
Template-Guided Program Repair in the Era of
Large Language Models

Kai Huang
Technical University of Munich

Germany
huangkevinapr@outlook.com

Jian Zhang∗
Nanyang Technological University

Singapore
jian zhang@ntu.edu.sg

Xiangxin Meng
Beihang University

China
mengxx@buaa.edu.cn

Yang Liu
Nanyang Technological University

Singapore
yangliu@ntu.edu.sg

Abstract—Recent advancements in automated program repair
(APR) have been significantly driven by the application of Large
Language Models (LLMs). In particular, the integration of LLMs
with traditional template-based repair methods has demonstrated
effective outcomes. Despite this, the synergy between the strengths
of traditional methods and LLMs remains underexploited. This
oversight originates from the indiscriminate use of templates and
their insufficient coverage. Also, using small-scale LLMs within
the zero-shot learning context proves to be suboptimal.

To alleviate the limitations, we propose NTR (Neural Template
Repair), a two-stage repair framework including template selection
and patch generation, both of which are under the fine-tuning
paradigm. In the template selection phase, we formulate it as
a multiclass classification problem and fine-tune million-level
LLMs for better selecting possible templates. During the patch
generation phase, we leverage the chosen templates as probable
directions (e.g., ‘Mutate Conditional Expression’) to guide the fine-
tuning process of LLMs at the billion-level scale for precise patch
creation. Moreover, we incorporate a unique template to signify
the absence of a suitable template and employ a probability-based
prioritization of templates, thereby optimizing patch generation.
This framework not only effectively addresses template mismatch
issues, but also enables the billion-level LLMs to explore the patch
space more efficiently, despite the GPU memory constraints.

We evaluate NTR with different foundational models on
Defects4J V1.2 and HumanEval-Java, the framework consistently
demonstrates significant effectiveness. When utilizing StarCoder
as the foundational model for patch generation, NTR fixes 128 and
129 bugs in Defects4J and HumanEval, outperforming the best
baseline APR tool by 14 and 59 bugs. With the larger CodeLlama
model, the fixed bugs rise to 139 and 136, respectively, exceeding
the baseline by 25 and 66 bugs. Notably, the performance stems
not only from the foundational models but also benefits greatly
from our NTR framework. Specifically, NTR’s implementation
with StarCoder and CodeLlama leads to 22 and 23 additional
fixes, which is beyond what the models achieve on their own.
This emphasizes the success of our new perspective on utilizing
templates to unlock the bug-fixing potential of LLMs.

Index Terms—Automated Program Repair, Large Language
Models, Fine-Tuning, Repair Template

I. INTRODUCTION

Automated Program Repair (APR) techniques have been
under development for nearly two decades, spawning several
methodological paths such as search-based [1], constraint-based
[2], template-based [3], and learning-based [4] APR techniques.
In this field, learning-based APR techniques have achieved
considerable progress, as highlighted in recent studies [4].

∗ Corresponding author: Jian Zhang (jian zhang@ntu.edu.sg).

Recently, the advent of Large Language Models (LLMs)
presents new opportunities for the APR research. LLMs
typically undergo an extensive pre-training phase, which
enables them to acquire the rich domain knowledge for a
wide range of downstream tasks. Inspired by this, researchers
have started to explore the capabilities of LLMs for APR [5]–
[13]. Unlike earlier learning-based APR efforts [14]–[19] that
rely on traditional neural models, recent works [8]–[10], [13],
[20] have adopted LLMs as foundational models, and achieved
greatly improved results.

Among the LLM-based approaches, the incorporation of
template has shown impressive performance as evident by
AlphaRepair [9] and GAMMA [10], which can represent the
state-of-the-art APR work. These tools adopt the zero-shot
learning paradigm, which allows the model to directly predict
the correct code for areas masked by predefined repair templates
in the buggy code. However, existing template-based LLM
solutions for APR still suffer from three primary drawbacks. 1)
Indiscriminate template use: Initiatives like AlphaRepair and
GAMMA typically do not prioritize among templates during
the selection process, often employing all available templates
indiscriminately. Specifically, GAMMA utilizes an AST-based
matching method to choose repair templates, which risks
prioritizing incorrect templates over suitable ones. This can
lead the model to miss opportunities of correct patch synthesis
and exacerbate the patch overfitting problem. 2) Inadequate
template coverage: The effectiveness of template-based APR
tools is inherently limited by their template scope [21]. For
instance, GAMMA [10] utilizes a set of 13 repair templates
derived from TBar [3] for masking code in the patch synthesis
process. If a bug’s expected repair behavior falls outside these
predefined templates, these tools can struggle to generate the
correct patch. 3) Limitations of small-scale LLMs under
zero-shot paradigm: Current approaches rely on zero-shot
learning with smaller LLMs (e.g., CodeBERT-125M), while the
potential of billion-level LLMs with templates under the fine-
tuning paradigm remains untapped. In fact, previous studies
have shown that simply fine-tuning and using larger LLMs can
significantly improve repair capabilities [6], [12]. Unfortunately,
the infilling code mask methods are largely confined to masked
language modeling-based (MLM-based) LLMs, which restricts
their applicability to decoder-only models without infilling
capabilities, such as CodeLlama [22].

Therefore, in the era of LLMs, it is necessary to reconsider
how templates can be more effectively integrated into large-
scale LLMs to further enhance their repair capabilities. We
present the following key insights to mitigate the above
limitations. Insight 1: Inspired by the template-based approach
in TRANSFER [23], training a model to rank templates has
proven to be an effective strategy. Particularly in the context
of LLMs, we can develop a template ranking model that
leverages the code comprehension strengths of LLMs presents a
promising avenue. Insight 2: Previous work [21] has shown that
the Neural Machine Translation (NMT) workflow circumvents
the template coverage issue by conceptualizing the repair task
as a translation rather than an infilling task. In this workflow,
we can design a special template that represents bug fixes
beyond traditional template set, and adopt the NMT model to
learn these complex repair behaviors (e.g., multi-hunk bugs).
Insight 3: Recent studies [7], [12] suggest that applying NMT
fine-tuning strategies can overcome the limitations associated
with the zero-shot learning paradigm. Given that LLMs are
not inherently tailored for repair tasks, we can impart bug-
fixing knowledge of templates into LLMs during fine-tuning.
Moreover, the flexibility of the NMT workflow allows it to
adapt to various model architectures, without being restricted
to MLM-based LLMs [7], [12].

Based on above insights, we propose a novel template-
based framework, namely Neural Template Repair (NTR). NTR
divides the repair task into two phases: template selection and
patch generation. 1) In the template selection phase, NTR
formulates it as the multiclass classification problem [24] and
fine-tunes lightweight LLMs as the template selection model to
perform template ranking (Insight 1). It takes the buggy method
as input and predicts the most appropriate repair templates for
repairing it. 2) In the patch generation phase, we adopt the
NMT workflow and format the selected templates as guidance.
We select an LLM with billions of parameters and fine-tune it
under the NMT workflow (Insight 3). During fine-tuning, we
introduce symbols to denote the buggy code, the template, and
the fixed code. This enables LLMs to synthesize patches in
an autoregressive manner, naturally following the logic of the
selected templates. To address the template coverage issue, we
set up a special template, OtherTemplate, to capture repair
behaviors beyond the scope of existing templates (Insight
2). Furthermore, when performing inference, the prioritization
of selected templates allows NTR to iteratively produce a
broader array of candidate patches than approaches that do not
leverage templates. This approach allows for better exploration
of the patch space guided by repair templates and alleviates
the limitations present in previous work. As an added benefit,
the selection-then-generation framework empowers large-scale
LLMs to expand the patch space even with small beam sizes.
This adaptation is crucial because setting a large beam size, as
done in traditional (non-pre-trained model based) work [16],
[25], [26], becomes impractical due to the billions of parameters
in these models and the limitations of GPU memory [7].

In summary, the main contributions of this paper are as
follows:

• Technique. We introduce NTR, a novel framework that
combines the strengths of both templates and large-scale
LLMs, by guiding LLMs through a two-phased approach of
template selection and patch generation. To the best of our
knowledge, StarCoder-15B or CodeLlama-70B utilized in
NTR, represents the largest LLM applied to fine-tuned APR
research so far. Our work showcases, for the first time, a
promising path toward integrating these large-scale LLMs
with templates.

• Extensive Study. We performed extensive evaluations on De-
fects4J V1.2 and HumanEval-Java. The results demonstrate
that NTR outperforms previous APR tools and further boosts
the repair capabilities of LLMs. For instance, with StarCoder
as the foundational model, NTR successfully repairs 128
and 129 bugs in Defects4J and HumanEval, respectively,
surpassing the top baseline APR tool (ChatRepair) and LLM
(InCoder) by 14 and 59 bugs. Similarly, utilizing the more
substantial CodeLlama model, NTR fixes 139 and 136 bugs
in Defects4J and HumanEval, respectively, outperforming the
best baseline by 25 and 66 bugs. Notably, NTR’s application
with StarCoder fixed 22 more bugs than the foundational
model, marking a 9.36% improvement. Similarly, its use of
CodeLlama led to fixing 23 more bugs, achieving a 9.13%
improvement over the foundational model.

