tests are inherently partial.
No way APR can know if a patch captures
intended behavioral constraints.

Quality vs. quantity

test suite

source code

Automated
 Program

 Repair
patched program

test suite

ANOTHER test suite

Quality vs. quantity

Less than half (14-46%)
of the patches are correct

Does APR at least improve things a bit?

test suite

source code

Automated
 Program

 Repair
patched program

test suite

ANOTHER test suiteANOTHER test suite

Does APR at least improve things a bit? Cobra Effect

Smith, et al., Is the Cure Worse That the Disease?  
Overrating in Automated Program Repair, ESEC/FSE 2015.

Takeaway: Tests are an imperfect oracle, so
APR suffers, producing low-quality patches.

Can we find a domain with better oracles?

Formal verification allows proving software correct Interactive theorem provers for formal verification

Proof.
intros.
induction n.

Qed.

Proof script …

Formal verification comes with a built-in oracle:
The theorem prover

Industrial impact of theorem proving

Prohibitively difficult
Verified software requires a lot of time and a lot of proofs in proportion to code

Virtually all software that ships today is unverified.

Formal Certification of a Compiler Back-end

or: Programming a Compiler with a Proof Assistant

Xavier Leroy

INRIA Rocquencourt

Xavier.Leroy@inria.fr

Abstract

This paper reports on the development and formal certification
(proof of semantic preservation) of a compiler from Cminor (a C-
like imperative language) to PowerPC assembly code, using the
Coq proof assistant both for programming the compiler and for
proving its correctness. Such a certified compiler is useful in the
context of formal methods applied to the certification of critical
software: the certification of the compiler guarantees that the safety
properties proved on the source code hold for the executable com-
piled code as well.

Categories and Subject Descriptors F.3.1 [Logics and meanings
of programs]: Specifying and verifying and reasoning about
programs—Mechanical verification.; D.2.4 [Software engi-
neering]: Software/program verification—Correctness proofs,
formal methods, reliability; D.3.4 [Programming languages]:
Processors—Compilers, optimization

General Terms Languages, Reliability, Security, Verification.

Keywords Certified compilation, semantic preservation, program
proof, compiler transformations and optimizations, the Coq theo-
rem prover.

1. Introduction

Can you trust your compiler? Compilers are assumed to be seman-
tically transparent: the compiled code should behave as prescribed
by the semantics of the source program. Yet, compilers – and espe-
cially optimizing compilers – are complex programs that perform
complicated symbolic transformations. We all know horror stories
of bugs in compilers silently turning a correct program into an in-
correct executable.

For low-assurance software, validated only by testing, the im-
pact of compiler bugs is negligible: what is tested is the executable
code produced by the compiler; rigorous testing will expose errors
in the compiler along with errors in the source program. The picture
changes dramatically for critical, high-assurance software whose
certification at the highest levels requires the use of formal meth-
ods (model checking, program proof, etc). What is formally verified
using formal methods is almost universally the source code; bugs
in the compiler used to turn this verified source into an executable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c⃝ 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

can potentially invalidate all the guarantees so painfully obtained
using formal methods. In other terms, from a formal methods per-
spective, the compiler is a weak link between a source program
that has been formally verified and a hardware processor that, more
and more often, has also been formally verified. The safety-critical
software industry is aware of this issue and uses a variety of tech-
niques to alleviate it, such as conducting manual code reviews of
the generated assembly code after having turned all compiler opti-
mizations off. These techniques do not fully address the issue, and
are costly in terms of development time and program performance.

An obviously better approach is to apply formal methods to
the compiler itself in order to gain assurance that it preserves the
semantics of the source programs. Many different approaches
have been proposed and investigated, including on-paper and
on-machine proofs of semantic preservation, proof-carrying code,
credible compilation, translation validation, and type-preserving
compilers. (These approaches are compared in section 2.) For
the last two years, we have been working on the development of
a realistic, certified compiler. By certified, we mean a compiler
that is accompanied by a machine-checked proof of semantic
preservation. By realistic, we mean a compiler that compiles a
language commonly used for critical embedded software (a subset
of C) down to assembly code for a processor commonly used in
embedded systems (the PowerPC), and that generates reasonably
efficient code.

This paper reports on the completion of one half of this
program: the certification, using the Coq proof assistant [2], of
a lightly-optimizing back-end that generates PowerPC assembly
code from a simple imperative intermediate language called
Cminor. A front-end translating a subset of C to Cminor is being
developed and certified, and will be described in a forthcoming
paper.

While there exists a considerable body of earlier work on
machine-checked correctness proofs of parts of compilers (see
section 7 for a review), our work is novel in two ways. First, recent
work tends to focus on a few parts of a compiler, mostly opti-
mizations and the underlying static analyses [18, 6]. In contrast,
our work is modest on the optimization side, but emphasizes the
certification of a complete compilation chain from a structured im-
perative language down to assembly code through 4 intermediate
languages. We found that many of the non-optimizing translations
performed, while often considered obvious in compiler literature,
are surprisingly tricky to formally prove correct. The other novelty
of our work is that most of the compiler is written directly in
the Coq specification language, in a purely functional style. The
executable compiler is obtained by automatic extraction of Caml
code from this specification. This approach has never been applied
before to a program of the size and complexity of an optimizing
compiler.

