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Abstract—Comments are widely used in source code. If a
comment is consistent with the code snippet it intends to annotate,
it would aid code comprehension. Otherwise, Code Comment
Inconsistency (CCI) is not only detrimental to the understanding
of code, but more importantly, it would negatively impact the
development, testing, and maintenance of software. To tackle
this issue, existing research has been primarily focused on
detecting inconsistencies with varied performance. It is evident
that detection alone does not solve the problem; it merely paves
the way for solving it. A complete solution requires detecting in-
consistencies and, more importantly, rectifying them by amending
comments. However, this type of work is scarce. In this paper, we
contribute C4RLLaMA, a fine-tuned large language model based
on the open-source CodeLLaMA. It not only has the ability to
rectify inconsistencies by correcting relevant comment content
but also outperforms state-of-the-art approaches in detecting
inconsistencies. Experiments with various datasets confirm that
C4RLLaMA consistently surpasses both post hoc and just-in-time
CCI detection approaches. More importantly, C4RLLaMA outper-
forms substantially the only known CCI rectification approach
in terms of multiple performance metrics. To further examine
C4RLLaMA’s efficacy in rectifying inconsistencies, we conducted
a manual evaluation, and the results showed that the percentage
of correct comment updates by C4RLLaMAwas 65.0% and 55.9%
in just-in-time and post hoc, respectively, implying C4RLLaMA’s
real potential in practical use.

Index Terms—Code-Comment Inconsistencies, Detection, Rec-
tification, Large Language Model

I. INTRODUCTION

Most code-related activities need program understanding.
For example, when updating code, maintainers need to under-
stand the logic of the original code. When developing code in
teams, team members need to understand each other’s code.
The role of comments, which are widely present in code, is
to assist readers in better understanding the code [1]–[3]. If
a comment is consistent with the code snippet it intends to
annotate, it serves its purpose well. Otherwise, Code Comment
Inconsistency (CCI) would occur, which is detrimental to the
understanding of code, but more importantly, it negatively
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impacts the development, testing, and maintenance of soft-
ware. Common causes of CCI include developers’ skill or time
constraints [4], developers forgetting to update the comments
when making changes to the code [2], [4]–[7], and developers
failing to complete/modify the code in accordance with the
requirement specifications presented in the comment [4]. TA-
BLE I lists some examples of CCI. It is worth noting that these
examples only intend to show different forms of CCI. They
may seem minor; however, inconsistencies in real software
projects can contain longer comments and more complex code
structures, creating barriers to code understanding and further
reducing the understandability and maintainability of code [8],
[9].

Developers often rely on comments to understand the
main functionality and interface specifications of external
code libraries. CCI can lead to misunderstandings about the
code’s functionality and introduce defects during subsequent
development [10]. The cost of fixing such defects is often
high because they require developers to understand the source
code, but they may also require costly communication with the
code developers. In a teamwork environment, frequent CCI
can erode developers’ trust in comments [6], and a lack of
confidence may make developers ignore comments or even
abandon updating them altogether, leading to the failure of
the entire code comment paradigm.

To address the CCI issues, existing research has been
primarily focused on detecting inconsistencies using either the
post hoc or the just-in-time approach. The post hoc approach
aims to detect CCI issues in an existing code version, while
the just-in-time approach aims to detect CCI issues before
they are committed. Detection techniques include rule-based
(i.e., with predefined rules or patterns) [4], [6] or learning-
based (i.e., extracting features by analyzing code comments
and related code and then learning the differences between
inconsistent code and comments in the extracted features) [8],
[9]. Rule-based techniques are easy to implement; however,
they often fail to detect implicit or semantic inconsistencies
due to the limited coverage of rules. Moreover, it is generally



TABLE I
CCI EXAMPLES

Code & Comment Explanation 

// Read bandwidth to intermediate memory in 
GB per second. 
double intermediate read_gb_per_sec; 
//Read bandwidth to intermediate memory in 
GB per second 
double intermediate write_gb_per_sec; 

From the name of the method, it 
looks like it should be `write` 
instead of `read`. It looks very 
much like when the author copied 
the code and comment, he forgot to 
change the comment at the same 
time. 