• Open Science. To promote open science, we have released
StarCoder-15B and CodeLlama-70B, two LLMs that have
been fine-tuned with the NTR framework and basic NMT
fine-tuning strategy. We encourage future researchers to
leverage these foundational models to develop more powerful
APR tools. Our source code and data are available at:
https://sites.google.com/view/neuraltemplaterepair.

II. APPROACH

This section will describe how NTR combines template-
based and learning-based technical paths to build a new
program repair workflow. As shown in Figure 1, the workflow
of NTR is divided into two main parts, i.e., model fine-
tuning and model inference, which is in line with most of the
supervised learning-based APR workflows [14]–[19], [21], [25]–
[29]. In particular, NTR has two modules (phases) on design
choice, namely template selection and patch generation.
Briefly speaking, NTR first trains a template selection model
to prioritize appropriate repair templates for the buggy code,
and then trains a patch generation model to perform patch
synthesis under the guidance of templates. The design of this
two-phase repair framework for NTR is the main focus of this
paper, which we will elaborate on in the following sections.

A. Model Fine-Tuning

This section describes how we train the template selection
(or template ranking) model and the patch generation model.

1) Template Selection Model Training: Let’s first review the
workflow of template-based APR techniques. Typically, this
approach employs a two-phase repair strategy that includes
template extraction and patch generation. Earlier template-based
works [3], [30]–[32] did not consider the prioritization of repair

https://sites.google.com/view/neuraltemplaterepair

Fix code:

returFix code:

public TYPE_1 METHOD_1 (TYPE_2 VAR_1) {Fix code:

if (VAR_1.METHOD_2 () < INT_1) {

1️⃣

Bug code:

public TYPE_1 METHOD_1 (TYPE_2 VAR_1) {
if (VAR_1.METHOD_2 () >= INT_1) {

return TYPE_3.METHOD_3 (VAR_1); }
}

Repair Template:

Insert Cast Checker

Bug code:

public TYPE_1 METHOD_1 (TYPE_2 VAR_1) {
if (VAR_1.METHOD_2 () >= INT_1) {

return TYPE_3.METHOD_3 (VAR_1); }
}

Repair Template:

Mutate Conditional Expression

Bug code:

public TYPE_1 METHOD_1 (TYPE_2 VAR_1) {
if (VAR_1.METHOD_2 () >= INT_1) {

return TYPE_3.METHOD_3 (VAR_1); }
}

Repair Template:

Mutate Conditional Expression

2️⃣

3️⃣ 5️⃣4️⃣

Bug code:

public TYPE_1 METHOD_1 (TYPE_2 VAR_1) {
if (VAR_1.METHOD_2 () >= INT_1) {

return TYPE_3.METHOD_3 (VAR_1); }
}

Repair Template:

Insert Cast Checker

Bug code:

public TYPE_1 METHOD_1 (TYPE_2 VAR_1) {
if (VAR_1.METHOD_2 () >= INT_1) {

return TYPE_3.METHOD_3 (VAR_1); }
}

Repair Template:

Mutate Conditional Expression

Bug code:

public TYPE_1 METHOD_1 (TYPE_2 VAR_1) {
if (VAR_1.METHOD_2 () >= INT_1) {

return TYPE_3.METHOD_3 (VAR_1); }
}

Repair Template:

Mutate Conditional Expression

Fig. 1: The workflow for Neural Template Repair.

template usage. They used all repair templates sequentially to
generate patches. However, the original order of templates can
have a negative impact on the effectiveness of patch generation.
In the worst case, such a practice could leave the most possible
template at the end of the patch space, which would fail to
generate the correct patch due to the limited budget of patch
validation [23]. Subsequently, some works tried to optimize
template selection by building probabilistic models [33]–[35] or
simple MLP models [23]. These models facilitate the selection
of repair templates that are more likely to be correct, offering
a promising direction. Given that these neural models must
learn from scratch using training data, their performance could
be limited. Meanwhile, in the current era, LLMs have shown
extraordinary capabilities in code understanding and generation
tasks [24], [36]. Hence, a practical approach to enhancement
involves leveraging the comprehension abilities of LLMs to
aid in the selection of suitable repair templates.

Specifically, we adopt the NMT fine-tuning paradigm to train
a specialized template selection model, denoted as Mtemplate.
We outline the concrete steps as follows.

BFP Extraction. Before model training, we construct
training samples by extracting data in the form of Bug-Fix Pairs
(BFPs) [14] from a collection of bug-fix histories. Here, we
used the Transfer dataset collected by Meng et al. [23] as the
training corpus from which we extracted method-level BFPs.
We chose the Transfer dataset because it has been successfully
applied to template-based APR efforts [21], [23], which could
be a robust foundation for deploying NTR’s framework.

Let D denote a dataset, which comprises N pairs of bug
code xi and fix code yi:

D = {(xi, yi) | xi bug code, yi fix code, 1 ≤ i ≤ N} (1)

Here, we have a specific instance: DTransfer for the Transfer
dataset. This dataset serve as the basis for extracting templates
and training our template selection model.

TABLE I: 15 repair templates (No.1-15) from previous work
and 1 special template (No.16) from NTR settings.

No. Repair Templates No. Repair Templates
1 Insert Cast Checker 9 Mutate Class Instance Creation
2 Insert Range Checker 10 Mutate Integer Division Operation
3 Insert Null Pointer Checker 11 Mutate Operators
4 Insert Missed Statement 12 Mutate Return Statement
5 Mutate Conditional Expression 13 Mutate Variable
6 Mutate Data Type 14 Move Statement
7 Mutate Literal Expression 15 Remove Buggy Statement
8 Mutate Method Invocation Expression 16 Other Template

Template Extraction. After obtaining BFPs, it is necessary
to deduce fix templates based on specific bug-fixing behaviors,
that is, code changes. To achieve this, we perform template
extraction based on state-of-the-art template-based APR works
TBar [3], TRANSFER [23], and TENURE [21].

Specifically, on the DTransfer dataset [23], we initially utilized
the 15 repair templates as shown in Table I (more details please
see TRANSFER [23]), provided by previous works [3], [23],
represented as TTransfer, and conducted template extraction using
the SC4FT [37] tool developed by Meng et al. [21], [23]. We
selected these 15 repair templates because they encompass
most of the bug repair behaviors, and prior research [3], [21],
[23] has employed these templates to achieve advanced results.

However, due to the diverse nature of software bugs, creating
a comprehensive set of templates that covers all possible bugs
is unfeasible. Therefore, previous methods like GAMMA [10]
relying solely on a predefined set of templates might not address
a significant number of complex bugs, including multi-hunk
bugs. To tackle the challenge, during the extraction process, we
designate “Other Template” to label repair behaviors beyond
the scope of the 15 repair templates mentioned above. In
addition, this special template also contains multi-hunk bug
fixing behavior. Thus it can be used to mitigate the template
coverage problem [21] and allow the model to gain repair
capability of multi-hunk bugs.

Model Training & Tuning. We denote the training data

as follows: X represents the set of bug code samples, and T
represents the set of repair templates. Each training sample,
expressed as (xi, ti), consists of a bug code xi and its
corresponding repair template ti. The core objective of the
template selection model, referred to as Mtemplate, is to predict
the appropriate repair template ti based on a given bug code
xi. This objective can be expressed as: Mtemplate(xi) = ti.

The fine-tuning objective aims to minimize the cross-entropy
loss Ltemplate for the template selection model Mtemplate, opti-
mizing the model’s parameters θ by reducing the discrepancy
between the predicted templates t̂i and the actual templates ti
for all bug code snippets xi. This is formulated as:

min
θ

Ltemplate(θ) = −
∑
i

∑
j

tij log(t̂ij), (2)

where t̂ij denotes the model’s predicted probability that label
j is the correct classification for bug code xi, and tij is a
binary indicator of whether label j is the correct template for
the given instance.

During the training of the template selection model, we use
small-scale LLMs such as CodeT5 as the foundation model.
The rationale for the choice of million-level CodeT5 that has
an encoder instead of a billion-level LLM like decoder-only
StarCoder is as follows. Template selection, fundamentally
a task of program understanding, involves predicting the
appropriate repair template for given buggy code. Findings
from a prior study [24] indicate that GPT-like models (Decoder-
only), including GPT-C [38] and CodeGPT [39], underperform
in classification tasks such as this. Conversely, Encoder-
Decoder models like CodeT5 [40] have demonstrated superior
performance in classification challenges according to the same
study [24]. Also, our preliminary experiments confirmed that
StarCoder performs poorly on this type of task. Therefore, we
use CodeT5 for demonstration purposes in this work.

The template selection task can be viewed as a multi-class
classification problem, where each template serves as a class.
Given the buggy code xi and the model MCodeT5, the vector
representation of the selection model be described as follows:

ri = MCodeT5-[Enc](xi), (3)

where [Enc] is the prefix in front of the input and the corre-
sponding hidden state can represent the semantics of the whole
buggy function based on the attention mechanism. A softmax
function is then applied to these logits to derive a probability
distribution over all repair templates: p̂(t|xi) = softmax(ri).
Here, p̂(t|xi) denotes the predicted probability distribution
over repair templates t for the given buggy code xi. The
repair template with the highest probability is selected as the
prediction: t̂i = argmaxt p̂(t|xi).

