
KNOD: Domain Knowledge Distilled Tree Decoder
for Automated Program Repair

Nan Jiang
Purdue University

West Lafayette, USA

jiang719@purdue.edu

Lin Tan
Purdue University

West Lafayette, USA

lintan@purdue.edu

Thibaud Lutellier
University of Alberta1

Alberta, Canada

lutellie@ualberta.ca

Dan Goldwasser
Purdue University

West Lafayette, USA

dgoldwas@purdue.edu

Yiling Lou
Fudan University2

Shanghai, China

yilinglou@fudan.edu.cn

Xiangyu Zhang
Purdue University

West Lafayette, USA

xyzhang@cs.purdue.edu

Abstract—Automated Program Repair (APR) improves soft-
ware reliability by generating patches for a buggy program
automatically. Recent APR techniques leverage deep learning
(DL) to build models to learn to generate patches from existing
patches and code corpora. While promising, DL-based APR
techniques suffer from the abundant syntactically or semantically
incorrect patches in the patch space. These patches often disobey
the syntactic and semantic domain knowledge of source code and
thus cannot be the correct patches to fix a bug.

We propose a DL-based APR approach KNOD, which in-
corporates domain knowledge to guide patch generation in a
direct and comprehensive way. KNOD has two major novelties,
including (1) a novel three-stage tree decoder, which directly
generates Abstract Syntax Trees of patched code according to the
inherent tree structure, and (2) a novel domain-rule distillation,
which leverages syntactic and semantic rules and teacher-student
distributions to explicitly inject the domain knowledge into the
decoding procedure during both the training and inference phases.

We evaluate KNOD on three widely-used benchmarks. KNOD
fixes 72 bugs on the Defects4J v1.2, 25 bugs on the QuixBugs,
and 50 bugs on the additional Defects4J v2.0 benchmarks,
outperforming all existing APR tools.

Index Terms—Automated Program Repair, Abstract Syntax
Tree, Deep Learning

I. INTRODUCTION

Since developers spend nearly half of their time fixing bugs

(49%±39%) [1], support to help developers fix bugs is in high
demand. Automated program repair [2]–[4] exactly provides

such support, which generates patches for buggy programs

with little manual effort to improve software reliability and re-

duce software development costs. With the rapid development

of deep learning, recent learning-based APR techniques [5]–

[12] leverage advanced DL techniques to generate patches

by learning from existing code corpora. DL-based APR often

formulates APR as the translation from the given buggy code

to the correct one and adopts neural machine translation

(NMT) techniques. They typically follow an encoder-decoder

1This work is done when Thibaud was at University of Waterloo.
2This work is done when Yiling was at Purdue University.

architecture, where the encoder first embeds the buggy code,

while the decoder generates the patched code iteratively. The

generated patches are then validated against test cases.

One major challenge of DL-based APR is that invalid (i.e.,

syntactically or semantically incorrect) patches dominate in the

patch space [5], [7], [8], [10], which hurts the effectiveness and

efficiency of patch generation. This challenge is exacerbated

because traditional DL encoders and decoders are designed

and built for input such as images and text instead of source

code. Different from images and text, source code is a formal

language with its own syntax and semantics. Thus, patches

disobeying such syntactic and semantic domain knowledge
cannot be correct patches to fix a bug.

Ideally, given source code and patches as training data,

one expects traditional DL models to learn code syntax and

semantics well. However, in practice, such models generate a

large portion of uncompilable and incorrect patches [6]–[8],

[10], wasting a daunting amount of computing power and, in

many cases preventing correct patches from being generated

with bounded resources. Thus, it is crucial to enforce syntactic

and semantic rules directly on DL models. In addition, such

rules must be enforced during the training phase, as opposed to

during inference only (e.g., filtering out generated patches that

cannot be parsed or type-checked), because enforcing syntax

and semantics during inference still causes a large portion (as

high as 91%) of uncompilable and incorrect patches [8], [10].

To leverage domain knowledge to guide DL-based APR in a

direct and comprehensive way, we propose a novel DL-based
APR approach—KNOD, consisting of a novel three-stage
decoder with domain-rule distillation. KNOD has two major

novelties. First, different from previous work that generates

sequences or production rules [6]–[8], [10], our three-stage
decoder directly generates ASTs of patched code from root

to children according to the AST tree structure with three
decoders: a parent decoder, an edge decoder, and a node
decoder. Such a three-stage design enforces the model to

naturally capture the tree structure in the ASTs, helping the

model learn AST syntax and semantics.

1251

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00111

http://crossmark.crossref.org/dialog/?doi=10.1109%2FICSE48619.2023.00111&domain=pdf&date_stamp=2023-07-26

Second, the decoder incorporates a domain-rule distillation
component to explicitly inject the domain knowledge into the

decoding procedure. Specifically, the domain-rule distillation

component first represents syntax and semantics as rules ex-

pressed in first-order logic (FOL). It then uses these logic rules

to refine the teacher-student probability distributions to guide

our model to learn to follow these syntactic and semantic rules.

Different from existing work, our domain-rule distillation uses

logic rules to explicitly modify the optimization function in the
decoding procedure in both the training and inference phases,
which thus should have a stronger capability of utilizing

domain knowledge.

In summary, this paper makes the following contributions.

• A three-stage tree decoder to directly generate Abstract
Syntax Trees (ASTs) in three stages to capture tree

structures, syntax, and semantics,

• A domain-rule distillation during training and infer-
ence to explicitly modify the optimization function to
guide the three-stage tree decoder to follow code syntax

and semantics,

• An APR technique KNOD based on the proposed

domain-knowledge-distilled tree-decoder architecture,

• An evaluation of KNOD on three widely-used bench-

marks, Defects4J v1.2, Defects4J v2.0 [13], and

QuixBugs [14]. KNOD outperforms all existing non-

DL and DL-based approaches by fixing 72 bugs on

Defects4J v1.2, fixing 8 and 19 more bugs than the most

effective DL-based and non-DL-based APR techniques,

respectively. KNOD also fixes the most bugs, 25 and 50,

on the QuixBugs and Defects4J v2.0 benchmarks, which

shows KNOD’s generalizability.

II. APPROACH

This section presents our proposed approach, KNOD. Sec-

tion II-A gives an overview of KNOD. Section II-B shows

how KNOD represents code; Sections II-C to II-E describes

the DL models; Section II-F presents training and inference;

Section II-G describes patches’ generation and validation.

A. Overview

KNOD consists of two phases: the training phase and the

inference phase. During the training phase, KNOD takes buggy

code and its patches as input and trains a model (an encoder

and a decoder) to learn how to generate patches to fix bugs

automatically. During the inference phase, KNOD takes an

unseen buggy project, including the location of buggy lines as

input, which are standard input that existing APR techniques

take [5]–[8], [10]. KNOD’s trained decoder generates ASTs,

which are then reconstructed into patched code. KNOD then

automatically validates these code patches with test cases to

generate candidate patches for developers to review.

Figure 1 illustrates how KNOD fixes the Closure-123 bug in

the widely-used bug benchmark Defects4J. The Closure-123

bug is uniquely fixed by KNOD. Given the buggy function and

the bug location (step 1 , where the bug is in a yellow back-

ground), KNOD normalizes the buggy function by replacing

uncommon identifiers with normalized textual representations

(step 2 , Section II-B) and then builds the Abstract Syntax

Graph (ASG) of the normalized buggy function (step 3 ,

Section II-B). The ASG is the input to KNOD’s APR model,

which is trained to decode the AST of a normalized patch

(steps 4 and 5 , Sections II-C ∼ II-F). KNOD transforms the
AST into a patch in its normal form (step 6 , Section II-G),

which is eventually instantiated into a real code patch by

replacing the abstract tokens with the concrete identifiers (step

7 , Section II-G).

Figure 2 presents the overview of KNOD’s domain-
knowledge-distilled tree-decoder architecture which has

two main novelties.

Novelty 1: three-stage tree decoder. First, different from
existing APR work that generates sequences or production

rules, our three-stage tree decoder generates bug fixes in an
AST format directly (Section II-D), which is then automat-

ically converted to source code (Section II-G). Specifically,

our three-stage tree decoder includes three decoders: (i) a

parent decoder, which selects the parent node among generated

nodes to work on at each step, (ii) an edge decoder, which

generates an edge for the parent node that was selected by the

parent decoder, and generates the label of the edge (differ from

standard ASTs, our ASTs have labels for edges to be leveraged

by models as detailed in Section II-B “ASTs and Abstract

Syntax Graphs”), and (iii) a node decoder, which generates a

new node connected to the edge generated by the edge decoder.