/* 
* Checks if one of the graphs from 
unsupported graph type and 
*throws IllegalArgumentException if it is. The 
current 
*unsupported types are graphs with multiple-
edges. 
- * @param graph1 
- * @param graph2 
+* @param g 
* @throws 
IllegalArgumentExceptiontprotected 
*/ 
protected static void 
assertUnsupportedGraphTypes(Graph g) 
        throws 
IllegalArgumentException{...} 
 

It looks like the two parameters 
`graph1` and `graph2` have been 
merged into 1 parameter `g` in the 
new version of the code, but the 
corresponding comment has not 
been changed, which can 
obviously be misleading. 

/* 
* Returns the line number in the XML data 
where the exception occurred. 
* If there is no line number known, -1 is 
returned. 
*/ 
public int getLineNr(){ 
    return this.lineNr; 
}  

It's not easy to tell if the comment 
correctly describes the 
functionality and the code doesn't 
give the full implementation or if 
the new version of the code ensures 
that there is no -1 return value. But 
in either case, the code here is 
inconsistent with the comment. 

 
   

challenging to formulate a rule set that can cover a wide
spectrum of situations, and as such, some inconsistencies may
be misjudged or cannot be detected. While learning-based
methods can detect inconsistencies that are difficult to express
in rules [1], they require a large amount of labeled data to
train the models, and the model performance depends heavily
on the quality of the training data [2]. The performance of
existing models varies and is generally not high.

It is evident that detecting inconsistencies alone does not
solve the CCI problem; it merely paves the way for solving
it. A complete solution requires detecting inconsistencies and,
more importantly, rectifying them by suggesting revisions of
incorrect comments.

However, research on the latter is scarce. To the best of
our knowledge, there are only two pieces of published work,
i.e., the studies conducted by Panthaplackel et al. [11] and
Dau et al. [12]. In this paper, we propose C4RLLaMA, a
fine-tuned large language model based on the open-source
CodeLLaMA [13]. C4RLLaMA not only has the ability to
rectify inconsistencies by correcting relevant comment content
but also outperforms contemporary state-of-the-art methods
for detecting inconsistencies. We have conducted extensive
experiments and a manual evaluation to gauge C4RLLaMA’s
effectiveness and efficacy in detecting and rectifying CCI. The
main contributions of this work are as follows.

• We contribute to learning-based CCI detection techniques
by exploiting a general-purpose large language model.

• We design a targeted loss function for fine-tuning CodeL-
LaMA so that C4RLLaMA can achieve improved CCI

detection performance and, more importantly, rectify CCI
by amending comments.

• We introduce a manual evaluation method to gauge
C4RLLaMA’s efficacy in amending inconsistent com-
ments as a complement to the experimental evaluation
method that cannot consider the actual semantic meaning
as it relies on text similarity-based metrics.

The rest of the paper is organized as follows. Section II
introduces some related work. Section III describes the steps to
design and implement C4RLLaMA, followed by the evaluation
process and results in Section IV. Section V discusses some
considerations in C4RLLaMA, followed by the validity risks
pertinent to the study in Section VI. Section VII concludes the
paper with a summary of future work.

II. RELATED WORK

CCI detection is presently a vibrant field of research, with
a variety of methods being proposed [6], [11], [14]. These
methods predominantly fall into two categories: rule-based and
learning-based. However, the rectification of CCI issues has
been relatively underexplored in the literature.

A. Rule-based CCI detection

Rule-based methods detect inconsistencies between code
and comments by employing predefined rules or patterns.
These rules may involve checking the consistency of parameter
names, return values, exceptions, and so forth, between the
code and its comments. This method is relatively straight-
forward to implement and does not require training data.
However, its limitations lie in the restricted coverage of the
rules, which often fail to detect certain implicit or semantic
inconsistencies.