It is true that a model can not always perfectly predict the
most appropriate template. However, our model can also be
used for template prioritization based on probabilities, allowing
the inclusion of correct patch at the patch generation phase.

2) Patch Generation Model Training: When generating
patches, existing template-based LLM approaches including
AlphaRepair [9] and GAMMA [10] transform fix templates

<commit_before>

int getVal(int *array, int len, int index) {
// bug_start
 if (index < len) {
// bug_end
 return array[index];
 } else {

 return index;
 }
}

<commit_after>

// fix_start
 if (index < len && index >= 0) {
// fix_end

Bug Hunk Fix Hunk

<commit_msg>

Mutate Conditional Expression

O
u
tp
u
t

In
p
u
t

Fig. 2: The input and output of the patch generation model.

into masked donor code, and directly use million-level LLMs
to fill the masks with zero-shot learning. This practice could
suffer from the limitations of the models’ small scale and
misalignment between the code generation and program repair.
Typically, the NMT fine-tuning paradigm of LLMs can address
the problems. As a representative built on traditional neural
model, TENURE [21] follows the NMT workflow while con-
sidering templates. Different from the above work, TENURE
jointly generates a template along with the fixed code during
training and inference. Theoretically, the template generation
can be largely affected by the joint cross-entropy, since the fixed
code is generally much longer than a template (see Table I).
This one-step strategy potentially hampers the model’s ability
to accurately select the most appropriate template, let alone
effectively prioritize among templates, thereby diminishing the
benefits of template-based guidance. We will further analyze
this problem in the ablation study of Section IV-B.

Therefore, NTR implements a two-phase repair strategy
that distinctively coordinates template selection and patch
generation by optimizing them independently. In the patch
generation phase, we specifically incorporate the chosen repair
templates alongside the buggy code as inputs, while designating
the fixed code solely as the output. This dual-input method
makes the patch synthesis process aligns more closely with
the guidance offered by the selected templates.

Figure 2 illustrates the path generation process. In the
fine-tuning phase, we format the buggy code, the template
and the fixed code as: <commit before> bug method <com-
mit msg> repair template <commit after> fix code. This
approach is inspired by the pre-training methodologies of
existing LLMs such as StarCoder, which learn the commit
behaviors from open-source projects in this manner. Since bug
fixing often involves commits in practice, the format is naturally
suited for fine-tuning as it closely matches the structure used
during pre-training.

Model Training & Tuning. Based on both repair templates
and the buggy code, the data D extracted from STEP 1&2
(BFP&Template Extraction) are restructured to align with the

requirements of the patch generation task. Let X ∈ D represent
the set of buggy code samples, T denote the set of repair
templates, and Y ∈ D signify the set of fix code samples. Each
training sample, denoted as (xi, ti, yi), consists of a buggy
code xi, its corresponding repair template ti. The objective
of the patch generation model, referred to as Mpatch, is to
autoregressively synthesize the appropriate fix code ŷi given
xi and ti. This can be represented as: ŷi = Mpatch(xi, ti).

During fine-tuning, the objective is to optimize the model’s
parameters Θ by maximizing the log-likelihood of the au-
toregressive generation process across all training samples.
This involves calculating the likelihood of each token yij
in the predicted fix code ŷi, based on the actual fix code
yi, up to the current token, alongside the bug code xi, and
the selected repair template ti. The aggregated log-likelihood
function, representing the sum of log probabilities for correctly
predicting each token in the sequence, is given by:

min
Θ

L(Θ) = −
∑
i

∑
j

log(p̂(yij |yi,<j , xi, ti)) (4)

Here, p̂(yij |yi,<j , xi, ti) denotes the model’s predicted prob-
ability of token yij given the preceding tokens yi,<j in the
actual fix code, under the condition of the bug code xi and the
repair template ti. The goal of fine-tuning is to maximize this
function, thereby enhancing the model’s ability to accurately
predict the next token in the sequence.

We choose StarCoder-15B/CodeLlama-70B as the foundation
model for fine-tuning. There are two main reasons for this
decision. Fundamentally, program repair is inherently a code
generation task, and based on prior studies [6], [12], larger
LLMs tend to exhibit more powerful repair capabilities. In
fact, it is revealed that LLMs show a clear pattern called the
emergent capability [41]. That is, the performance is near-
random until a certain critical threshold of scale is reached
(e.g., 10B), after which performance increases to substantially
above random. Hence, we select billion-level LLMs for the
patch generation task. This enable it to better deal with the
unseen and complex bugs in real-world projects.

Through template-guided training, NTR’s patch generation
model acquires repair behaviors aligned with the diverse
directions outlined in the templates. Importantly, this training
approach enables conditional generation, allowing the large-
scale LLMs to extend beyond the confines of explicitly specified
templates. This is particularly true for the special template
“Other Template”, which broadens the LLMs’ ability to learn
repair behaviors beyond those predefined templates.

B. Model Inference

After the fine-tuning process is complete, we obtain a
template selection model and a patch generation model. It is
worth noting that during inference, traditional APR methods can
generate hundreds of patches, constituting a vast patch space, by
setting a large beam size in the beam search algorithm [6], [7],
[12]. Theoretically, we could also adopt a large beam size for
our generation model, relying solely on the predicted template
from the selection model to maintain competitiveness. However,

this strategy encounters two significant challenges. Firstly, the
accuracy of the predicted template is not guaranteed, which
could mislead the generation model into producing invalid
patches. Secondly, the constraint of GPU memory poses a
substantial hurdle, especially for large-scale LLMs such as
CodeLlama-70B, potentially leading to out-of-memory (OOM)
errors and thus a constrained patch space. These considerations
drive NTR to adopt a dual-model approach, implementing
template prioritization and iterative patch generation during
the inference phase to effectively navigate these challenges.

1) Template Prioritization: To mitigate the risk of inaccurate
template selection, we implement template prioritization, order-
ing the templates according to the model’s output probabilities.

The inputs to the template selection model include the
buggy code (x) and the candidate repair templates (T), which
are derived from the model’s output. The model is adapted
to compute the probabilities for each repair template as
p̂(tj |x) = Mtemplate(x, tj). In this expression, p̂(tj |x) denotes
the likelihood of choosing repair template tj based on the
buggy code x. This phase ends up with a sorted candidate
template space as Tsorted. This space is derived by ordering the
templates according to their predicted probabilities from the
template selection model:

Tsorted = sort (p̂(tj |x) : tj ∈ T , desc) (5)

Here, sort(·, desc) represents the sorting operation in descend-
ing order of the probabilities p̂(tj |x), which are the chances of
selecting each repair template tj given the buggy code x. The
output, Tsorted, is subsequently fed into the patch generation
model in the next step.

2) Iterative Patch Generation: Given the sorted template
space Tsorted, we iteratively concatenate each repair template tij
from this space with the buggy code xi to form model inputs.
These concatenations are then fed into the patch generation
model Mpatch, following the NMT paradigm, to predict the
corresponding repair patches. This strategy of iteratively com-
bining different repair templates tij with the bug code xi can
effectively explore the patch space. The underlying idea is that
multiple solutions may exist for fixing a bug. Therefore, NTR
can synthesize correct patches using different repair templates,
leveraging the inherent advantage of template-based APR
techniques [3], [23]. Moreover, the patch generation model’s
flexibility with the NMT workflow enables it to overcome
template coverage limitations, potentially synthesizing the
correct patch even when repair template prediction fails or
corresponding repair templates are lacking, which combines
the strengths of learning-based APR techniques [21].

For each of the k repair templates tij where 1 ≤ j ≤ k ≤
|Tsorted|, our goal is to generate m patches, represented as:

(y1ij , y
2
ij , . . . , y

m
ij) = Mpatch(xi, tij) (6)

Here, y1ij , y
2
ij , . . . , y

m
ij denote the m generated patches for the

input pair (xi, tij) using the patch generation model Mpatch.
By employing the subset of sorted repair templates k and

adjusting the number of patches m generated per template, we
can also maximize the patch space even with the constraint

of GPU memory. For example, we might be restricted to
generating only 10 candidate patches at a time due to potential
OOM. However, by associating 10 repair templates with a
single bug code, we can iteratively generate 10 diverse groups
of the candidate patches, expand the candidate patch space to
include 100 potential patches.

In summary, this method not only mitigates the computa-
tional constraints but also leverages the model’s capacity to
explore a broader range of repair possibilities, substantially
increasing the chances of generating effective patches.