Different from existing APR decoders that generate patches
as token sequences [6]–[8], our decoder generates patches in
ASTs with explicit structure. As such, our model is forced to
learn explicit code structure. Compared to those generating
patches as grammar production rules, our decoder emits AST
edges with explicit labels, distinguishing various edge labels.
In addition, tree generation is incremental, with one edge and
one node emitted at a time. Such a design enables fine-grained
control over the quality of generated trees (e.g., enforcing
syntactic and semantic validity during generation).
Using Figure 1 4 as an example, KNOD’s decoder starts

from the root node BlockStmt, which is always the same as
the root node of the buggy AST (3). In step 1, our decoder

selects BlockStmt as the parent node for this step, generates an
edge with label statements for this parent, and then generates
the next node LocalVarDecl. In step 2, our decoder selects
node LocalVarDecl as the parent, generates an edge of label
type, and the next node RefType. The resulting AST is in
Figure 1 5 . Section IV-B shows that with a three-stage tree

decoder, KNOD fixes more bugs.

Novelty 2: domain-rule distillation during training and
inference. Second, a straightforward design is to first use
KNOD’s decoder to generate many candidate patch ASTs and

then use the parser, type checker, and test suite to rule out the

invalid ones, similar to existing APR techniques [6]–[8], [10].

However, without training the decoder to generate syntactically

and semantically valid patches, most of the generated ASTs

are invalid, which incurs substantial validation overhead and

1252

Fig. 1: An example of KNOD fixing bug Closure-123 in Defects4J. Stmt stands for Statement, Var is Variable, Decl is
Declaration, Ref is Reference, Func is Function, and Invoc is Invocation.
prevents correct fixes from being generated with bounded

efforts.

Therefore, a critical design choice of KNOD is domain-
rule distillation, which enforces KNOD’s decoder to generate
valid patches during training in addition to the inference phase.

Specifically, during training, we universally encode the gram-

mar and type-checking rules as first-order logic formulas. We

create a teacher distribution using these logic rules to modify

the student distribution, which is the distribution from our

encoder-decoder model. We create a loss between the student
distribution (model distribution) and the teacher distribution
(model distribution with syntactic and semantic rules), and add
this loss to penalize ASTs that violate the grammatical or type
rules. This loss is added to the traditional loss used by APR
techniques, which is between the student distribution (model

distribution) and the ground-truth labels (correct developer

patches in training data). The teacher-student loss enables
domain knowledge transfer to the models’ weights at each
iteration [15]. In summary, our domain-rule distillation enables
our APR models to learn from both the training data and the

logic rules. During inference, the model automatically distills

the invalid generations and emits the likely valid ones.

For the Closure-123 bug in Figure 1, an example seman-

tic rule is that when the model generates a member (e.g.,

context) as an argument of a function invocation (e.g.,

FUNC13(context)), only nodes whose types are compat-

ible with that function’s argument type should be gener-

ated. Figure 1 2 shows that FUNC13 was normalized from

getContextForNoInOperator, whose argument type is

Context. Thus, only identifiers whose types are compatible

with type Context are valid. Our domain-rule distillation sets

the probabilities of all identifiers with incompatible types to

0. As a result, the decoder can generate the correct node

context instead of p (of type int), which has the highest

probability without domain-rule distillation.

An example syntactic rule is that node MemberRef must

have only one edge of label member (for member reference,
there must be one and only one member). Since our domain-

rule distillation modifies the distributions during training (sim-

ilar to the example above to set the probabilities of invalid

edge/node labels to 0), which teaches the model (by modifying

model weights) to give the edge of label member the highest
probability for the parent node MemberRef during inference,
KNOD generates a valid AST. Section IV-B shows that with

domain-rule distillation, KNOD fixes more bugs.

B. Data Preprocessing and Extraction

KNOD normalizes a given buggy function and its patch and

parses them into Abstract Syntax Graphs, which are directional

graphs with edges added to connect sibling nodes in an AST.

Such additional edges enable closer distance between sibling

nodes to help models learn syntaxes and semantics effectively.

While the edges between siblings nodes are useful for the

encoder to facilitate learning, they are not part of source code

and do not need to be generated by our decoder, because it is

trivial to add such edges to a generated AST. Thus, we only

need an AST decoder.

Code Normalization. Due to the potentially unlimited num-
ber of unique identifiers in source code, NMT-based APR

models [6]–[8] usually suffer from the large vocabulary size

issue and the out-of-vocabulary problem. Therefore, to address

these issues, KNOD first performs code normalization by

applying src2abs [16], [17] to transform identifiers (e.g., data

types, function names, variable names, and literal values) to

normalized textual representation. For example, the buggy

function for bug Closure-123 (Figure 1 1) is transformed

to normalized code (Figure 1 2), where the mappings from

normalized identifiers to concrete identifiers are kept for re-

construction later. In addition, we denote identifiers that appear

only in the patch but not in the buggy function as unknown

identifiers, which are normalized to special placeholders (e.g.,

“TYPE-UNK”, “FUNC-UNK”, and “VAR-UNK”).

1253

Fig. 2: Architecture of KNOD’s model, including a graph-transformer encoder, a three-stage tree decoder (parent,
edge, and node decoder), and a domain-rule distillation module.

ASTs and Abstract Syntax Graphs. After parsing the nor-
malized code of the buggy function and the patched line into

ASTs, KNOD then represents these ASTs as Abstract Syntax
Graphs. ASG is a directional graph whose vertices are the

AST nodes, while edges are (i) the original edges between

AST nodes, and (ii) the new edges between each AST node

and its siblings, which make them graphs instead of trees. For

example, Figure 1 3 illustrates the ASG of the normalized

buggy function of the Closure-123 bug. In classic ASTs, edges

are introduced between a nonterminal symbol on the left-hand

side of a production rule (i.e., the parent) to the symbols,

terminal or nonterminal, on the right-hand side of the rule

(i.e., the children). While these edges are often not labeled,

they have different semantics, which can be leveraged in model

training. Thus, we label these edges explicitly. For example,

in Figure 1 3 , node LocalVarDecl has two child nodes—
node RefType denoting a reference type (i.e., Context), and
node VarDecl denoting a variable declaration. The two edges
LocalVarDecl → RefType and LocalVarDecl → VarDecl
have different meanings. Therefore, we introduce explicit edge

labels, such as type and declarators for the aforementioned
two edges. These labels provide different granularities of

information compared to node labels. For instance, a type
edge may lead to various child nodes such as RefType and
BasicType. We use the additional information carried by edge
labels to improve the model. For example, given the parent

LocalVarDecl node, without the label type, a decoder could
generate invalid nodes such as FUNC5. In contrast, with the

label type, a decoder could learn to focus on generating type
nodes such as RefType. We use the javalang parser to

directly extract and create these edge and node labels from

code. Our design is unique compared to the state-of-the-art [9],

[10], which do not use explicit edge labels.

C. Encoder

During both training and inference, our encoder takes ASGs of

normalized buggy functions as input and output embeddings

of these functions to be used by our decoder. We chose graph-

transformer [18], [19] as the architecture for our encoder,

given its superior scalability and learning capability on graph-

structured data. To improve the encoder’s effectiveness, we

apply sequence self-attention and ASG self-attention to the
encoder to highlight dependencies between every node pair

and every adjacent ASG node pair.

Following existing work [10], [18]–[20], we use two vec-

tors/matrices (“ASG Node Sequence” and “Adjacency Matrix”

in Figure 2) to represent each ASG, which are the input

formats that a deep learning encoder can take. The ASG

Node Sequence, notated by {ni} = (n1, n2, . . . , nL), is a
sequence of node names following a pre-order traverse of ASG

(e.g., [BlockStmt, LocalVarDecl, ...]). The adjacency matrix
A = {aij} keeps the edge information where aij = 0 means
there is no edge between node ni and nj , while aij = k
means nodes ni and nj are linked by an edge whose label

is k (e.g., statements). The remaining input to the encoder is
“Buggy Location Sequence” (Figure 2). To let the encoder

know which nodes in the ASG node sequence belong to

the buggy line, KNOD locates the ASG nodes belonging to

the buggy line, and generates them as a “Buggy Location

Sequence” {ti} = (t1, t2, . . . , tL) that follows the same order
as ni, where ti = 1 means node ni belongs to the buggy lines

and ti = 2 means node ni belongs to non-buggy lines.