For instance, @tComment [6] is a rule-based method
that identifies inconsistencies by testing the specifications
in Javadoc comments. To be specific, it generates random
tests through javadoc comments to test whether the code
implementing the method is consistent with the content of
the comments, with the main focus being on ‘null’ values
or exception handling. However, it falls short of detecting
whether the descriptions in the comments align with the
code’s other important behavior. Similarly, SmartCoCo [15]
is a rule-based method that detects inconsistencies between
code and comments in smart contracts. It employs constraint
propagation and binding techniques to first extract constraints
from code and comments, then propagate them to variables
and functions, and finally verify their compliance with the
binding condition. Gao et al. [16] utilize a rule-based method
to discern the relationship between comments and code. They
identify a set of rules to determine whether a code modification
impacts the validity of a ‘TODO’ comment, and if it does, the
comment is removed.

B. Learning-based CCI detection

Learning-based methods use machine learning or deep
learning techniques to detect inconsistencies between code and
comments. This is achieved by utilizing neural networks or



language models to ascertain the consistency between code
and comments. Such methods may be able to detect inconsis-
tencies that are difficult to articulate as rules. However, they
necessitate a substantial volume of annotated data for model
training, and the model’s performance is heavily reliant on
the quality of the training data [17], while the interpretability
of the model may be poor [18]. For example, Rabbi and
Siddik [19] use a bi-directional recurrent neural network to
encode code and comments separately and then employ a
fully connected layer to compute their similarity. A binary
classification loss function is used to train the model to
determine whether the code and comments are consistent.
The work conducted by Steiner and Zhang [14] uses a pre-
trained language model (BERT) to detect code and comment
inconsistencies. It adopts a long text processing technique
(Longformer [20]) to process code and comments that exceed
the BERT limit and then designs a binary loss function to
train the model to determine whether the code and comments
are consistent. Panthaplackel et al. [11] uses a deep neural
network to detect whether comments need to be updated
when the code changes. It aligns the semantics of code and
comments through an attention mechanism and then introduces
a multicategorical loss function to train the model to determine
whether comments need to be kept, updated, or deleted.

C. Detection timing: post hoc VS. just-in-time

Researchers have found that the consistency of code and
comments may be closely related to code changes [21].
For example, when the functionality or logic of the code
changes, the corresponding comments usually need to be
updated accordingly, otherwise, inconsistency occurs. The co-
evolutionary relationship between code and comments was ex-
plored by Fluriluri et al., who conducted experiments on three
different open-source software systems and found that code
and comments rarely co-evolve [22]. Thus existing research
investigates different timing of detecting CCI problems. For
example, some studies focus on the detection of CCI in ex-
isting source code repositories (aka, post hoc detection) [23]–
[27], while others focus on the detection of CCI that occur
immediately after code changes (aka, just-in-time detection)
[16], [28]–[31]. These two different modes of detecting CCI
have little impact on the rule-based approach. However, for the
learning-based approach, as the ‘Diff’ information indicating
the difference between the two versions can often be put into
the training data, it may have some positive impact on the final
performance of the model.

D. Pre-trained models in SE tasks pertinent to natural and
programming languages

Pre-trained language models can learn universal language
representations through pre-training on large-scale corpora,
thereby achieving better performance on downstream tasks
through fine-tuning [32]. Many researchers are trying to amal-
gamate Natural Language (NL) and Programming Language
(PL) to achieve mutual conversion between NL and PL. For
example, CodeBert [33] demonstrates superior performance in

code search and document generation tasks by jointly training
PL and NL. CodeReviewer [34] designs targeted pre-training
tasks for NL and PL in code review scenarios, achieving good
performance in PL review and NL review comment generation.

With the development of large language models (LLMs),
researchers have begun to use them to automatically generate
PL or NL. For example, CodeLLaMA [13] achieves the most
advanced performance in open-source models in multiple code
benchmark evaluations by pre-training and instruction fine-
tuning on general text and code data. WizardCoder [35]
enhances the performance of large model code generation
by applying Code Evol-Instruct technology (generating higher
quality datasets through self-instruct and instruction fine-
tuning). To generate NL, Geng et al. [36] uses a small amount
of context learning to make the large model Codex [37]
perform better in the field of multi-intent comment generation
than the most advanced supervised learning methods. The
work carried out by Liang and Huang [38] introduces two
different types of Transformer encoders that learn the non-
Fourier and Abstract Syntax Tree (AST) structure relative
position representation of the source code, thereby improving
code semantics and syntax learning to be superior to other
deep learning-based models from multiple metrics. In the
field of code review, large models also have played a role.
For example, Lu et al. [39] use large language models and
Parameter-Efficient Fine-Tuning (PEFT) [40] technology to
automate the code review process framework, maintaining a
fairly high code review performance while reducing time and
space costs.