III. EXPERIMENT SETUP

A. Research Questions

• RQ1: How well does NTR fix common bugs? We will
explore NTR’s repair capabilities in Java bug repair scenarios
and compare with baselines. (Repair Effectiveness)

• RQ2: How much does NTR’s design choice contribute to
the overall repair capability? NTR uses a two-stage repair
strategy, and here we will explore the impact of different
repair strategy settings on the results. (Ablation Study)

• RQ3: How good is NTR at fixing security vulnera-
bilities? To further evaluate NTR’s generalization ability,
we conducted experiments in vulnerability fixing scenarios.
(Generalizability Study)

B. Dataset

1) Training Dataset:

• Transfer dataset. In the main experiment, we use the
Transfer dataset [23] to implement model training and
tuning. It contains about one million bug-fix pairs and
corresponding fix templates that have been used to drive
TRANSFER [23] and TENURE [21]. For example, the
template-based APR work TENURE selected about 570K of
these data for training. Considering the huge cost of training
LLMs, we randomly selected 100K samples from them for
NTR. The size of each set is as follows: Train/Val/Test =
97,416/2,029/2,030.

• Recoder dataset. In the generalizability study, we use
the Recoder dataset [18] to implement model fine-tuning.
We chose the Recoder dataset because Wu et al. [6] have
successfully applied the Recoder dataset to vulnerability
repair tasks with effective results. In addition, their work
also indicates that some vulnerabilities still share similar
repair patterns with general bugs. The size of Recoder dataset
is as follows: Train/Val/Test = 129,310/7,178/7,178.

• VulGen dataset. In the generalizability study, we also use
the latest VulGen dataset [42] to implement model training
and tuning. We chose the VulGen dataset because it is
the most comprehensive collection of C/C++ vulnerability
repair datasets currently available. In particular, VulGen [42]
has successfully extracted templates from the dataset for
vulnerability generation. The size of VulGen dataset is as
follows: Train/Val/Test = 9,392/522/522.

2) Testing Benchmark:

• Defects4J V1.2. Defects4J V1.2 [43] contains 395 Java bugs
and is one of the most popular testing benchmarks [7]. Since
the training set (Transfer dataset) contains multi-hunk fix
examples, NTR can get the multi-hunk repair capability, and
we use both single and multi-hunk samples from Defects4J
V1.2 in our evaluation.

• HumanEval-Java. HumanEval-Java [12] contains 163
single-hunk Java bugs, and has no risk of data leakage.
Here we use all samples in HumanEval-Java.

• Vul4J. Vul4J [44] contains 79 Java vulnerabilities and has
been applied to LLM4APR [6]. Here, we followed the
baseline work [6] by selecting 35 single-hunk samples.

• CBRepair. CBRepair [45] contains 55 C/C++ vulnerabilities
and has been successfully applied to vulnerability repair
tasks [45]. Here, we selected 37 single-hunk samples.

C. Baselines

• APR Baselines. We collected recent APR works to serve
as baselines. This includes: ChatRepair [20], FitRepair [46],
GAMMA [10], TENURE [21], Tare [29], Repatt [47],
AlphaRepair [9], RAP-Gen [11], KNOD [26], Recoder-
T [18], [29], TBar [3], Jiang et al. [12]. Following the
common practice in the APR community [9]–[11], [18],
[20], [29], [46], we reuse the reported results from previous
studies [9]–[12], [20], [21], [26], [29], [46], [47] instead of
directly running the APR tools.

• LLM Baselines. To present more clearly the improvement
of NTR’s strategy for LLM’s repair capability, we implement
NMT fine-tuning of LLMs to provide additional baselines,
which we call LLM×10 (StarCoder×10/CodeLlama×10).
Since NTR employs multiple candidate templates to guide
patch generation, it can obtain a larger patch space with
a small beam size. In order to more fairly compare the
performance of NTR against LLMs, we borrow from previ-
ous work [46] by sampling the model multiple times with
10 distinct sets of temperature parameters (i.e., LLM×10).
This comparison is fair because NTR, utilizing 10 candidate
templates, generates an equivalent patch space to that of
LLM×10 through 10 rounds of sampling.

D. Implementation

1) Template Selection: As previously mentioned, CodeT5
was selected for NTR’s template selection model due to its
superior performance in classification tasks among million-
level models [24]. Specifically, the template selection model
underwent full parameter fine-tuning with CodeT5-220M [40].
Following the insights from previous work [7], we conducted
training for 10 epochs and subsequently chose the checkpoint
with the best perplexity. This approach addresses the limitation
that a single epoch of fine-tuning is insufficient for million-
level LLMs, preventing them from achieving convergence and
adequately learning repair templates. Regarding the training
hyper-parameters, we configured the learning rate to 5e-5 and
set the maximum input/output sequence length to 512.

TABLE II: Different implementations of NTR.

Implementation Model Components
Template Selection Model Patch Generation Model

NTRcs CodeT5-220M StarCoderBase-15B
NTRcl CodeT5-220M CodeLlama-70B

2) Patch Generation: Considering the pivotal role of patch
generation in NTR, which demands advanced natural and
programming language understanding for effective patch syn-
thesis, we selected two of the foremost LLMs for code families
currently available, CodeLlama [48] and StarCoder [49], as
identified on the Big Code Models Leaderboard [50]. These
models offer the robust capabilities necessary for guiding the
synthesis process. The patch generation model for NTR was
parameter efficiently fine-tuned using StarCoderBase-15B [51] /
CodeLlama-70B [22]; we implemented the fine-tuning using the
LoRA [52] and Bit Quantization [53] (also called QLoRA [54])
techniques to reduce memory and computational costs, and
trained only one epoch based on the findings from previous
work [6], [12]. This is because for large-scale LLMs, one epoch
can already make the model converge, and more epochs will
destroy the model’s generalization ability, thereby adversely
affecting its ability to effectively perform repairs. In the training
hyper-parameter settings, we set the learning rate to 5e-5
and the maximum input/output length to 2048; in the model
inference phase, we set the beam size to 10 (or 100) to generate
10 (or 100) candidate patches for each template, and used Top-
10 templates to expand the patch size 100 (or 1,000). The
chosen size of the patch space is deemed suitable for APR
tasks, as supported by previous studies [18], [26], [29], [46] that
typically involve hundreds to thousands of candidate patches.
Note that due to GPU memory constraints, the maximum beam
size we can set for StarCoder and CodeLlama is 100 and 10,
respectively.

3) Fault Localization and Patch Validation: In order to
avoid additional biases introduced by the fault localization tool,
our experiments were conducted under conditions of perfect
fault localization. As noted by previous works [10], [20], [46],
this is the preferred evaluation setting as it eliminates any
differences in performance caused by running fault localization
tools. Prior to patch validation, duplicate patches within the
patch space are removed. The validation process for NTR
aligns with established APR methodologies as documented
in prior works [6], [9], [10], [12], [18], [20], [21], [23], [46].
Specifically, for each bug version, we allocate a maximum of
5 hours for the validation run, retaining only the first (top-1)
plausible patch candidate that successfully passes all test cases.
Should a candidate meet these criteria, the validation for that
bug ceases immediately. Finally, the plausible patches will
be manually checked to verify whether they are semantically
correct or not.

We summarize the different implementations of NTR in
Table II. The above is implemented based on Python 3.10
and PyTorch 2.2, and all models are from HuggingFace. We
conduct the main experiments on a 12-Core workstation with

Intel(R) Xeon(R) Bronze 3204 CPU, 256 GB RAM and a
TESLA A100 GPU, running Ubuntu 20.04.6 LTS.

IV. EXPERIMENT RESULT

A. RQ1: Repair Effectiveness

1) Setup: In the main experiment, we aim to explore the
effectiveness of NTR in common bug fixing scenarios. Here, we
select the Transfer dataset for model fine-tuning and Defects4J
V1.2 / HumanEval-Java for testing. Note that when testing the
repair capabilities of the NTR implementation on Defects4J
V1.2, we set the maximum beam size to 100 for the StarCoder-
based NTR implementation (NTRcs) and 10 for the CodeLlama-
based NTR implementation (NTRcl). This is reasonable because
we use the beam size is smaller than or equal to most baseline
works [10], [11], [18], [21], [26], [29]. In addition, when
testing the repair capability of the NTR implementations on
HumanEval, all NTR implementations set the beam size to 10,
which is consistent with the compared baseline work [12]. The
default setting for NTR is to use Top-10 candidate templates,
generating at most 100 candidate patches when the beam size
is set to 10, and at most 1000 candidate patches when the
beam size is set to 100.

2) Result: Table III and Table IV present the repair results
of the specific implementation of NTR on Defects4J V1.2 and
HumanEval-Java. We will now proceed to analyze the repair
results as outlined below.

Defects4J V1.2. As shown in Table III, the implementations
of NTR outperform the current best baseline work, the
ChatGPT-based APR tool ChatRepair [20]. Specifically, the
StarCoder-based NTRcs fixes 14 more bugs (128 vs. 114) than
ChatRepair, and the CodeLlama-based NTRcl fixed 25 more
bugs (139 vs. 114) than ChatRepair. Importantly, the results
show a clear enhancement of the NTR strategy on the LLMs’
repair capability, when comparing the difference in the repair
capability of the LLM-based NTR implementation over the
LLM baselines. Specifically, the StarCoder-based NTRcs fixes
11 more bugs (128 vs. 117) than StarCoder×10, achieving a
9.40% improvement; the CodeLlama-based NTRcl fixes 13
more bugs (139 vs. 126) than CodeLlama×10, achieving a
10.32% improvement.