The ASG node sequence, adjacency matrix, and buggy

location sequence are converted to vectorized embeddings for

later computation. Respectively, {ni} is the sequence of ASG
node embedding, A = {aij} is the embedding of edges in the
adjacency matrix, and {ti} is the sequence of buggy location
embedding (in this paper, we use light letters for names, labels,

etc., use bolded letters for vectors, embeddings, etc., and use
{} for sequence). To let the model learn positional and order
information, a positional embedding [21], [22] {pi} is used to
encode the absolute index of each node (1, 2, etc.) in the ASG

node sequence. All the embeddings are learned by the encoder,

and each node ni is represented by a vector ei = ni+ti+pi.

The encoded vectors {ei} are then fed to a stack of encoder
blocks (the number of encoder blocks is configurable), and

each encoder block contains a sequence self-attention module
and an ASG self-attention module.

Attention in Encoder. The self-attention module follows the
standard architecture in existing architectures [18], [19], [21].

1254

The sequence self-attention captures the dependencies between

embeddings of every node pair in the ASG node sequence,

which is widely used in sequential transformer-based neural

networks [21]. The ASG self-attention explicitly highlights

the dependencies between adjacent nodes. Different from

traditional tree self-attention, which considers node features

only, our ASG self-attention considers both node and edge

features. The attention-based hidden states later are fed to a

normalization layer [21], [23] and a feed-forward layer [21] to

get the final encoder output {he
i }, which are the hidden states

for each node in ASG for the input buggy function.

D. Novelty 1: Three-Stage Tree Decoder

Decoding ASTs (more generally, decoding trees) for modern

languages such as Java is challenging and less studied. Since

modern programming languages such as Java are not context-

free, a straightforward approach to decoding trees defined by

a context-free grammar that constructs a tree from its root

to leaves based on production rules does not work well for

Java [24]. Besides, ASTs are domain-specific trees with labels

on edges, e.g., declarators and initializer in Figure 1. Thus,
a decoding method needs to decode the edge labels properly.

Thus, we propose a novel three-stage tree decoder that decodes

AST nodes and edges iteratively. Specifically, our three-stage

tree decoder includes three sub-decoders: (i) a parent decoder,

which selects the parent node among generated nodes to work

on at each step, (ii) an edge decoder, which generates an

edge for the parent node selected by the parent decoder, and

generates the label of the edge, and (iii) a node decoder, which

generates a new node connected to the edge generated by the

edge decoder.

1) Parent Decoder: The parent decoder, as the first part
of the three-stage tree decoder, takes three inputs, including

(i) the encoder’s output {he
i }, (ii) the node vectors edi (i.e.,

edi = nd
i + pd

i , the sum of the embedding of the node

sequence {nd
i } and the positional embedding pd

i), and (iii)

the adjacency matrix {ad
ij} of the partially generated AST

(i.e., the partial AST that the decoder has generated from

the beginning to the current decoding iteration). As shown in

Figure 2, the parent decoder contains a sequence self-attention,

an ASG self-attention, encoder-decoder attention, and a parent

pointer.

Attention in Parent Decoder. The parent decoder leverages
the same sequence self-attention and AST self-attention as the

ones used in the encoder. However, the attention in the decoder

is computed among the nodes in the AST of the patch code.

Besides, the encoder-decoder attention computes the attention

weights from the nodes in the patch AST to the nodes in

the input buggy AST, which could capture the dependencies

between the patch code and the buggy code. The outputs are

then normalized by a normalization layer and projected by a

feed-forward layer. In this way, for each node in the patch

AST, we get its hidden states {hd(p)
i } output by the parent

decoder (superscript (p) means the hidden states’ output by
the parent decoder).

Parent Pointer. The parent pointer component leverages the
hidden states’ output by the last attention module to locate the

parent node, for which a new child node would be generated.

In particular, the parent point [25] selects an existing node

in the partial patch AST as the parent node. P
(p)
i (j), the

probability distribution of the j-th nodes being the parent at
the i-th decoding iteration is

P
(p)
i (j) = softmax

(Wqh
d(p)
i ·Wkh

d(p)
j√

d

)
(1)

where Wq and Wk are trainable weights, and d is the di-
mension of hidden states. Intuitively, the parent node with the

index pdi = argmaxjP
(p)
i (j) at the decoding iteration i, should

be the node with the highest attention weight to the i-th node
in the AST of normalized patched code.

2) Edge Decoder: After locating the parent node {pdi } in
the current AST, the edge decoder component predicts the

label of the new edge that connects the parent node and its

child node to be generated. The edge decoder is supposed to

work based on the prediction results of the previous parent

decoder, since different parent nodes should have different

predictions of edge labels. For example, if the parent node

is an IfStmt, the edge decoder should predict an edge label of
condition; if the parent node is a FuncInvoc, the edge decoder
should predict an edge label of member. Therefore, the edge
decoder takes two inputs, including (i) the parent decoder’s

output hidden states {hd(p)
i }, and (ii) the predicted parent

index {pdi }. As shown in Figure 2, the edge decoder contains a
parent states fusion layer, followed by three attention modules,
and an edge generation component. The attention modules

(i.e., sequence self-attention, ASG self-attention, and encoder-

decoder attention) in the edge decoder are similar to those

in the parent decoder. Therefore, we focus on describing the

novel parent state fusion component and the edge generator

as follows.

Parent State Fusion. KNOD incorporates a parent state fusion
layer to combine the hidden states of each node {hd(p)

i } and
the hidden states of its predicted parent node pdi : h

d(e)
i =

Wf

(
h
d(p)
i + h

d(p)

pd
i

)
, where Wf is a trainable parameter for

parent states fusion.

Edge Generator. Given the hidden states {hd(e)
i } output

by the last attention module, the edge generator projects

each hidden state to a probability distribution over all the

possible edge labels: P
(e)
i (j) = softmax(Weh

d(e)
i) , where

We are the trainable parameters to map the hidden states to a

probability distribution over all the edge labels, and P
(e)
i (j) is

the probability of the edge label j. The one with the highest

probability, i.e., edi = argmaxjP
(e)
i (j), is predicted as the label

of the edge that connects the located parent node and its child

node to be generated.
3) Node Decoder: The last step in each decoding iteration

is to decode a new child node for the parent node pdi with
the edge label edi . Therefore, the node decoder takes three
inputs, including (i) the hidden states output by the previous

edge decoder, (ii) the previously-predicted parent node, and

1255

Nodes Edge Labels
required required+ optional optional*

MemberRef member - qualifier selectors
FuncInvoc member - qualifier args
LocalVarDecl type declarators - -

Syntax rules for selecting parents and generating edges

Rule1: ∀p ∈ P, ∃e ∈ Ereq(p) ∪ Ereq+(p)(F (p, e) = 0)

→ p ∈ Pmust ∧ e ∈ Emust(p)

Rule2: ∀p ∈ P, ∃e ∈ Eopt(p) ∪ Eopt∗(p)(F (p, e) = 0)

→ p ∈ Pmight ∧ e ∈ Emight(p)

Rule3: ∀p ∈ P, ∀e ∈ Ereq(p)(F (p, e) = 1) ∧ Ereq+(p) = ∅ ∧
∀e ∈ Eopt(p)(F (p, e) = 1) ∧ Eopt∗(p) = ∅

→ p ∈ Pinvalid

Rule4: ∀p ∈ P, ∀e ∈ E(e /∈ Ereq ∪ Ereq+ ∪ Eopt ∪ Eopt∗(p))
→ e ∈ Einvalid(p)

TABLE I: Syntax rules defined in javalang, based on which
KNOD designs FOL rules for decoding parents and edges.
“required” means the node must have one and only one edge
with the given label, “required+” means the node must have one
or more edges with the given label, “optional” means the node
could have zero or one edge with the given label, and “optional*”
means the node could have zero, one or multiple edges with the
given label.

(iii) the previously-predicted edge label. Figure 2 shows that

the node decoder contains a parent-edge state fusion layer,

followed by three attention modules (which are similar as

those in parent/edge decoders), and a node generator.