In essence, the majority of the research mentioned above
involves a unidirectional transformation between PL and NL,
either converting PL into NL or vice versa. The focus of our
work is on the matching problem of NL and PL, followed
by rectifying inconsistent comments should the CCIissue ex-
ist, which is significantly different from the aforementioned
studies. In this regard, we have found a limited number of
studies. The work conducted by Panthaplackel et al. [11] uses
GRU (which is not a pre-trained model) to detect and resolve
CCI. Owing to temporal constraints, this work did not employ
large language models such as LLaMA and GPT. Another
work is DocChecker [12], which uses a pre-trained language
model (Unixcoder [41]) to detect and resolve CCI. However,
DocChecker only deals with the summary information, which
is merely one of many types of code comment information.

III. METHODOLOGY

In this section, we will detail the methodology for building
C4RLLaMA. As shown in Fig.1, the process mainly consists
of: (1) constructing a large model training dataset; (2) defining
optimization tasks for CCI detection and rectification; and
(3) implementing C4RLLaMA by using low-parameter fine-
tuning methods to fine-tune the pre-trained base large language
model.
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Fig. 1. The process of constructing C4RLLaMA

A. Problem statement
For CCI we adhere to a concept that has been consistently

employed across multiple studies [11], [14]. The primary aim
of our research is to harness the power of a large language
model to understand textual data, which includes both code
and its corresponding comments. This understanding enables
us to identify inconsistencies between the two and subse-
quently amend the comments to rectify these inconsistencies.
It is important to note that the comments discussed in this
paper differ from code summarization [42], which is a one-way
transformation from PL to NL. In contrast, our work involves
two-way consistency detection, assuming the existence of both
code and natural language. In many cases, the content of
comments interspersed within lines of code does not precisely
reflect the content encapsulated in most code summaries. In
fact, the code summaries in the dataset [11] used in our study
represent only one type of comment.

To facilitate a lucid and precise depiction of our approach,
we initially define a set of symbols, as illustrated in TABLE
II.

TABLE II
NOTATION DEFINITION

Cn Comments of the nth version
Mn Code implementation of the nth version

I ∈ {true, false} Judgement result of the code comment consistency
Ins Instructions for the detection and revision to CCI issues
R Revision of the comments to resolve CCI issues

B. Constructing the training dataset
To ensure the validity of comparison with existing studies,

we also use the dataset widely applied in several studies on the

CCI topic [11], [14]. Curated from OSS projects, the dataset
consists of 40688 data items, each of which contains a pair of
consecutively submitted comments C and code M , denoted as
(C1,M1), (C2,M2), which includes comment elements such
as ‘@return’, ‘@param’ and ‘Summary’. Based on an under-
lying assumption that all consistency issues will be rectified
promptly, a code change does not cause a consistency problem,
C1 = C2; conversely, if the change raises a consistency
problem, C1 ̸= C2.

However, to match the input data format requirements of
CodeLLaMA, we need to do some preprocessing of the data.
First, we consider adopting Chain-of-Thought (COT) in the
training process. COT has been proven to be effective in
improving the performances of large language models [43],
[44]. Its core principle lies in decomposing complex tasks and
generating results step by step through recursion, thus avoiding
overly complex reasoning processes. To enable COT, we first
transform the data using a LLaMA [45] template shown in
TABLE III. An example of using the template to process the
original data is shown in TABLE IV, where we present the
preprocessing results for both the post hoc and the just-in-time
modes, respectively. We use a zero-shot prompting strategy,
which is more comparable to the fine-tuning technology, i.e., to
solve the problems without providing examples. Besides, as we
want to support both modes of CCI detection and rectification
at the same time, we need to further process the dataset to
construct the training dataset. It is important to note that our
processing of the training data only changes the format of the
data to cater to CodeLLaMA and adds nothing new to the
dataset.