HumanEval-Java. As shown in Table IV, the implementa-
tions of NTR outperform all the baselines from the LLM4APR
study [12]. Specifically, the StarCoder-based NTRcs fixes 59
more bugs (129 vs. 70) than InCoder-6B, the CodeLlama-
based NTRcl fixed 66 more bugs (136 vs. 70) than InCoder-
6B. However, due to the relatively small size of InCoder,
comparing it directly to NTR does not yield meaningful
insights. Therefore, our analysis primarily concentrates on
evaluating the improvements offered by the LLM-based NTR
implementation over the foundational model. Specifically, the
StarCoder-based NTRcs fixes 11 more bugs (129 vs. 118)
than StarCoder×10, achieving a 9.32% improvement; the
CodeLlama-based NTRcl fixes 10 more bugs (136 vs. 126)
than CodeLlamax10, achieving a 7.94% improvement.

Multi-Hunk Fixes. We draw on previous work [7] to mark
out repair behaviors at multiple bug locations, which allows

TABLE III: Repair results for NTR and baselines on Defects4J V1.2 under the perfect fault localization.

APR Tool NTRcl CodeLlama×10 NTRcs StarCoder×10 ChatRepair FitRepair GAMMA TENURE Tare Repatt AlphaRepair RAP-Gen KNOD Recoder-T TBar
Beam Size 10 10 100 100 / / 250 500 100 / 25 100 1000 100 -
Patch Size 10×10 10×10 100×10 100×10 500 1000×4 / 500 100 200+1000 5000 100 1000 100 -

Chart 14/16 14/17 12/17 14/17 15/- 8/- 11/11 7/- 11/- 11/21 9/- 9/- 10/11 9/- 11/-
Closure 40/52 33/41 41/50 41/49 37/- 29/- 24/26 26/- 25/- 20/31 23/- 22/- 23/29 25/- 16/-

Lang 29/38 26/35 23/37 19/35 21/- 19/- 16/25 16/- 14/- 16/27 13/- 12/- 11/13 12/- 13/-
Math 39/51 39/50 38/53 31/48 32/- 24/- 25/31 22/- 22/- 22/51 21/- 26/- 20/25 20/- 22/-

Mockito 12/13 8/9 10/11 8/10 6/- 6/- 3/3 4/- 2/- 2/5 5/- 2/- 5/5 2/- 3/-
Time 5/7 6/8 4/7 4/8 3/- 3/- 3/5 4/- 3/- 4/7 3/- 1/- 2/2 3/- 3/-

#Total(Corr./Plaus.) 139/177 126/160 128/175 117/167 114/- 89/- 82/101 79/- 77/- 75/142 74/109 72/- 71/85 71/- 68/95

TABLE IV: Repair results for NTR and baselines on HumanEval-Java under the perfect fault localization.

APR Tool NTRcl CodeLlama×10 NTRcs StarCoder×10 InCoder-6B InCoder-1B CodeGen-6B CodeGen-2B CodeT5-large CURE RewardRepair Recoder KNOD
Beam Size 10 10 10 10 10 10 10 10 10 10 10 10 10
Patch Size 10×10 10×10 10×10 10×10 10 10 10 10 10 10 10 10 10

#Total(Corr./Plaus.) 136/150 126/145 129/146 118/135 70/- 64/- 52/- 53/- 54/- 18/- 22/- 11/- 18/-

TABLE V: Multi-hunk bug repair on Defects4J V1.2.
Multi-Hunk Bugs Hercules ITER NTRcs NTRcl

Multi-Hunk Bugs Hercules ITER NTRcs NTRclBug ID Edits Bug ID Edits
Chart-14 4 ✓ ✓ ✓ Math-4 2 ✓ ✓ ✓ ✓
Chart-16 3 ✓ ✓ ✓ ✓ Math-22 2 ✓ ✓ ✓
Closure-4 2 ✓ ✓ ✓ Math-24 2 ✓ ✓
Closure-78 2 ✓ ✓ Math-35 2 ✓ ✓ ✓ ✓
Closure-79 2 ✓ ✓ ✓ Math-43 3 ✓ ✓
Closure-106 2 Math-46 2 ✓ ✓
Closure-109 2 ✓ Math-62 3
Closure-115 2 ✓ ✓ ✓ Math-65 2
Closure-131 2 ✓ Math-71 2
Lang-7 2 Math-77 2 ✓ ✓ ✓
Lang-27 2 Math-79 2 ✓ ✓
Lang-34 2 ✓ ✓ ✓ Math-88 3
Lang-35 2 ✓ Math-90 2
Lang-41 4 Math-93 4
Lang-47 2 ✓ ✓ ✓ ✓ Math-98 2 ✓ ✓ ✓ ✓
Lang-60 2 ✓ ✓ ✓ Math-99 2
Math-1 2 ✓ #Total(33 bugs) 12 15 15 16

NTR to learn and gain multi-hunk repair capabilities. As shown
in Table V, we extract the repair results of ITER [55] and
Hercules [56] that can repair multi-hunk bugs and compare
them with the specific implementation of NTR. The results
show that NTR successfully repairs 15 (or 16) out of 33 multi-
hunk bugs, which rivals the repair results of the state-of-the-art
multi-hunk repair tool ITER. Note that ITER and Hercules
do not use perfect fault localization. Therefore, we wouldn’t
say that NTR is superior in repairing multi-hunk bugs. The
motivation for conducting experiments on multi-hunk bugs is
that existing template-based approaches (e.g., AlphaRepair and
GAMMA) are often limited to single-hunk bugs due to the use
of templates. Thus, we aim to demonstrate that our template-
guided approach, NTR, has multi-hunk repair potential as well.

In summary, NTR achieves effective results on both De-
fects4J V1.2 and HumanEval-Java, which is better than many
current LLMs as well as learning-based and traditional APR
tools. And NTR also shows potential for multi-hunk fixes. In
particular, NTR further enhances the repair capability of the
LLM. NTRcs repairs 22 more bugs than the foundation model,
achieving a 9.36% improvement; NTRcl repairs 23 more bugs
than the foundation model, achieving a 9.13% improvement.
These results indicate that NTR’s strategy is successful, which
is a feasible path to continuously optimize LLM4APR research.

B. RQ2: Ablation Study

1) Setup: In the ablation experiment, we aim to explore the
impact of NTR’s different design choices on the repair results.
Therefore, we designed several variants to reveal the effects
of different fine-tuning strategies. Specifically, we designed
six fine-tuning strategies: ❶ Basic fine-tuning strategy: We

TABLE VI: Repair results of different fine-tuning strategies
on Defects4J V1.2.

Variants Repair Strategy Beam Size Patch Size Result

StarCoder ❶ Basic fine-tuning 100 100 115/152
StarCoder-T ❷ One-stage template-based fine-tuning 100 100 106/146
StarCoder×10 ❸ Basic fine-tuning with multiple-sampling 100 100×10 117/167
NTRns ❹ NTR without template selection 100 100×10 118/170
NTR∗

cs ❺ NTR without the special template 100 100×10 119/170
NTRcs ❻ NTR 100 100×10 128/175

TABLE VII: Repair results of repair strategies ❶ and ❷ based
LLM implementation on Defects4J V1.2.

LLMs StarCoder-15B CodeLlama-13B CodeGen25-7B InCoder-6B CodeGeeX2-6B
Beam Size 10 10 10 10 10

Strategy ❶ 101/122 95/112 88/111 74/93 75/93
Strategy ❷ 87/109 82/98 77/102 72/97 62/74

used the NMT fine-tuning strategy from the recent LLM4APR
studies [7], [12] to present the repair ability of directly
fine-tuning LLMs. ❷ One-stage template-based fine-tuning
strategy: The closest to our work is the recent TENURE [21],
which uses a one-stage strategy to simultaneously predict
templates and patches, while NTR employs a two-stage strategy
to optimize template selection and patch generation tasks
separately. Here we implement TENURE’s strategy on top
of LLMs to evaluate its effectiveness against ours. ❸ Basic
fine-tuning strategy with multiple-sampling: As previously
discussed, to achieve a fair comparison with NTR, we enhance
the basic fine-tuning model’s patch space by sampling it
multiple times. ❹ NTR strategy without template selection:
To clarify the template selection component’s role in enhancing
the repair results, we remove the template selection model from
NTR and follow the practice of previous work [3], [23] to
indiscriminately apply repair templates one by one. ❺ NTR
strategy without the special template: To show the importance
of setting the special template, we remove OtherTemplate
from NTR and compare its performance with the complete
NTR strategy. ❻ NTR strategy: For reference, we include the
original outcomes achieved by the two-stage NTR strategy.

Due to the computational costs associated with fine-tuning
LLMs and the need for a diverse set of test samples, we select
StarCoder as the foundational model and Defects4J V1.2 as
the testing benchmark for our ablation study.

case Token.MOD:
 if (rval == 0) {
- error(DiagnosticType.error("JSC_DIVIDE_BY_0_ERROR", "Divide by 0"), right);

return null;
 }
 result = lval % rval;
 break;
case Token.DIV:
 if (rval == 0) {
- error(DiagnosticType.error("JSC_DIVIDE_BY_0_ERROR", "Divide by 0"), right);

return null;
 }

Closure-78

Fig. 3: Developer Patch for Closure-78.