Parent-Edge State Fusion. KNOD incorporates a parent-

edge state fusion to combine the hidden states of each node

{hd(e)
i } with the hidden states of its parent node pdi and the

embedding of the edge edi generated by the edge decoder:

h
d(n)
i = Wf

(
h
d(e)
i + h

d(e)

pd
i

+ edi
)
, where {edi } is the

embedding of generated edges {edi }.
Node Generator. Similar to the edge generator, the node
generator takes the hidden states output by the attention mod-

ule to compute a probability distribution among all possible

nodes: P
(n)
i (j) = softmax(Wnh

d(n)
i) , where Wn is trainable

parameters, and P
(n)
i (j) is the probability of node j being

the generated node. The node with the highest probability is

generated, i.e., nd
i = argmaxjP

(n)
i (j).

E. Novelty 2: Domain-Rule Distillation

We propose domain-rule distillation to force the decoder to

generate syntactically and semantically valid patches, which

(i) represents syntax and semantics as logic rules, (ii) uses
logic rules to create teacher-student distributions, and (iii)
formulates a new loss function to guide the models to learn
from teacher-student distributions (i.e., to update models’

weights) to generate ASTs to follow these logic rules during

both the training and inference phases.

(i1) Syntactic Rules. Table I shows examples of domain
knowledge for a valid AST in javalang, where each AST
node must have edges with only a small subset of labels. For

example, node MemberRef must have one and only one edge
of label member, meaning that to reference a member, there

Preconditions Semantic rules for generating nodes
Rule 5: ∀n ∈ N,type(n) � type(FUNC.args)

−→ n ∈ Ninvalid

Rule 6: ∀n ∈ N,type(n) � type(FUNC.args)

−→ n ∈ Nmight

Rule 7: ∀n ∈ N,n /∈ TYPE.fields

−→ n ∈ Ninvalid

Rule 8: ∀n ∈ N,n ∈ TYPE#.fields

−→ n ∈ Nmight

Rule 9: ∀n ∈ N,type(n) � type(VAR#)

−→ n ∈ Ninvalid

Rule 10:∀n ∈ N, type(n) � type(VAR#)

−→ n ∈ Nmight

TABLE II: Examples of KNOD’s semantic rules designed in
domain-rule distillation module, and preconditions of applying
them. Semantic rules are used during generating nodes (? refers
to the node to be generated).

must be one and only one member (e.g., member context in
Figure 3 5). Such domain knowledge can guide the three-

stage tree decoder to predict correct parents and generate

correct edge labels. For example, in a partially generated AST,

if node MemberRef has no edge of label member, the decoder
should predict MemberRef as parent and generate a member
edge for it; otherwise, the AST is syntactically wrong.

To leverage such syntax, we create logic rules, shown in

Table I, where p refers to parent node, P is the collection of

nodes that might be predicted as a parent by the model, e is
edge label, and Ereq(p), Ereq+(p), Eopt(p), and Eopt∗(p) are
the sets of edge labels that are required or optional for node p
(e.g., Ereq(MemberRef) = {member}, which is the edge label
in the same row as MemberRef and under column required).
F (p, e) is a function that returns the number of edges that
link to parent p with label e. Pmust, Pmight, and Pinvalid are

the sets of nodes that must be predicted as a parent, might be

predicted as a parent, or impossible as a parent in the future

decoding iterations. Respectively, Emust(p), Emight(p), and
Einvalid(p) are the sets of edges that must, might, or must
not be generated for parent node p.
The intuition of syntactic rules is that any edge labels

required by a node must be generated, any edge labels optional

for a node could be generated, and if a node has all potential

edges generated, it cannot generate more edges. For example,

Rule 1 states that for a node with any required edge not

generated yet, it must be predicted as parent and the required

edge must be generated.

During every decoding iteration, domain-rule distillation

applies the syntax rules to find parent nodes and corresponding

edges belonging to each category (i.e., Pmust, Pmight, etc.),

which is used later (in the (ii) Teacher-Student Distributions

step to modify the parent decoder and edge decoder’s output

probability distribution (P
(p)
i and P

(e)
i).

(i2) Semantic Rules. Another important type of domain
knowledge—code semantics, i.e., type matching, of which

KNOD further takes advantages, is used to train the model

to avoid generating semantically-invalid ASTs. Specifically,

KNOD uses JavaParser to statically analyze the entire

1256

Fig. 3: Process of domain-rule distillation modifying the probability distribution and KNOD generating node context for Defects4J’s
Closure-123. R1 denotes Rule 1.

buggy program (not just the buggy function) to collect type

information of each accessible identifier. For example, the

left of Figure 3 shows the following type information for the

Closure-123 bug: (i) the data type for each variable, (ii) the

return type and the arguments for each function, and (iii) the

fields and the declared functions for each class. With such

type information, we design semantic rules for the decoder

to generate nodes (Table II). A rule is applied when its

precondition matches the partially generated AST. n refers

to leaf node labels, N is the collection of all the accessible

identifiers’ names, type(n) returns the data type of n, and
� means type compatibility. Nmight and Ninvalid are the

collections of nodes that can or cannot be generated. Semantic

rules ensure type compatibility during node generation, for

example, Rule 5 states when the model generates a member
as an argument of a function invocation, only the nodes whose

types are compatible (i.e., same or subtype) with the argument

type defined in the function’s signature are possible to be

generated.

During every decoding iteration, semantic rules are used to

find nodes that are possible or invalid to be generated (i.e.,

nodes belonging to Nmight and Ninvalid), which is used later

(in the (ii) Teacher-Student Distributions step) to modify the

node decoder’s output probability distribution (P
(n)
i).

(ii) Teacher-Student Distributions. To let the APR model

learn syntactic and semantic rules, we adapt the teacher-

student architecture [15]. Specifically, the rules are the

teacher’s knowledge, which we want the student (the APR

model) to learn. The terms teacher and student follow prior

work [15], as the teacher “teaches” the model to generate

output satisfying the domain knowledge rules that the teacher

knows.

The student distribution is the probability distribution output
by the three-stage tree decoder, i.e., P(p), P(e) and P(n). We

create the teacher distribution P̂
(p)
by modifying the student

distribution as

P̂
(p)

i =

⎧⎪⎨
⎪⎩
1 pi ∈ Pmust

P
(p)
i pi ∈ Pmight

0 pi ∈ Pinvalid

(2)

and re-normalize it, while distributions P̂
(e)

and P̂
(n)

are

created similarly. The teacher distributions satisfy the rules,

as the probability of parents, edges, and nodes that must be

generated are the highest, and the probability of invalid ones

are 0.

For example, in Figure 3 (b), by applying Rule 1, Mem-
berRef has a required edge member not generated and thus
belongs to Pmust. The probability of MemberRef is modified
to 1, and then re-normalized to 0.83. In Figure 3(c), after

selecting MemberRef as the parent, by applying Rules 1,
2 and 4, member is required, qualifier is optional, and the
rest edges are invalid for MemberRef. Thus, the probability of
member is set to 1 (re-normalized to 0.77) and the probability
of qualifier is kept as 0.3 (re-normalized to 0.23). In Fig-
ure 3(d), domain-rule distillation applies Rules 5 and 6 as the
partially generated AST matches their preconditions. Thus, we

keep only identifiers (e.g., context) that are types compatible

with the argument type of FUNC13 (i.e., type Context is

valid). Our domain-rule distillation sets the probabilities of

all other identifiers with incompatible types to 0. As a result,

the decoder generates the correct node context instead of

p of type int that has the highest probability in the student

distribution.

(iii) Distillation. Distillation transfers the domain knowledge
formulated by syntax and semantic rules into the APR models’

weights [15], which speeds up the training and helps APR

models learn the domain knowledge and compute better prob-

ability distributions. Distillation is performed by introducing

an extra loss to minimize the difference between student

and teacher distribution. The overall training objective is to

minimize (i) the loss between the student distributions and

the ground-truth labels, and (ii) the loss between the student

distributions and the teacher distributions, where (iii) is the

standard loss used by APR techniques [6]–[8], [10], while (2)

is a novel contribution of this paper. Specifically, the joint loss

is as follows:

Loss =LCE(P(p), y(p)) + LCE(P(e), y(e)) + LCE(P(n), y(n))

LKL(P
(p), P̂

(p)
) + LKL(P

(e), P̂
(e)

) + LKL(P
(n), P̂

(n)
)

(3)

where the LCE()s are cross-entropy [26] between the student
distribution and the ground-truth labels (y(p), y(e) and y(n) are
the ground-truth for parents, edges, and nodes respectively),

and LKL()s are the loss that we add, which calculates the
Kullback–Leibler divergence [27] between the student dis-

1257

tributions and the teacher distributions. By minimizing the

training objective during training, the APR models learn to

generate syntactically and semantically correct ASTs.

