Automated Program
Repair & Verification

Coming up

« This Thursday, Beta presentations!
* Next week:
« Tuesday, Lecture on ethics in software engineering
« Thursday, no class — at home, online assignment/activity
» Graded — part of the participation grade (3% of overall class grade)
+ Can optionally opt into sharing anonymized data with researchers

+ Also Thursday, Beta due!

The Cost of Poor Software Quality in the US

Software engineers spend 35-50% of their time
validating and debugging software.

Cost of debugging, testing, and verification accounts
for 50-75% of the software development budgets.

- Devon H. O'Dell, The Debugging Mindset. ACM QUEUE, http://doi.org/10.1145/3055301.3068754

Machine Learning in Software Engineering

Your Al pair programmer

A simpler problem: Automated program repair

source code

I"&‘!’

test suite

test suite

A simpler problem: Automated program repair

Automated
Program
Repair -

test suite test suite




Program repair techniques

+ Tweak the program
« Check if tests pass

« If not, repeat

test suite

Automated
Program

Repair

Tortoise: Inte

1 Configuration Repair

Program repair techn_igges

Ooo SOSRepair: Expressive Semantic Search
Frogram Repele for Real-World Program Repair

ARJA: Automated Repair of Java Programs
via Multi-Objective Genetic Programming

SAVER: Sealabley

APR is a form of machine learning

« first, many techniques rely on ML to learn
« where to edit the code
« how to edit the code

« how to decide which patches are good

« second, the underlying problem is
learning a function (program) using training data (tests)

How well does APR work?

Quality of Automated Program Repair on

« Evaluated 4 techniques
« GenProg

Real-World Defects

Manish Motwani, Maurico Soto®, Yury Brun , Senior Mombor, IEEE.
Ron ust, and Glairo Lo Goues °, Mombar, IEEE.

« Par

« TrpAutoRepair

« SimFix

« Measured patch quality

* Measured what affects

patch quality

Quality vs. quantity

defects

technique patched

GenProg 49 (13.7%)
Par 38 (10.6%)
SimFix 68 (19.0%)
‘TRPAutoRepair 44 (12.3%)
total 106 (29.7%)

When applied to real-world Java code,

APR produces patches for 10.6-19.0% of the defects

Quality vs. quantity

Potential problem: Overfitting

APR uses a set of tests to guide repair.

Tests are inherently partial.
No way APR can know if a patch captures
intended behavioral constraints.




Quality vs. quantity

—
[E—
[r—
Repair 5 [E—

source code patched program

test suite test suite

Quality vs. quantity

patch quality 100%-quality
technigue  minimum mean median maximum  patches
GenProg 64.8%  957% 984%  100.0% 243%
Par 648%  96.1% 985%  100.0% 13.8%
SimFix 65.0%  963% 99.9%  100.0% 46.1%
TrpAutoRepair  64.8%  964%  98.4%  100.0% 19.5%

Less than half (14-46%)

of the patches are correct

—
—
—

Repair [E—

source code patched program

test suite test suite

Does APR at least improve things a bit?

GenProg Par SimFix TrpAutoRepair
% of defects

120 ey e

o e ]

change in quality due to patch

technique minimum  mean ;ﬁ'é?ﬁan maximum
GenProg 30.9% 1.7% 0.0% 2.6%
Par -309%  —2.8% | 0.0% 1.5%
SimFix —24.9% 0.2% 0.0% 35.0%

TrpAutoRepair —30.9% —2.1% 0.0% 3.8%
N

Is the Cure Worse Than the Disease?
Overfitting in Automated Program Repair

Edward K. Smith™ Ear T Clairo Lo Goues' Yuriy Brur®™
*University of Massachusetts  -Uriversity Collego, London 'Carnogio Mellon Univrsity
‘Amherst, MA, USA London, UK Pitisburgh, PA, USA

ABSTRACT

Takeaway: Tests are an imperfect oracle, so
APR suffers, producing low-quality patches.

Can we find a domain with better oracles?




Formal verification allows proving software correct

Interactive theorem provers for formal verification

Formal verification comes with a built-in oracle:

The theorem prover

Proof.
intros.

Proof seript |inguction n.

Industrial impact of theorem proving

AIRBUS

SBYSEEESOCK
G Q @ galois

“ aWS CERTORA

android - >)

Prohibitively difficult

Verified software requires a lot of time and a lot of proofs in proportion to code

Proof is about 8 times
bigger than the
compiler code

3 bérgén years of
work

POPL 2006

Virtually all software that ships today is unverified.

Proposal: Use APR-style technology to synthesize proofs

Step 1: Build a predictive model Step 2: Guide search with the model

predictive 2
model ||—_.
.

Proposal: Use APR-style technology to synthesize proofs

Step 1: Build a predictive model Step 2: Guide search with the model

B - R Ep—
k |_||_|=|_. = s |_||_|=|—.