TABLE VIII: Average correct template rank on Defects4J V1.2.

Project Chart Closure Lang Math Mockito Time Average

NTRns 7.92 6.98 6.96 7.44 6.87 5.23 6.99
NTRcs 1.49 2.19 2.25 2.42 3.03 1.57 2.26

Improvement 81.19% 68.62% 67.67% 67.47% 55.90% 69.98% 67.67%

2) Result: Table VI presents the repair results of LLM
variants on Defects4J V1.2 using different fine-tuning strategies.
Next we will analyze the impact of detailed design choices.

The limitations of one-stage template-based repair strat-
egy. By comparing the repair results of repair strategies ❶
and ❷ (StarCoder vs. StarCoder-T), we can conclude whether
TENURE’s one-stage strategy is beneficial for basic NMT
fine-tuning. To our surprise, the results in Table VI show
that StarCoder-T is even worse than StarCoder, with 10
fewer bugs fixed. This result is confusing because TENURE
performs well on the non-pre-trained model (RNN) of its
original paper [21], yet it performs even worse on the LLM.
To further confirm this finding, we select top-5 foundation
model families on the Big Code Models Leaderboard [50] for
additional experiments. According to Table VII, TENURE’s
one-stage strategy still performs worse than the basic fine-
tuning. In analyzing the underlying causes, we identified a
significant issue: the one-stage strategy tends to repeatedly
predict the same templates during the simultaneous prediction
of templates and patches. This redundancy limits the diversity
of template types considered, increasing the likelihood of
overlooking the correct template. To illustrate, we present
an example where the bug is successfully fixed by StarCoder
but not by StarCoder-T. As shown in Figure 3, the repair
behavior of Closure-78 removes buggy statements, and thus its
correct repair template should be RemoveBuggyStatement.
However, we found that the StarCoder-T’s predicted repair
template is always OtherTemplate, which makes it miss the
chance to synthesize the correct patch. Overall, TENURE’s
strategy proves suboptimal for predicting repair templates,
mainly due to the joint cross-entropy that tends to favor the
longer fixed code over the template, as detailed in Section II-A2.
This demonstrates that using an independent template selection
(template ranking) step is a more reasonable strategy.

The benefits of two-stage template-guided strategy.
By comparing the repair results of repair strategies ❸ ❹
❻ (StarCoder×10 vs. NTRcs and NTRns vs. NTRcs), we
can assess the contribution of NTR’s two-stage strategy in
expanding the patch space as well as improving the repair
effectiveness. 1) NTRcs vs. StarCoder×10: Limited by GPU

TABLE IX: Average correct patch rank on Defects4J V1.2.

Project Chart Closure Lang Math Mockito Time Average

NTRns 15.79 64.68 38.43 23.04 75.45 11.25 43.12
NTRcs 1.96 13.17 15.41 30.87 26.00 17.00 18.78

Improvement 87.59% 79.64% 59.90% -33.98% 65.54% -51.51% 56.45%

public int parseArguments(Parameters params) throws CmdLineException {
+ String param = null;
+ try {
- String param = params.getParameter(0);
+ param = params.getParameter(0);
+ } catch (CmdLineException e) {}

if (param == null) {
 setter.addValue(true);

Closure-83

Fig. 4: Developer patch for Closure-83.

public int parseArguments(Parameters params) throws CmdLineException {
+ String param = null;
+ try {
- String param = params.getParameter(0);
+ param = params.getParameter(0);
+ } catch (Exception e) {}

if (param == null) {
 setter.addValue(true);

Closure-83-NTR

Fig. 5: NTRcs patch for Closure-83.

memory, we set the maximum beam size to 100, which means
at most 100 patches are generated at a time. Indeed, how
to extend the patch space for enhancing the repair capability
of LLMs is a challenge that needs to be solved in the era
of LLMs [7]. NTR is designed to extend the patch space
by using multiple repair templates, StarCoder×10 extends
the patch space by sampling multiple times. As shown in
Table VI, NTRcs fixes 11 more bugs than StarCoder×10, which
indicates that NTR’s patch space extension strategy is more
effective. NTR motivates the LLM to explore towards different
repair behaviors by combining different repair templates, which
is more effective than blindly exploring the patch space by
multiple sampling. 2) NTRcs vs. NTRns: Some template-based
APR works [3], [10] simply use all templates in a fixed order,
ignoring the importance of template prioritization. Conversely,
NTR performs template ranking by training a template selection
model. As shown in Table VI, NTRcs fixes 10 more bugs than
NTRns. Besides, NTRcs suffers from a milder degree of patch
overfitting than NTRns. Specifically, we calculated the degree
of overfitting using the number of overfitting patches divided
by the number of plausible patches, NTCcs vs. NTRns =
47/175 vs. 52/170 = 26.86% vs. 30.59%. We hypothesize that
this improvement results from the template selection model
effectively elevating the rank of the correct repair template
within the candidate template space. This, in turn, indirectly
boosts the rank of the correct patch within the candidate patch
space. As shown in Table VIII, NTRcs with the template
selection model achieves a 67.67% reduction in the average
ranking of correct templates. In addition, Table IX shows that
NTRcs also gets a 56.45% reduction in the average ranking of
correct patches compared to NTRns. Overall, these results lend
support to our hypothesis, indicating that the template selection
component within NTR plays a crucial role in reducing patch
overfitting and improving the repair effectiveness.

TABLE X: Repair results for NTR on Vul4J and CBRepair.

APR Tool NTRcs StarCoder×10 VulMaster Codex-12B VulRepair
Beam Size 10 10 10 10 100

Vul4J 11/14 7/12 9/- 6.2/- 4/10
CBRepair 17/28 15/28 - - 11/24

The importance of the special repair template. By
comparing the repair results of repair strategies ❺ and ❻
(NTR∗

cs vs. NTRcs), we can clarify the importance of setting
the special template OtherTemplate. As shown in Table VI,
NTR∗

cs without the special templates fixes 9 fewer bugs than
NTRcs with the special templates, which suggests that the
setting of the special templates is important to the NTR strategy.
Recall that the introduction of the OtherTemplate in NTR
aims to address the template coverage issue, facilitating the
learning and generation of more complex repair behaviors.
We present an example where the NTR strategy, aided by
the special template, successfully fixed a bug. As shown in
Figure 4, the correct repair behavior of Closure-83 involves
complex changes in replacement and insertion. Consequently,
approaches with template coverage issues like GAMMA [10]
and AlphaRepair [9], those focusing on single-line repairs like
TENURE [21], and NTR variants without the special template
(NTR∗

cs), all failed to fix it. In contrast, Figure 5 shows that,
NTRcs effectively utilizes the special template to synthesize
the correct patches. This evidence further supports that NTRcs

mitigates the template coverage problem through the special
template, enabling the synthesis of patches for complex repair
behaviors.

C. RQ3: Generalizability Study

1) Setup: The strategy employed by NTR is theoretically
general. To validate its generalizability, we conduct experiments
on vulnerability repair. Specifically, we use StarCoder as the
foundation model, Recoder and VulGen datasets as the training
dataset, and Vul4J and CBRepair as the test benchmarks.
Since SC4FT is Java-specific, we manually labeled templates
for C/C++ samples in VulGen to accommodate language
differences. We extracted the best repair results from the
recent vulnerability repair work [6], [57] and re-implemented
VulRepair [8] in our dataset for comparison. We set the same
beam size of 10 as in recent work [6], and considering that
VulRepair uses a small-scale model, we set the beam size to
100 for it. The purpose of this experiment is to explore whether
NTR can work effectively in vulnerability repair scenarios.

2) Result: Table X presents the repair results of NTR on
Vul4J and CBRepair. In total, NTR repaired 6 more vulner-
abilities than the foundation model StarCoder×10, achieving
a 27.27% improvement. This result again demonstrates the
effectiveness of the NTR strategy. In addition, NTR fixed
2 more samples than the SOTA vulnerability repair work
VulMaster [57] on Vul4J, achieving a 22.22% improvement.
This shows that the LLM-based implementation of NTR can
generalize well to other similar tasks.

V. THREATS TO VALIDITY

1) Data Leakage: The pre-training data of LLMs may
contain correct patches for buggy projects, which could affect
the evaluation. We mitigate this threat from three ways: First,
the LLM we used, StarCoder, provides a page [58] that can
detect data leakage, which helps us detect and understand how
our experimental results suffer from data leakage. Specifically,
we detected the correct patches generated by NTRcs on
Defects4J V1.2 in our main experiment and found that 8
(Closure-15/38/63, Lang-10/24/33/43, Math-104) of them were
threatened by data leakage. Even removing these 8 bugs,
NTRcs still repairs 120 (128-8) bugs, which is still ahead
of the best baseline ChatRepair (120 vs. 114). Second, our
main experiment was also conducted on HumanEval-Java, a
synthetic benchmark designed to prevent data leakage. Third,
since the NTR strategy is designed to further improve the
repair capability of LLMs, we have compared NTR with the
foundation model. Regardless of potential data leakage in the
LLM, one strategy can be deemed successful as long as it
demonstrates enhanced repair results. As shown in Table III,
Table IV, and Table X, the results from NTR consistently
outperform the foundational model, and thus the threats of data
leakage is minimized.