F. Training and Inference

In the training phase, the model takes the ASG of the normal-

ized buggy function and AST of normalized patched code to

learn the transformation from the former to the latter. We also

leverage ensemble learning [28], [29] to train multiple models

to increase the diversity of the learned fix patterns. Following

previous work [7], [8], we first train different models with

random hyper-parameters (e.g., number of encoder blocks,

decoder blocks, or hidden states dimension), and then select

the Top-k models according to their loss on the validation set.
In the inference phase, for the given buggy function, each of

the k trained models generates a list of ASTs of normalized
patched code. Among all the generated ASTs, KNOD first

ranks them via their ranks and average probabilities.

G. Patch Generation and Validation

The generated ASTs are converted to normalized source code,

which still contains normalized tokens. KNOD reconstructs

them into concrete patches by replacing the normalized tokens

with the corresponding concrete identifiers, based on the map-

ping recorded in the code normalization phase (Section II-B).

For example, in Figures 1 6 and 7 , the normalized tokens

VAR3 and FUNC13 are replaced by the concrete identifiers

rhsContext and getContextForNoInOperator, respec-

tively. Such concrete patched code are the final patches gen-

erated by KNOD. For normalized patched code with unknown
tokens (e.g., TYPE-UNK), KNOD performs type-analysis to

find compatible concrete values for reconstruction. In partic-

ular, for each unknown token, KNOD first analyzes its parent

and sibling (if any) nodes in the ASTs, summarize rules that

the unknown token should follow (e.g., its data type), and then

replaces the unknown tokens with all valid concrete identifiers

to ensure semantic matching.

All generated patches are validated against test cases. Fol-

lowing prior work [7], [8], [30], validation terminates when it

finds a plausible patch that either (i) passes all test cases or (ii)
passes all originally-passed tests and at least one originally-

failed test case.

III. EXPERIMENT SETUP

We evaluate KNOD with three research questions: RQ1: Ef-
fectiveness and Generalizability. How does KNOD perform
compared to existing APR techniques? RQ2: Ablation Study.
What is the contribution of each component in KNOD? and

RQ3: Ranking. How does KNOD rank the correct patches

compared to other tools?

A. Datasets

Training Data.We construct the training data for KNOD from
the dataset shared in previous work [7], [10], which are mined

from open-source GitHub Java projects. Following previous

work [7], [8], [10], we remove projects that are in or cloned

from Defects4J projects from our training set. In total, our

training data contains 576,002 pairs of buggy programs and

their developer patches, which is randomly split into training

set (90%) and validation set (10%). The validation set is used

to tune and select models.

Bug Benchmarks. We evaluate KNOD on three well-

established bug benchmarks, including: (1) Defects4J

v1.2 [13], the most widely-used version of the Defects4J

benchmark with 393 Java bugs 1, (2) Defects4J v2.0 [13]:

the latest version of the Defects4J benchmark with additional

444 Java bugs, and (3) QuixBugs [14], the widely-used

benchmark with 40 Java bugs.

B. Evaluated Techniques

To compare the effectiveness of KNOD with existing APR

techniques, we include the following state-of-the-art APR

techniques for comparison.

• Non-DL-based APR: we compare KNOD with Sim-

Fix [31] and TBar [32], since they are the most effective

heuristic-based and template-based non-DL-based APR

techniques [33].

• DL-based APR: we compare KNOD with state-of-the-art
DL-based APR techniques for Java programs, including

SequenceR [6], DLFix [34], CoCoNuT [7], CURE [8],

RewardRepair [5], and Recoder [10].

To study the contribution of each novelty of KNOD, we

implement and evaluate the following variants of KNOD.

• KNOD-decoder: replacing the entire three-stage tree de-

coder with a traditional sequential decoder.

• KNOD-distTrain: removing domain-rule distillation from

the decoder during training (keeping it during inference).

• KNOD-distInf: removing domain-rule distillation from the

decoder during inference (keeping it during training).

C. Experimental Procedure

Fault Localization. We perform our experiment under two

different settings of fault localization: (1) perfect localization,

where the actually fault localization is given to the tools, and

(2) spectrum based fault localization, where KNOD uses the

suspicious faulty locations reported by Ochiai [35] (a spectrum

based fault localization tool). Both settings are widely used in

previous works [5], [7], [8], [10].

Patch Correctness. In line with previous work [5], [7], [8],
[10], for evaluation purpose only, we manually check the

correctness of plausible patches returned by KNOD. We con-

sider a plausible patch correct if it is semantically equivalent
to developer patches. The labeling procedure involves two

participants. The agreement ratio is 92.1% and inconsistent

cases are resolved by further discussion.

Implementation. For ASG construction, we use the widely-
used toolkits javalang [36] and JavaParser [37] to

first parse buggy functions and patches into ASTs. The APR

models are implemented with PyTorch [38]. To select the

1Following previous work [7], [8], two duplicated bugs (Closure-63 and
93) are removed from our evaluation.

1258

hyperparameters, we use random search within the following

range: number of encoder layers (6-8), number of parent and

edge decoder layers (1-2), number of node decoder layers (4-

8), embedding and hidden states dimension (256-384). We use

a dropout rate set to 0.1 to avoid overfitting, and use Adam

optimizer with learning rate being 2.5e−4. We tune the top-5

models with the lowest perplexity on the validation set until

convergence for ensemble learning. In the inference stage, we

use beam search [39] with beam size set to 1,000 to generate

patches for each bug in the bug benchmarks. During validation,

we set a five-hour running-time limit, which is the same as

existing work [7], [10], [31], [34], [40].

Infrastructure. We train KNOD on one 56-core server with
eight NVIDIA GeForce RTX 2080 TI GPUs, and evaluate

KNOD on the same server with one NVIDIA GeForce RTX

2080 TI GPU.

D. Threats to Validity

Threats to internal validity lie in the approach implementation
and manual patch correctness identification. To mitigate these

threats, multiple authors check the code and participate in the

manual labeling procedure. Threats to external validity lie in
bug benchmarks used in our evaluation, which cannot guaran-

tee the generalizability on other benchmarks. To mitigate these

threats, we perform our experiments on three widely-used

benchmarks with up to 877 real-world Java bugs. Evaluation

on more benchmarks of different program languages could

be done in the future since our approach is not specifically

designed for Java.

IV. RESULT

A. RQ1: Effectiveness and Generalizability

Techniques Defects4J v1.2 Defects4J v2.0 QuixBugs
SequenceR [6] 14 - -
SimFix [31] 28 - -
DLFix [34] 38 - -
CoCoNuT [7] 44 - 13
RewardRepair [5] 45 45 20
TBar [32] 53 - -
CURE [8] 56 19 25
Recoder [10] 64 - 17

KNOD (our approach) 72 50 25

TABLE III: Number of correctly fixed bugs by each tool on
three benchmarks with perfect fault localization. “-” means that
tool has not released its performance on the benchmark.

Techniques Defects4J v1.2 Defects4J v2.0 QuixBugs
TBar [32] 23 8 -
SimFix [31] 24 2 -
RewardRepair [5] 29 22 19
DLFix [34] 30 - -
Recoder [10] 45 19 17

KNOD (our approach) 38 24 23

TABLE IV: Number of correctly fixed bugs by each tool on
three benchmarks with spectrum based fault localization [35].