1) Post hoc: Post hoc targets source code and comments
that already exist in the repository and aims to detect whether



TABLE III
LLAMA TEMPLATE

[INST]                    

<<SYS>>                 

{{ system_prompt }}  // System prompts for service providers to define model roles or 

restrictions, which we do not need to use. 

<</SYS>>         

{{ inputs }}        // the input, i.e., the prompt triggers the model to perform consistency 

check as well as the source code and the corresponding comment 

 [/INST]                

 {{ outputs }}    // the output, i.e., the result of consistency check and the revised comment if 

inconsistency occurs. 
 
 
 

TABLE IV
DATA PROCESSING EXAMPLE

Post hoc 

example 

[INST] <<SYS>><</SYS>> 

 

Is the given code consistent with the corresponding summary? 

```code 

    public static JSONElement parse(InputStream is, String encoding) throws 

ConverterException { 

          return parse(GrailsIOUtils.toString(is, encoding)); 

    } 

``` 

```summary 

Parses the given JSON and returns ether a JSONObject or a JSONArry 

``` 

[/INST]The given code is inconsistent with the corresponding summary. The 

corresponding summary to the given code: 

``` 

Parses the given JSON and returns either a JSONObject or a JSONArray 

``` 

Just-in-

time  

example 

[INST] <<SYS>><</SYS>> 

 

Did the changes cause any issues with consistency in the summary? 

```changes 

<KEEP> private static format get sample format ( format container format , format 

sample format ) { if ( container format = = null ) { return sample format ; } 

<KEEP_END> <DELETE> int width = container format . width = = - 1 ? format . 

no _ value : container format . width ; int height = container format . height = = - 1 ? 

format . no _ value : container format . height ; <DELETE_END> <KEEP> return 

sample format . copy with container info ( container format . id , container format . 

bitrate , <KEEP_END> <INSERT> container format . <INSERT_END> <KEEP> 

width , <KEEP_END> <INSERT> container format . <INSERT_END> <KEEP> 

height , container format . language ) ; } <KEEP_END> 

``` 

```summary 

Derives a sample format corresponding to a given container format, by combining it 

with sample level information obtained from a second sample format. 

``` 

[/INST]The given changes is consistent with the corresponding summary. 
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there is a CCI issue. The task is thus defined as follows:
first, the code and its comments are analyzed to determine
whether there is a CCI issue, denoted as (Ins, C,M) → I, I ∈
{true, false}. Considering the dataset characteristics, we
chose to use M2 as M and C1 as C as a way to implement the
judgment of whether the code modification is consistent with
the original comment. i.e., when C1 = C2, it is determined
that I = false, meaning there is no CCI issue; conversely,
when C1 ̸= C2, it is determined that I = true, meaning there
is one CCI issue. Next, when I = true, a revision to address

CCI is required, denoted as (Ins, C,M, I) → R. In our dataset,
the revision result is denoted as R = C2, (C1 ̸= C2). Based
on the above definition, we have developed Python scripts to
process the original dataset [11] to construct the dataset for
CCI detection and revision in post hoc mode.

2) Just-in-time: Just-in-time targets the code commit sce-
nario, aiming at detecting CCI issues before the code is
committed to a repository. The task is defined as fol-
lows: first, determine whether there is a CCI issue by
analyzing code changes and their comments, denoted as
(Ins, C,Diff(Mn,Mn+1)) → I, I ∈ {true, false}. In the
dataset of this study, we chose to use M1 as Mn, M2 as
Mn+1, and C1 as C, as a way to implement the determination
of whether a change triggers CCI issues: when C1 = C2, it
is determined that I = false, meaning there is no CCI issue;
conversely, when C1 ̸= C2, it is determined that I = true,
meaning there is a CCI issue. Next, if there is a CCI issue, i.e.,
I = true, a revision to the corresponding comment is required,
denoted as (Ins, C,Diff(Mn,Mn+1), I) → R. For this dataset,
the revision results in R = C2, (C1 ̸= C2). Similarly, we
also process the original dataset and construct the dataset for
training C4RLLaMA in just-in-time mode.