2) Repair Efficiency: The substantial size of LLMs implies
more time and memory costs for training and inference. We
recognize this as a potential impact on repair efficiency, which
we intend to analyze through two ways: 1) Time Cost.
During the model fine-tuning phase, the StarCoder-based NTR
implementation (NTRcs) took 35 hours and the CodeLlama-
based NTR implementation (NTRcl) took 85 hours. Fortunately,
model fine-tuning is a one-time cost and the fine-tuned model
can be used directly in the repair workflow. In the model
inference phase, it took an average of 0.61s for NTRcs to
generate a patch, and 3.76s for NTRcl. It is undeniable that
using a larger scale CodeLlama costs more time while bringing
better repair capabilities. In the future, we expect more model
acceleration techniques to mitigate this problem. 2) Memory
Cost. We use QLoRA [54] to save memory without sacrificing
performance. Specifically, we use 8 Bit Quantization and LoRA
for StarCoder so that only about 20G of memory is needed to
load the model, we use 4 Bit Quantization and LoRA for the
larger CodeLlama, which allows us to load the model with 40G
of memory. Such memory costs allow researchers to deploy
these LLMs on consumer-grade GPUs (e.g., two RTX 3090
24G). Also, NTR iteratively guides patch synthesis, which
expands the patch space under memory constraints. Overall,
we mitigate the memory cost threat using the QLoRA technique
and NTR’s design choices.

VI. RELATED WORK

APR research has entered the era of LLMs. Researchers are
devoted to designing novel repair strategies to maximize the
repair potential of LLM. Based on the methodologies of patch
generation, we categorize LLM-based APR approaches into
mask prediction, sequence transformation, and other methods.

Mask prediction-based (i.e., infilling) works typically draw
on specifically designed repair templates to guide the LLM to
fill in masked locations by constructing masking prompts based
on these templates. This approach uses pre-training tasks (e.g.,
MLM [59]) for the LLMs to generate patches directly. The
earliest work was AlphaRepair [9], which introduced the zero-
shot learning paradigm to the APR task, yielding surprisingly
effective results. Subsequent works such as FitRepair [46] and
Repilot [60] also use this paradigm. Similarly, GAMMA [10]
leverages templates derived from prior template-based studies
and applies the zero-shot learning paradigm. Another similar
work is TypeFix [61], which automatically mines templates
from the repair history and focuses only on Python type errors.
However, most advanced LLMs, such as CodeLlama-70B, are
not designed for cloze tasks, making it difficult to directly
leverage them for mask prediction.

Sequence transformation-based (i.e, NMT) works typically
tag the fault location and simultaneously feed the buggy code
along with its context into the model. This enables the model to
generate the appropriate transformations (patches). For example,
VulRepair [8], InferFix [62], and recent empirical studies [6],
[7], [12] have adopted this approach. The advantage of this
approach is that the model is able to generate patches based on
the defective code and its context, and has a broad applicability.
However, merely fine-tuning LLMs might not represent the
most effective strategy for automated program repair. Compared
to the above work, our approach effectively incorporates prior
domain knowledge (i.e., templates) into the fine-tuning process,
thereby enhancing its overall effectiveness.

Additionally, LLMs with language comprehension and gener-
ation capabilities can also be utilized to automatically generate
fixes in an interactive way. For instance, ChatRepair [20]
interleaves patch generation with instant feedback to perform
APR in a conversational style. More recently, the focus
has shifted toward developing agents that enable LLMs to
emulate the human debugging process to address real-world
bugs, exemplified by RepairAgent [63], FixAgent [64], and
AutoCodeRover [65]. These approaches enhance automated
repair systems by incorporating interactive tools and iterative
refinement processes. In the future, building frameworks for
multi-agent collaboration to tackle real-world programming
challenges appears to be a promising direction.

VII. CONCLUSION

This paper presents NTR, a fully LLM-powered, template-
guided repair framework that enriches the template-based APR
method by fine-tuning LLMs for enhanced template selection
and patch generation. This two-phrase strategy effectively
empowers LLMs to synthesize accurate patches under the
direction of repair templates, which further unlocks their
generative capabilities. Furthermore, NTR’s patch generation
is not confined by template coverage limitations. Through
experiments, NTR achieves SOTA results, demonstrating the
effectiveness of our approach.

ACKNOWLEDGEMENT

We thank the reviewers for their insightful comments and sug-
gestions. This research is supported by the National Research
Foundation, Singapore, and the Cyber Security Agency under
its National Cybersecurity R&D Programme (NCRP25-P04-
TAICeN). Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s)
and do not reflect the views of National Research Foundation,
Singapore and Cyber Security Agency of Singapore.

REFERENCES

[1] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, TSE, vol. 38, no. 1, pp. 54–72, 2011.

[2] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in 35th International Conference
on Software Engineering, ICSE, 2013, pp. 772–781.

[3] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting
template-based automated program repair,” in 28th International Sympo-
sium on Software Testing and Analysis, ISSTA, 2019, pp. 31–42.

[4] Q. Zhang, C. Fang, Y. Ma, W. Sun, and Z. Chen, “A survey of
learning-based automated program repair,” ACM Transactions on Software
Engineering and Methodology, TOSEM, vol. 33, no. 2, pp. 1–69, 2023.

[5] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining
zero-shot vulnerability repair with large language models,” in 2023 IEEE
Symposium on Security and Privacy, SP, 2022, pp. 1–18.

[6] Y. Wu, N. Jiang, H. V. Pham, T. Lutellier, J. Davis, L. Tan, P. Babkin,
and S. Shah, “How effective are neural networks for fixing security
vulnerabilities,” in 32nd International Symposium on Software Testing
and Analysis, ISSTA, 2023, p. 1282–1294.

[7] K. Huang, X. Meng, J. Zhang, Y. Liu, W. Wang, S. Li, and Y. Zhang,
“An empirical study on fine-tuning large language models of code
for automated program repair,” in 38th International Conference on
Automated Software Engineering, ASE, 2023, pp. 1162–1174.

[8] M. Fu, C. Tantithamthavorn, T. Le, V. Nguyen, and D. Phung, “Vulrepair:
a t5-based automated software vulnerability repair,” in 30th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE, 2022, pp. 935–947.

[9] C. S. Xia and L. Zhang, “Less training, more repairing please: revisiting
automated program repair via zero-shot learning,” in 30th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE, 2022, pp. 959–971.

[10] Q. Zhang, C. Fang, T. Zhang, B. Yu, W. Sun, and Z. Chen, “Gamma:
Revisiting template-based automated program repair via mask prediction,”
in 38th International Conference on Automated Software Engineering,
ASE, 2023, pp. 535–547.

[11] W. Wang, Y. Wang, S. Joty, and S. C. Hoi, “Rap-gen: Retrieval-augmented
patch generation with codet5 for automatic program repair,” in 31st ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE, 2023, pp. 146–158.

[12] N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language
models on automated program repair,” in 45th International Conference
on Software Engineering, ICSE, 2023, pp. 1430–1442.

[13] A. Silva, S. Fang, and M. Monperrus, “Repairllama: Efficient repre-
sentations and fine-tuned adapters for program repair,” arXiv preprint
arXiv:2312.15698, 2023.

[14] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches in
the wild via neural machine translation,” ACM Transactions on Software
Engineering and Methodology, TOSEM, vol. 28, no. 4, pp. 1–29, 2019.

[15] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk, and
M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-to-
end program repair,” IEEE Transactions on Software Engineering, TSE,
vol. 47, no. 9, pp. 1943–1959, 2019.

[16] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
combining context-aware neural translation models using ensemble for
program repair,” in 29th International Symposium on Software Testing
and Analysis, ISSTA, 2020, pp. 101–114.

[17] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code transfor-
mation learning for automated program repair,” in 42nd International
Conference on Software Engineering, ICSE, 2020, pp. 602–614.

[18] Q. Zhu, Z. Sun, Y. Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang, “A
syntax-guided edit decoder for neural program repair,” in 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE, 2021, pp. 341–
353.

[19] H. Ye, M. Martinez, and M. Monperrus, “Neural program repair with
execution-based backpropagation,” in 44th International Conference on
Software Engineering, ICSE, 2022, pp. 1506–1518.

[20] C. S. Xia and L. Zhang, “Automated program repair via conversation:
Fixing 162 out of 337 bugs for $0.42 each using chatgpt,” in 33rd
International Symposium on Software Testing and Analysis, ISSTA, 2024.

[21] X. Meng, X. Wang, H. Zhang, H. Sun, X. Liu, and C. Hu, “Template-
based neural program repair,” in 45th International Conference on
Software Engineering, ICSE, 2023, pp. 1456–1468.