Results with perfect fault localization. Table III shows the
number of bugs that are correctly fixed by KNOD and other

Ci: Cli
Cl: Closure
Cp: Compress
Cs: Csv
Co: Codec
G: Gson
Jx: JacksonXml
Jc: JacksonCore
Jd: JacksonDatabind
Js: Jsoup
Jp: JxPath

Ci-27, Co-1,
Cp-14,27, Cs-11,
Jd-24,57,99
Js-49,52,57,64,86
Jp-1

Jd-16
Js-68

RewardRepair(14)CURE(2)

6

2 14

28
1

4 1
1

3

C-19
Cl-4,13,117
L-24,39,47
M-4,77,89
Mo-26
T-26

C-17
M-2,22

2 5

C-10
Cl-1,5,15,19,52
Cl-77,119,123
L-21,61
Mo-22

C-3
Cl-21,31,33,104
L-55
M-96,105

TBar (12)

CURE (3) KNOD (12)

Recoder (8)

C: Chart
Cl: Closure
L: Lang
M: Math
Mo: Mockito
T: Time

(a) Venn graph of correct fixes on Defects4J v1.2

(b) Venn graph of correct fixes on Defects4J v2.0

Ci-11, Cl-161
Cp-1, Cs-4
G-11, Jx-5
Jc-7,11,26
Jd-1,34,96,97
Js-39,40,61
Jp-21

KNOD(17)

4 18

2

11

Fig. 4: Uniquely fixed bugs of KNOD and the existing state-
of-the-art tools with perfect fault localization. Numbers in
() are the number of uniquely fixed bugs.

APR techniques on three benchmarks with perfect fault local-

ization. KNOD fixes 72 bugs, outperforming all the compared

techniques on the most widely-used benchmark Defects4J

v1.2, 8 and 19 more bugs than the best DL-based and non-

DL-based APR approach Recoder and TBar respectively. In

addition to the widely-used benchmark Defects4J v1.2, Ta-

ble III also presents the effectiveness of KNOD on additional

two benchmarks, Defects4J v2.0 and QuixBugs. KNOD is

consistently effective on both additional benchmarks, i.e.,

fixing 50 bugs on Defects4J v2.0 and 25 bugs on QuixBugs,

indicating the generalizability of KNOD on different bugs.

In addition, we calculate the patch precision of KNOD, i.e.,

the ratio of correct patches to plausible patches. We find that

KNOD achieves 86.7% precision (i.e., 72 out of 83 plausible

patches generated for Defects4J v1.2 are correct), which is

substantially higher than existing APR techniques under the

same configuration [8] (e.g., the top-3 precision of existing

APR DLFix/TBar/RewardRepair is 58.4%/62.4%/70.3%).

Results with spectrum-based fault localization. Table IV
shows the number of bugs correctly fixed by KNOD and other

tools with spectrum-based fault localization. KNOD still fixes

the most number of bugs on Defects4J v2.0 and QuixBugs, 24

and 23 respectively. KNOD fixes the second most on Defects4J

1259

v1.2 (38) and still outperforms the most recent APR paper

RewardRepair (29). By analyzing the bugs that Recoder fixes

but KNOD does not, we find KNOD correctly fixes most

of them with perfect localization, suggesting that KNOD can

achieve better results with a better fault localization technique.

-_return "title=\"" + toolTipText _
+_return "title=\"" + ImageMapUtilities.htmlEscape(toolTipText)

+ "\"alt=\"\"";

+_if (gramps.isDelProp()) { return false; } _
String propName = parent.getLastChild().getString();

+_if (getBaseValue() == null) { return 1; } _
 return ValueUtils.getLength(getBaseValue());

(a) Chart-10 in Defects4J v1.2

(b) Closure-5 in Defects4J v1.2

(c) JxPath-21 in Defects4J v2.0

Fig. 5: Examples of bugs only fixed by KNOD.

Uniquely Fixed Bugs. Figure 4(a) presents the number of
overlapped and unique bugs that are fixed by KNOD and the

other three APR techniques that fix the most number of bugs

on Defects4J v1.2 (i.e., TBar, CURE, and Recoder). KNOD

complements the state-of-the-art APR techniques by fixing 12

unique bugs. On Defects4J v2.0, KNOD complements Re-

wardRepair by fixing 21 unique bugs, and complements CURE

by fixing 35 unique bugs (as shown in Figure 4(b)), which

shows KNOD can be an excellent complementary technique

to existing APR tools.

Figure 5 presents three bugs—Chart-10, Closure-5, and

JxPath-21—that are fixed only by KNOD. KNOD is able to

fix Chart-10, which is hard to fix as it involves two project-

specific identifiers (ImageMapUtilities and htmlEscape)

that are declared outside of the buggy function, thanks to

the domain-rule distillation that helps find the correct type-

matched function call. KNOD is also good at inserting code

snippets to fix bugs (Figure 5 (b) and (c)).

Execution Time. KNOD spends 12.8s on average generating
one thousand candidate patches for a given bug (using one

NVIDIA RTX 2080 TI GPU).

B. RQ2: Ablation Study

Table V shows the effectiveness of each novel component of

KNOD on Defects4J v1.2: adding each component improves

the effectiveness of KNOD. Specifically, the novel three-stage

tree decoder enables KNOD to fix 16 more bugs (KNOD

vs. KNOD-decoder), as sequential decoder cannot leverage

structural information well. Adding domain-rule distillation

during training fixes 10 more bugs (KNOD vs. KNOD-distTrain),

which means only applying syntax and semantic checking in

inference do not work well as the model gives poor ranking

without learning domain-rule distillation during training. Yet,

including domain-rule distillation in the inference phase also

help to fix 3 more bugs (KNOD vs. KNOD-distInf), which

can be considered as a second guarantee of syntax/semantic

checking.

In addition to the number of correct fixes, Table V also

includes the compilation rate of patches generated by each

model. Without the three-stage tree decoder, KNOD-decoder
generates a lot more uncompilable patches, which shows

that the sequential decoder fails to learn code syntax and

semantics well. Moreover, applying domain-rule distillation

during training and inference stages both help with generating

more compilable patches.

In summary, each component of KNOD positively con-

tributes to its effectiveness. The superiority of KNOD-distInf
to KNOD-distTrain also confirms that injecting domain-rule

distillation into the training phase is more effective than only
considering domain knowledge in the inference phase.

Variants #Bugs Compilation Rate
KNOD-decoder 56 33.6%
KNOD-distTrain 62 43.8%
KNOD-distInf 69 46.1%
KNOD 72 47.0%

TABLE V: Ablation study of each component on Defects4J
v1.2.

(a) Ranking of correct fixes on Defects4J v1.2

(b) Ranking of correct fixes on Defects4J v2.0

Fig. 6: Ranking of correct fixes generated by KNOD and
existing state-of-the-art DL-based APR tools.

C. RQ3: Ranking

We further study the ranking of the correct fixes generated by

KNOD. In Figure 6, we compare KNOD’s ranking with those

of CURE, Recoder and RewardRepair on Defects4J v1.2 and

Defects4J v2.0. Other tools were excluded because they either

have not shared the list of the generated candidate patches,

1260

or we cannot successfully reproduce their results. For a fairer

comparison, we set the beam size to 200 in this experiment,

which is the smallest beam size used by CURE, Recoder

and RewardRepair. KNOD uses the ensemble result from five

models, while CURE uses a ensemble of ten models and the

other two techniques use one. Since the number of models

used is a design choice of different techniques, we compare

these techniques as is for a fair ranking comparison.

KNOD generates more correct fixes than CURE and Re-

wardRepair in all the ranges from top-10 to top-2000, which

shows that KNOD consistently outperforms RewardRepair and

CURE. Although Recoder fixes a competitive number of bugs

as KNOD on Defects4J v1.2, KNOD generates a lot more

correct fixes on Defects4J v2.0 in the top-200 patches (37

versus 19), which shows KNOD’s better generalizability to

other benchmarks.

Since one can choose the number of candidate patches to

validate based on the resource budget, our results show that

overall, KNOD fixes the most number of bugs in all budget

settings.

V. LIMITATION

The main limitations of KNOD are that (1) KNOD cannot fix

multi-hunk bugs (i.e., bugs that need fix for multiple locations

and files) very well (although KNOD can fix some relatively

simple multi-hunk bugs), and (2) the performance of KNOD

depends on the accuracy of fault localization tools. These

limitations are shared by most DL-based APR techniques.

An important bottleneck in fixing multi-hunk bugs is fault

localization, which is an orthogonal problem, which means

fixing multi-hunk bugs and developing better fault localization

tools are important related works to explore. Despite the

limitations, KNOD still outperforms the existing state-of-the-

art APR tools on many benchmarks.