Proposal: Use APR-style technology to synthesize proofs

Step 2: Guide search with the model

et |_||_|=|_.

‘

Proposal: Use APR-style technology to synthesize proofs

Step 2: Guide search with the model

LS

X
L]
iia'i‘

Proposal: Use APR-style technology to synthesize proofs

Step 2: Guide search with the model

predictive
model

intros n; "
induction n; searchand @PPlyh; __||simpl; frivial;__|

; apply
If doesn't compile)

or proof state is
duplicate, predict

New New New
Proof Script 1) Proof Script 2J{Proof Script 3)  intros n;

another tactic intros n; intros n; intros n; induction n;
i ionn; i ionn; i on n; Eimel
17 comples, proof st is ot apply h; simpl; v
duplicate, and subgoals still exist, "
" _______________ 3[Final Proof]
update Proof Script If no more subgoals, apply Qed

How to learn a predictive model

Step 1: Build a predictive model

corpus of
proofs

learning model

. predictive >
g

machine predictive

TacTok: Semantics-Aware Proof Synthesis

TacTok (OOPSLA20)

TacTok models partial proof

and the current proof state, together

Training Training
Proofs Instances

ASTactic [Yang and Deng, Learning to Prove Theorems via Interacting with Proof Assistants, ICML'19] modeled just proof state.”
[Hellendoorn, Devanbu, Alipour, On the naturalness of proofs, ESEC/FSE NIER'18] looked at predictability of proof sequences.




CoqGym Dataset

« 123 open-source software projets in Coq
+ 70,856 theorems

« Broken down into 96 projects (57,719 proofs) for training
and 27 projects (13,137 theorems) for testing

https://github.com/princeton-v/CogGym

[Yang and Deng, Learning to Prove Theorems via Interacting with Proof Assistants, ICML'19]

TacTok vs. ASTactic vs. SeqOnly

8,972 (83.2%) unproven theorems

TacTok vs. ASTactic vs. CogHammer

Works more frequently than most

APR tools, and guaranteed correct!

7,500 (69.6%)junproven theorems

2022 IEEEIACM 44th Ineratioal Conferenc on Softwre Engincering (ICSE)

Diva (ICSE’22) @

iven Automated Formal i ion

2 key observations:
e Machine learning is often noisy

e Theorem prover serves as an
oracle to turn that noise into signal.

2 EEEACM 4 e

Diva (ICSE’22)

Diversity-Driven Automated Formal Verification

« Vary:

« proof tactic and token depth

learning rate

embedding size

.

number of layers

training order

access to proof state, partial proof, Gallina proof term

Diva vs. state-of-the-art

Diversity inherent in ML increases the
proving power 68%-77% over
prior search-based synthesis tools,
and 27% over CogHammer.

https://github.com/LASER-UMASS/Diva/




ChatGPT

5 4
Examples Capabilties
Explain quantum computing in Remembers what user said
simple terms” > earlier in the conversation
Got any creative ideas fora10  Allows user to provide folow-
year olds birthday?” > up corrections

How do | make an HTTP Trained to decline inappropriate
request in Javascript?” > requests

Explain formal verification to mef

A
Limitations

May occasionally generate
incorrect information

May occasionally produce
harmful instructions or biased
content

Limited knowledge of world and
events after 2021

Prior work: transformers for Isabelle
700M

_apply apply apply
(induct_tac x) (rule impI) (auto)

B D B
w7

Proves 39% of
PISA benchmark

Context Proof state ——»

— 1

/D\ /Q\ /I:k

DOOODO0O0

Jiang et al. (2021) “LISA: Language models of ISAbelle proofs” AITP.
Jiang et al. (2022) “Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers” NeurlPS

Baldur: whole proof generation & repair

Evaluation

Baldur: Whole-Proof Generation and Repair
with Large Language Models

ess rate

(8b gene

(LLM +

with

Ba

Jiang et . (2021) “LISA: Language models o

Jiang et al. (2022) “Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers” NeurlPS 2022

Baldur + Thor
prove nearly
2/3 of PISA
test set!

Generate vs Generate+Repair

ratio of proven theorems

Generate
02 J Generate+Repair
o 5 10 15 20 25 30

number of proof attempts

Generate+Repair outperforms Generate only

Generate+Repair with no error message

ratio of proven theorems

— Generate
~= Generate+Repair

number of proof attempts

Error message is crucial for repair approach




Generate with context

ratio of proven theorems
~

—e—  Generate 8b
—=— Generate w/ context 8b

30

40 50 60 70

number of proof attempts

Proof context helps improve proof generation

Fully Automated Formal Verification

Machine learning and meta-heuristic search

can fully automate
some bug-repair and formal verification.

While APR underperforms because it is driven by an unreliable oracle,

formal verification is a killer app for APR because
the theorem prover provides a reliable oracle.