[22] “Hugging face: codellama/codellama-70b-hf,” https://huggingface.co/
codellama/CodeLlama-70b-hf, 2024.

[23] X. Meng, X. Wang, H. Zhang, H. Sun, and X. Liu, “Improving
fault localization and program repair with deep semantic features and
transferred knowledge,” in 44th International Conference on Software
Engineering, ICSE, 2022, pp. 1169–1180.

[24] C. Niu, C. Li, V. Ng, D. Chen, J. Ge, and B. Luo, “An empirical
comparison of pre-trained models of source code,” in 45th International
Conference on Software Engineering, ICSE, 2023, pp. 2136–2148.

[25] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine
translation for automatic program repair,” in 43rd International Confer-
ence on Software Engineering, ICSE, 2021, pp. 1161–1173.

[26] N. Jiang, T. Lutellier, Y. Lou, L. Tan, D. Goldwasser, and X. Zhang,
“Knod: Domain knowledge distilled tree decoder for automated program
repair,” in 45th International Conference on Software Engineering, ICSE,
2023.

[27] J. Chi, Y. Qu, T. Liu, Q. Zheng, and H. Yin, “Seqtrans: automatic
vulnerability fix via sequence to sequence learning,” IEEE Transactions
on Software Engineering, TSE, vol. 49, no. 2, pp. 564–585, 2022.

[28] Y. Li, S. Wang, and T. N. Nguyen, “Dear: A novel deep learning-based
approach for automated program repair,” in 44th International Conference
on Software Engineering, ICSE, 2022, pp. 511–523.

[29] Q. Zhu, Z. Sun, W. Zhang, Y. Xiong, and L. Zhang, “Tare: Type-aware
neural program repair,” in 45th International Conference on Software
Engineering, ICSE, 2023.

[30] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in 35th International Conference
on Software Engineering, ICSE, 2013, pp. 802–811.

[31] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Avatar: Fixing
semantic bugs with fix patterns of static analysis violations,” in 26th
International Conference on Software Analysis, Evolution and Reengi-
neering, SANER, 2019, pp. 1–12.

[32] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Monperrus,
and Y. Le Traon, “Fixminer: Mining relevant fix patterns for automated
program repair,” Empirical Software Engineering, EMSE, vol. 25, pp.
1980–2024, 2020.

[33] M. Martinez and M. Monperrus, “Mining software repair models for
reasoning on the search space of automated program fixing,” Empirical
Software Engineering, EMSE, vol. 20, pp. 176–205, 2015.

[34] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL, 2016, pp. 298–312.

[35] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective
object-oriented program repair,” in 32nd International Conference on
Automated Software Engineering, ASE, 2017, pp. 648–659.

[36] Z. Zeng, H. Tan, H. Zhang, J. Li, Y. Zhang, and L. Zhang, “An extensive
study on pre-trained models for program understanding and generation,”
in 31st International Symposium on Software Testing and Analysis, ISSTA,
2022, pp. 39–51.

[37] X. Meng, “Sc4ft: Syntax checker for fix templates,” https://github.com/
mxx1219/SC4FT, 2022.

[38] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” in 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE, 2020, pp. 1433–1443.

[39] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement,
D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine learning

benchmark dataset for code understanding and generation,” arXiv preprint
arXiv:2102.04664, 2021.

[40] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding
and generation,” in 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP, 2021, pp. 8696–8708.

[41] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud,
D. Yogatama, M. Bosma, D. Zhou, D. Metzler et al., “Emergent abilities
of large language models,” Transactions on Machine Learning Research,
2022.

[42] Y. Nong, Y. Ou, M. Pradel, F. Chen, and H. Cai, “Vulgen: Realistic
vulnerability generation via pattern mining and deep learning,” in 45th
International Conference on Software Engineering, ICSE, 2023, pp. 2527–
2539.

[43] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: a database of existing faults
to enable controlled testing studies for java programs,” in International
Symposium on Software Testing and Analysis, ISSTA, 2014, pp. 437–440.

[44] Q.-C. Bui, R. Scandariato, and N. E. D. Ferreyra, “Vul4j: a dataset of
reproducible java vulnerabilities geared towards the study of program
repair techniques,” in 19th International Conference on Mining Software
Repositories, MSR, 2022, pp. 464–468.

[45] E. Pinconschi, R. Abreu, and P. Adão, “A comparative study of
automatic program repair techniques for security vulnerabilities,” in 32nd
International Symposium on Software Reliability Engineering, ISSRE,
2021, pp. 196–207.

[46] C. S. Xia, Y. Ding, and L. Zhang, “The plastic surgery hypothesis in
the era of large language models,” in 38th International Conference on
Automated Software Engineering, ASE, 2023, pp. 522–534.

[47] J. Jiang, Z. Zhao, Z. Ye, B. Wang, H. Zhang, and J. Chen, “Enhancing
redundancy-based automated program repair by fine-grained pattern
mining,” arXiv preprint arXiv:2312.15955, 2023.

[48] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton,
M. Bhatt, C. Canton-Ferrer, A. Grattafiori, W. Xiong, A. Défossez,
J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and
G. Synnaeve, “Code llama: Open foundation models for code,” arXiv
preprint arXiv:2308.12950, 2023.

[49] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source
be with you!” arXiv preprint arXiv:2305.06161, 2023.

[50] “Big code models leaderboard,” https://huggingface.co/spaces/bigcode/
bigcode-models-leaderboard, 2024.

[51] “Hugging face: bigcode/starcoderbase,” https://huggingface.co/bigcode/
starcoderbase, 2024.

[52] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,” in
10th International Conference on Learning Representations, ICLR, 2022.

[53] “Hugging face: Quantization,” https://huggingface.co/docs/transformers/
main/main classes/quantization, 2023.

[54] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora:
Efficient finetuning of quantized llms,” Advances in Neural Information
Processing Systems, NIPS, vol. 36, 2024.

[55] H. Ye and M. Monperrus, “Iter: Iterative neural repair for multi-location
patches,” in 46th International Conference on Software Engineering,
ICSE, 2024, pp. 1–13.

[56] S. Saha, R. K. Saha, and M. R. Prasad, “Harnessing evolution for multi-
hunk program repair,” in 41st International Conference on Software
Engineering, ICSE, 2019, pp. 13–24.

[57] X. Zhou, K. Kim, B. Xu, D. Han, and D. Lo, “Out of sight, out of
mind: Better automatic vulnerability repair by broadening input ranges
and sources,” in 46th International Conference on Software Engineering,
ICSE, 2024, pp. 1–13.

[58] “Data portraits,” https://stack.dataportraits.org/, 2024.
[59] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,

T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” in Findings of the Association for
Computational Linguistics: EMNLP, 2020, pp. 1536–1547.

[60] Y. Wei, C. S. Xia, and L. Zhang, “Copiloting the copilots: Fusing large
language models with completion engines for automated program repair,”
in 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE,
2023, pp. 172–184.

[61] Y. Peng, S. Gao, C. Gao, Y. Huo, and M. Lyu, “Domain knowledge
matters: Improving prompts with fix templates for repairing python type

https://huggingface.co/codellama/CodeLlama-70b-hf
https://huggingface.co/codellama/CodeLlama-70b-hf
https://github.com/mxx1219/SC4FT
https://github.com/mxx1219/SC4FT
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/bigcode/starcoderbase
https://huggingface.co/bigcode/starcoderbase
https://huggingface.co/docs/transformers/main/main_classes/quantization
https://huggingface.co/docs/transformers/main/main_classes/quantization
https://stack.dataportraits.org/

errors,” in 46th International Conference on Software Engineering, ICSE,
2024, pp. 1–13.

[62] M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N. Sundaresan, and
A. Svyatkovskiy, “Inferfix: End-to-end program repair with llms,” in 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE, 2023, pp. 1646–
1656.

[63] I. Bouzenia, P. Devanbu, and M. Pradel, “Repairagent: An autonomous,
llm-based agent for program repair,” arXiv preprint arXiv:2403.17134,
2024.

[64] C. Lee, C. S. Xia, J.-t. Huang, Z. Zhu, L. Zhang, and M. R. Lyu, “A
unified debugging approach via llm-based multi-agent synergy,” arXiv
preprint arXiv:2404.17153, 2024.

[65] Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury, “Autocoderover:
Autonomous program improvement,” in 33rd International Symposium
on Software Testing and Analysis, ISSTA, 2024.

	Introduction
	approach
	Model Fine-Tuning
	Template Selection Model Training
	Patch Generation Model Training

	Model Inference
	Template Prioritization
	Iterative Patch Generation

	Experiment Setup
	Research Questions
	Dataset
	Training Dataset
	Testing Benchmark

	Baselines
	Implementation
	Template Selection
	Patch Generation
	Fault Localization and Patch Validation

	Experiment Result
	RQ1: Repair Effectiveness
	Setup
	Result

	RQ2: Ablation Study
	Setup
	Result

	RQ3: Generalizability Study
	Setup
	Result

	Threats to Validity
	Data Leakage
	Repair Efficiency

	Related Work
	Conclusion
	References