VI. RELATED WORK

A. DL-based APR

Researchers have proposed various APR techniques [2]–[4],

which leverage heuristics [41]–[43], templates [32], [44], con-

straints [45]–[47], or advanced deep learning techniques [5]–

[10], [48] to enable patch generation. Based on the out-

put formats of the decoders, existing DL-based APR can

be categorized into code-generation APR [6]–[8] or edit-
generation APR [9], [10], [49]. In particular, the decoders of
edit-generation APR [9], [10] first generate edits at different

levels (e.g., AST-level edits) and then transform the buggy

code into patches based on these edits; the code-generation

APR tools, SequenceR [6], CoCoNuT [7], CURE [8] and

RewardRepair [5], directly generate the code sequences of

patches; while DLFix [34], CODIT [50], and our approach

KNOD generate the ASTs of patches. Different from existing

work that generates AST or AST edits based on production

rules, KNOD directly generates ASTs with an explicit tree

structure, which forces the model to capture the code structure.

To this end, our work proposes a novel three-stage decoder

with domain-rule distillation to comprehensively utilize do-

main knowledge in source code.

RewardRepair [5] trains models based on dynamic domain
knowledge (i.e., the patch execution and compilation informa-

tion). KNOD is different because it leverages static domain
knowledge, since collecting such dynamic domain knowledge

and incorporating it into the training phases is often very

expensive. Also, KNOD uses direct and finer-grained syntactic

and type rules (as opposed to indirect and coarser-grained test

case passing/failing information).

B. DL-based Code Generation

Recent code generation techniques leverage advanced DL to

directly generate code from natural language specifications.

Early DL-based code generation techniques [51] generate code

based on tokens. Due to the rich structural information in

source code, recent work [52]–[56] leverages encoder-decoder

architectures to generate ASTs. Different from DL-based code

generation, our technique is designed for program repair and

our proposed decoder is novel in architecture and domain-rule

distillation. In addition to code generation, some DL-based

techniques [57]–[59] generate token-level or AST-level edits

for program. Instead of generating edits, our approach directly

generates patch code in the AST format via a novel decoder.

A recent direction of DL-based code generation is applying

large language models (LLMs) trained on source code to

generate code, such as CodeBert [60], CodeT5 [61], Code-

Gen [62], InCoder [63], and Codex [64]. These LLMs are

generic models, while KNOD is a customized model that con-

tains a novel three-stage tree decoder and domain-knowledge

distillation to fix bugs.

VII. CONCLUSION

We propose a DL-based APR approach KNOD, which in-

corporates domain knowledge to guide patch generation in a

direct and comprehensive way. KNOD includes (1) a novel

three-stage decoder to directly generate patch ASTs based on
the inherent tree structure of ASTs with three decoders, and
(2) a novel domain-rule distillation component to explicitly

inject domain knowledge into the decoding procedure during

both the training and inference phases. KNOD is consistently
effective on three widely-used benchmarks, fixing 147 bugs in

total with perfect fault localization. Our ablation study further

confirms the contribution of both novelties in our domain-

knowledge-guided tree-decoder architecture.

Data Availability: our replication package is available at [65].

ACKNOWLEDGMENT

We thank the reviewers for their insightful comments and

suggestions. This work is partially supported by a J.P. Morgan

AI Faculty Research Award. Any opinions, findings, and

conclusions in this paper are those of the authors only and

do not necessarily reflect the views of our sponsors.

1261

REFERENCES

[1] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
a study of developer work habits,” in 28th International Conference on
Software Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006,
L. J. Osterweil, H. D. Rombach, and M. L. Soffa, Eds. ACM, 2006, pp.
492–501. [Online]. Available: https://doi.org/10.1145/1134285.1134355

[2] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Commun. ACM, vol. 62, no. 12, pp. 56–65, 2019. [Online].
Available: https://doi.org/10.1145/3318162

[3] M. Monperrus, “Automatic software repair: A bibliography,” ACM
Comput. Surv., vol. 51, no. 1, pp. 17:1–17:24, 2018. [Online]. Available:
https://doi.org/10.1145/3105906

[4] ——, “The living review on automated program repair,” Dec. 2020,
working paper or preprint. [Online]. Available: https://hal.archives-
ouvertes.fr/hal-01956501

[5] H. Ye, M. Martinez, and M. Monperrus, “Neural program repair with
execution-based backpropagation,” in Proceedings of the International
Conference on Software Engineering, 2022. [Online]. Available:
http://arxiv.org/pdf/2105.04123

[6] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,
and M. Monperrus, “SequenceR: Sequence-to-Sequence Learning for
End-to-End Program Repair,” TSE, 2019.

[7] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
Combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2020. New
York, NY, USA: Association for Computing Machinery, 2020, p.
101–114. [Online]. Available: https://doi.org/10.1145/3395363.3397369

[8] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine
translation for automatic program repair,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), 2021, pp.
1161–1173.

[9] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang, “Hoppity:
Learning graph transformations to detect and fix bugs in programs,” in
8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
[Online]. Available: https://openreview.net/forum?id=SJeqs6EFvB

[10] Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong,
and L. Zhang, “A syntax-guided edit decoder for neural program
repair,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2021, p. 341–353. [Online]. Available:
https://doi.org/10.1145/3468264.3468544

[11] Z. Chen, S. Kommrusch, and M. Monperrus, “Neural transfer
learning for repairing security vulnerabilities in c code,” IEEE
Transactions on Software Engineering, 2022. [Online]. Available:
http://arxiv.org/pdf/2104.08308

[12] H. Ye, M. Martinez, X. Luo, T. Zhang, and M. Monperrus,
“Selfapr: Self-supervised program repair with test execution
diagnostics,” in Proceedings of ASE, 2022. [Online]. Available:
http://arxiv.org/pdf/2203.12755

[13] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A Database of Existing
Faults to Enable Controlled Testing Studies for Java Programs,” in
ISSTA, 2014, pp. 437–440.

[14] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “QuixBugs: A
Multi-Lingual Program Repair Benchmark Set Based on the Quixey
Challenge,” in SPLASH, 2017, p. 55–56.

[15] Z. Hu, X. Ma, Z. Liu, E. Hovy, and E. Xing, “Harnessing deep neural
networks with logic rules,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers).
Berlin, Germany: Association for Computational Linguistics, Aug. 2016,
pp. 2410–2420. [Online]. Available: https://aclanthology.org/P16-1228

[16] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches in
the wild via neural machine translation,” CoRR, vol. abs/1812.08693,
2018.

[17] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk,
“On learning meaningful code changes via neural machine translation,”
in Proceedings of the 41st International Conference on Software Engi-
neering, ser. ICSE ’19, 2019.

[18] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph
transformer networks,” vol. abs/1911.06455, 2019. [Online]. Available:
http://arxiv.org/abs/1911.06455

[19] V. P. Dwivedi and X. Bresson, “A generalization of transformer
networks to graphs,” CoRR, vol. abs/2012.09699, 2020. [Online].
Available: https://arxiv.org/abs/2012.09699

[20] J. Zhang, J. Du, Y. Yang, Y.-Z. Song, S. Wei, and L. Dai, “A tree-
structured decoder for image-to-markup generation,” in Proceedings
of the 37th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, H. D. III and A. Singh,
Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 11 076–11 085. [Online].
Available: https://proceedings.mlr.press/v119/zhang20g.html

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is
all you need,” vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[22] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Con-
volutional sequence to sequence learning,” CoRR, vol. abs/1705.03122,
2017. [Online]. Available: http://arxiv.org/abs/1705.03122

[23] L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer
normalization,” CoRR, vol. abs/1607.06450, 2016. [Online]. Available:
http://arxiv.org/abs/1607.06450

[24] X. Wang, H. Pham, P. Yin, and G. Neubig, “A tree-based decoder
for neural machine translation,” CoRR, vol. abs/1808.09374, 2018.
[Online]. Available: http://arxiv.org/abs/1808.09374

[25] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” 2015.
[Online]. Available: https://arxiv.org/abs/1506.03134

[26] G. Cybenko, D. O’Leary, and J. Rissanen, The Mathematics of Infor-
mation Coding, Extraction and Distribution, ser. The IMA Volumes in
Mathematics and its Applications. Springer New York, 1998. [Online].
Available: https://books.google.com/books?id=jDrp4QEGioMC

[27] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79 – 86, 1951.
[Online]. Available: https://doi.org/10.1214/aoms/1177729694

[28] R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits
and Systems Magazine, vol. 6, no. 3, pp. 21–45, 2006.

[29] L. Rokach, “Ensemble-based classifiers,” Artificial Intelligence Review,
vol. 33, pp. 1–39, 2009.