POPL 2006

Proof is about 8 times
bigger than the
compiler code

3 person years of
work

Proposal: Use APR-style technology to synthesize proofs

Step 1: Build a predictive model

predictive
modelpartial proof

theorem

next likely
proof steps

predictive
model

Step 2: Guide search with the model

Proposal: Use APR-style technology to synthesize proofs

Step 1: Build a predictive model

predictive
modelpartial proof

theorem

next likely
proof steps

Step 2: Guide search with the model

predictive
model

theorem

partial proof

next likely
proof steps

Proposal: Use APR-style technology to synthesize proofs

Step 2: Guide search with the model

predictive
model

theorem

partial proof

next likely
proof steps

Proposal: Use APR-style technology to synthesize proofs

Step 2: Guide search with the model

theorem

partial proofs
theorem
prover

Proposal: Use APR-style technology to synthesize proofs

Step 2: Guide search with the model

theorem

partial proofs
predictive

model

next likely
proof steps

search and
predict

Proof Script Model Next Step 2

New
Proof Script 1

input

If compiles, proof state is not
duplicate, and subgoals still exist,
update Proof Script

If doesn't compile
or proof state is
duplicate, predict
another tactic

Final Proof
If no more subgoals, apply Qed

intros n;
induction n;

intros n;
induction n;
apply h;

simpl;

intros n;
induction n;
simpl;
qed;

Next Step 1

apply h;

Next Step 3

trivial;

(beam size 3)

New
Proof Script 2
intros n;
induction n;
simpl;

New
Proof Script 3
intros n;
induction n;
trivial;

apply

predictive
model

How to learn a predictive model

Step 1: Build a predictive model

predictive
modelpartial proof

theorem

next likely
proof steps

predictive
model

corpus of
proofs

predictive
model

machine
learning

TacTok (OOPSLA’20)

AST

TrainerTacTok Model

Predicted Next Tactic

Back-propagate
Loss

Training
Instances

"Gold"
Next
Tactic

Proof
State,

Previous
Tactics
(Input)

Training
Proofs

ASTs

Seq

AST
TacTok models partial proof

and the current proof state, together

ASTactic [Yang and Deng, Learning to Prove Theorems via Interacting with Proof Assistants, ICML’19] modeled just proof state.

[Hellendoorn, Devanbu, Alipour, On the naturalness of proofs, ESEC/FSE NIER'18] looked at predictability of proof sequences.

CoqGym Dataset

• 123 open-source software projets in Coq

• 70,856 theorems

• Broken down into 96 projects (57,719 proofs) for training 
and 27 projects (13,137 theorems) for testing

[Yang and Deng, Learning to Prove Theorems via Interacting with Proof Assistants, ICML’19]

https://github.com/princeton-vl/CoqGym

TacTok vs. ASTactic vs. SeqOnly

SeqOnly

180

(1.7%)

141

(1.3%)

224

(2.1%)

412

(3.8%)

84

(0.8%)

57

(0.5%)

712

(6.6%)

ASTactic

8,972 (83.2%) unproven theorems

TacTok

1,388 1,322

1,077

115

(1.1%)

88

(0.8%)

1,696

(15.7%)

214

(2.0%)

149

(1.4%)

110

(1.0%)

910

(8.4%)

TacTok ASTactic

CoqHammer

7,500 (69.6%) unproven theorems

1,322

2,865

TacTok vs. ASTactic vs. CoqHammer

…recall from before:
APR produces patches for 10.6-19.0% of the defects

Works more frequently than most
APR tools, and guaranteed correct!

1,388

Diva (ICSE’22)

2 key observations:
• Machine learning is often noisy
• Theorem prover serves as an
 oracle to turn that noise into signal.

Diva (ICSE’22)

• Vary:

• proof tactic and token depth

• learning rate

• embedding size

• number of layers

• training order

• access to proof state, partial proof, Gallina proof term

Diva vs. state-of-the-art

364

(3.4%)

TacTok

ASTactic

7,136 (66.2%) unproven theorems

Diva

388

(3.6%)

88

(0.8%)

0

(0.0%)

1,308

(12.1%)

0

(0.0%)

0

(0.0%)

0

(0.0%)910

(8.4%)

149

(1.4%)

214

(2.0%)

110

(1.0%)

0

(0.0%)

CoqHammer

115

(1.1%)

0

(0.0%)

https://github.com/LASER-UMASS/Diva/

Diversity inherent in ML increases the
proving power 68%-77% over

prior search-based synthesis tools,
and 27% over CoqHammer.

Prior work: transformers for Isabelle

Proof stateContext LLM apply
(induct_tac x)

apply
(rule impI)

apply
(auto)

check

700M

Proves 39% of
PISA benchmark

Jiang et al. (2021) “LISA: Language models of ISAbelle proofs” AITP
Jiang et al. (2022) “Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers” NeurIPS

Proof
Generation

Model

Proof
Repair
Model

Baldur: whole proof generation & repair

Tool PISA test set success rate

LLM
with tree-search 39.0%

Baldur
(8b generate with context) 47.5%

Thor
(LLM + Sledgehammer

with tree-search)
57.0%

Baldur + Thor 65.7%

Evaluation

Jiang et al. (2021) “LISA: Language models of ISAbelle proofs” AITP
Jiang et al. (2022) “Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers” NeurIPS 2022

Baldur + Thor
prove nearly
2/3 of PISA

test set!

Generate vs Generate+Repair

Generate+Repair outperforms Generate only

Generate+Repair with no error message

Error message is crucial for repair approach

Generate with context

Proof context helps improve proof generation

Fully Automated Formal Verification
Machine learning and meta-heuristic search

can fully automate
some bug-repair and formal verification.

While APR underperforms because it is driven by an unreliable oracle,
formal verification is a killer app for APR because

the theorem prover provides a reliable oracle.