[30] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better test
cases for better automated program repair,” in FSE, ser.
ESEC/FSE 2017. ACM, 2017, p. 831–841. [Online]. Available:
https://doi.org/10.1145/3106237.3106274

[31] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 298–309. [Online]. Available:
https://doi.org/10.1145/3213846.3213871

[32] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “TBar: Revisiting
Template-Based Automated Program Repair,” in ISSTA. ACM, 2019.

[33] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyandé, D. Kim,
P. Wu, J. Klein, X. Mao, and Y. L. Traon, “On the efficiency of test
suite based program repair: A systematic assessment of 16 automated
repair systems for java programs,” CoRR, vol. abs/2008.00914, 2020.
[Online]. Available: https://arxiv.org/abs/2008.00914

[34] Y. Li, S. Wang, and T. N. Nguyen, “DLFix: Context-Based Code
Transformation Learning for Automated Program Repair,” in ICSE.
ACM, 2020, p. 602–614.

[35] R. Abreu, P. Zoeteweij, and A. J. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Testing: Academic and In-
dustrial Conference Practice and Research Techniques - MUTATION
(TAICPART-MUTATION 2007), 2007, pp. 89–98.

[36] C. Thunes, “javalang,” 2020. [Online]. Available:
https://github.com/c2nes/javalang

[37] N. Smith, D. Van Bruggen, and F. Tomassetti, “Javaparser: Visited,”
2019. [Online]. Available: https://github.com/javaparser/javaparser

[38] “Pytorch,” 2022. [Online]. Available: https://pytorch.org/
[39] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” CoRR, vol. abs/1409.3215, 2014. [Online].
Available: http://arxiv.org/abs/1409.3215

[40] S. Saha, R. k. Saha, and M. r. Prasad, “Harnessing Evolution for Multi-
Hunk Program Repair,” in ICSE. IEEE, 2019, pp. 13–24.

[41] Y. Yuan and W. Banzhaf, “ARJA: automated repair of java programs
via multi-objective genetic programming,” IEEE Trans. Software

1262

Eng., vol. 46, no. 10, pp. 1040–1067, 2020. [Online]. Available:
https://doi.org/10.1109/TSE.2018.2874648

[42] M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung, “Context-aware
patch generation for better automated program repair,” in Proceedings
of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, M. Chaudron,
I. Crnkovic, M. Chechik, and M. Harman, Eds. ACM, 2018, pp.
1–11. [Online]. Available: https://doi.org/10.1145/3180155.3180233

[43] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “ELIXIR:
effective object oriented program repair,” in Proceedings of the
32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 - November
03, 2017, G. Rosu, M. D. Penta, and T. N. Nguyen, Eds.
IEEE Computer Society, 2017, pp. 648–659. [Online]. Available:
https://doi.org/10.1109/ASE.2017.8115675

[44] A. Ghanbari, S. Benton, and L. Zhang, “Practical program
repair via bytecode mutation,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019, D. Zhang and
A. Møller, Eds. ACM, 2019, pp. 19–30. [Online]. Available:
https://doi.org/10.1145/3293882.3330559

[45] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in Proceedings of the
39th International Conference on Software Engineering, ICSE 2017,
Buenos Aires, Argentina, May 20-28, 2017, S. Uchitel, A. Orso, and
M. P. Robillard, Eds. IEEE / ACM, 2017, pp. 416–426. [Online].
Available: https://doi.org/10.1109/ICSE.2017.45

[46] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. R. L. Marcote,
T. Durieux, D. L. Berre, and M. Monperrus, “Nopol: Automatic
repair of conditional statement bugs in java programs,” IEEE Trans.
Software Eng., vol. 43, no. 1, pp. 34–55, 2017. [Online]. Available:
https://doi.org/10.1109/TSE.2016.2560811

[47] M. Martinez and M. Monperrus, “Ultra-large repair search space
with automatically mined templates: The cardumen mode of astor,” in
Search-Based Software Engineering - 10th International Symposium,
SSBSE 2018, Montpellier, France, September 8-9, 2018, Proceedings,
ser. Lecture Notes in Computer Science, T. E. Colanzi and P. McMinn,
Eds., vol. 11036. Springer, 2018, pp. 65–86. [Online]. Available:
https://doi.org/10.1007/978-3-319-99241-9 3

[48] D. Drain, C. B. Clement, G. Serrato, and N. Sundaresan, “Deepdebug:
Fixing python bugs using stack traces, backtranslation, and code
skeletons,” CoRR, vol. abs/2105.09352, 2021. [Online]. Available:
https://arxiv.org/abs/2105.09352

[49] D. Tarlow, S. Moitra, A. Rice, Z. Chen, P. Manzagol, C. Sutton,
and E. Aftandilian, “Learning to fix build errors with graph2diff
neural networks,” in ICSE ’20: 42nd International Conference on
Software Engineering, Workshops, Seoul, Republic of Korea, 27 June
- 19 July, 2020. ACM, 2020, pp. 19–20. [Online]. Available:
https://doi.org/10.1145/3387940.3392181

[50] S. Chakraborty, Y. Ding, M. Allamanis, and B. Ray, “Codit: Code
editing with tree-based neural models,” IEEE Transactions on Software
Engineering, vol. 48, no. 4, pp. 1385–1399, 2022.

[51] W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann, T. Kociský,
F. Wang, and A. W. Senior, “Latent predictor networks for
code generation,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, ACL 2016, August
7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics, 2016. [Online]. Available:
https://doi.org/10.18653/v1/p16-1057

[52] L. Dong and M. Lapata, “Language to logical form with neural
attention,” in Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers. The Association for Computer
Linguistics, 2016. [Online]. Available: https://doi.org/10.18653/v1/p16-
1004

[53] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code generation,” in Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers, R. Barzilay and
M. Kan, Eds. Association for Computational Linguistics, 2017, pp.
440–450. [Online]. Available: https://doi.org/10.18653/v1/P17-1041

[54] ——, “TRANX: A transition-based neural abstract syntax parser for
semantic parsing and code generation,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing,

EMNLP 2018: System Demonstrations, Brussels, Belgium, October
31 - November 4, 2018, E. Blanco and W. Lu, Eds. Association
for Computational Linguistics, 2018, pp. 7–12. [Online]. Available:
https://doi.org/10.18653/v1/d18-2002

[55] M. Rabinovich, M. Stern, and D. Klein, “Abstract syntax networks
for code generation and semantic parsing,” in Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers, R. Barzilay and M. Kan, Eds. Association for
Computational Linguistics, 2017, pp. 1139–1149. [Online]. Available:
https://doi.org/10.18653/v1/P17-1105

[56] Z. Sun, Q. Zhu, Y. Xiong, Y. Sun, L. Mou, and L. Zhang, “Treegen:
A tree-based transformer architecture for code generation,” in The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020. AAAI Press, 2020, pp. 8984–8991. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/6430

[57] Z. Yao, F. F. Xu, P. Yin, H. Sun, and G. Neubig, “Learning structural
edits via incremental tree transformations,” in 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. [Online]. Available:
https://openreview.net/forum?id=v9hAX77–cZ

[58] P. Yin, G. Neubig, M. Allamanis, M. Brockschmidt, and A. L. Gaunt,
“Learning to represent edits,” in 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?id=BJl6AjC5F7

[59] S. Brody, U. Alon, and E. Yahav, “A structural model for contextual code
changes,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA, pp. 215:1–
215:28, 2020. [Online]. Available: https://doi.org/10.1145/3428283

[60] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model
for programming and natural languages,” CoRR, vol. abs/2002.08155,
2020. [Online]. Available: https://arxiv.org/abs/2002.08155

[61] W. Yue, W. Weishi, J. Shafiq, and C. H. Steven, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, 2021.

[62] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “A conversational paradigm for program synthesis,” arXiv
preprint, 2022.

[63] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong,
W.-t. Yih, L. Zettlemoyer, and M. Lewis, “Incoder: A generative
model for code infilling and synthesis,” 2022. [Online]. Available:
https://arxiv.org/abs/2204.05999

[64] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray,
R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser,
M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings,
M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain,
W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra,
E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati,
K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish,
I. Sutskever, and W. Zaremba, “Evaluating large language models
trained on code,” CoRR, vol. abs/2107.03374, 2021. [Online]. Available:
https://arxiv.org/abs/2107.03374

[65] “Replication package of this work,” 2022. [Online]. Available:
https://github.com/lin-tan/knod

1263