C. Defining Optimization Tasks

To enable COT in model training and inference, the tasks
that come first in the COT significantly affect the results
of the subsequent tasks [43]. For this, the CCI detection,
which is essentially a judgment task, may significantly affect
the performance of subsequent CCI rectification tasks. We
therefore custom-design a loss function to increase the weight
of the judgment task to highlight the importance of the
accuracy of the judgment task, as follows:

LID = αLI + (1− α)

n∑
i=1

logP (xi|x<i)

where α represents the weight of the code-comment consis-
tency judgment task, usually α takes the value of 0.5, and
P (xi|x<i) denotes the probability distribution of token xi

predicted by the model based on the input sequence x<i, which
is a commonly used method to calculate the loss in fine-tuning
large models.

We note that the original dataset [11] has a small number
of labeling issues, which also have been confirmed by other
researchers [46]. To mitigate the noise brought by mislabelling,
we employ the Label Smoothing (LSM) technique [47] and
define the following sub-loss function for the CCI detection
task:

LI = log((1− ϵ)P (I|Ins, C,M) +
ϵ

K
)

where ϵ is the degree of smoothing of categorical labels,
generally taken as ϵ = 0.1, and P (I|Ins, C,M) denotes the
probability distribution of judging the consistency of the com-
ments and code implementation, given the model directives,
the comments and the code implementation. K is the length
of the word list of the large language model. The method



mitigates the data noise problem by preventing the model from
giving overly deterministic answers to noisy data.

D. Fine-tuning CodeLLaMA

Fine-tuning can significantly enhance the ability of large
language models to solve problems for specific tasks. We also
use the LLaMA template (as shown in TABLE III) for training
and inference. Large language models typically have a large
number of parameters, and fully fine-tuning them tends to
require significant computational resources [48]. Therefore,
we adopt a low-parameter fine-tuning strategy to fine-tune
CodeLLaMA, a highly-regarded model within the open-source
community. CodeLLaMA is built upon the LLaMA2 model
[45] and utilizes code data for complementary pre-training,
which has demonstrated state-of-the-art performance across
numerous code benchmark evaluations and is used as a base
model for fine-tuning in a variety of software engineering
tasks [49], [50]. Specifically, we chose the Lora [51] method
as the low-parameter fine-tuning scheme for the follow-up
task. Lora can achieve similar results to full-parameter fine-
tuning by using only one-thousandth to one-ten-thousandth
of the original model parameter for fine-tuning. LoRA as-
sumes that the parameter changes during the fine-tuning phase
have a low intrinsic rank, allowing the parameter changes to
be decomposed into the product of low-rank matrices, i.e.,
W ′ = W0 + ∆W = W0 + BA. Here, W ′ represents the
fine-tuned model parameters, W0 is the set of pre-trained
model parameters, ∆W is the change in model parameters
after fine-tuning, B ∈ Rd×r, A ∈ Rr×k, with d and k
being the dimensions of the model parameters, and satisfying
r ≪ min(d, k). During training, the original pre-trained
parameter set W0 is frozen and does not participate in gradient
updates; only B and A are updated. Since the number of
parameters in the low-rank matrices is much smaller than that
of the original model matrix, it allows for fine-tuning the large
model with a minimal number of parameters. To further reduce
the training cost and improve the convergence speed, we use
the Lion (EvoLved Sign Momentum) optimizer [52]. The fine-
tuning of the model was performed on 2 A100 40GB graphics
cards, training was performed using bf16 precision, and the
hyperparameters were set as shown in TABLE V.

TABLE V
TRAINING HYPERPARAMETERS

Param Lora r Lora Dropout Learning Rate Batch Size Epoch
Value 8 0.05 1e-4 32 10

IV. EVALUATION

In this section, we evaluate our approach C4RLLaMA for
CCI detection and rectification against several state-of-the-art
approaches we have identified. The entire evaluation process is
depicted in Fig.2, aiming to answer the following two research
questions:

• RQ1: How does C4RLLaMA perform on the CCI de-
tection tasks for both the post hoc and the just-in-time
modes?

• RQ2: How does C4RLLaMA perform on the CCI recti-
fication tasks for both the post hoc and the just-in-time
modes?

From a practical point of view, a good CCI solution should
first perform well in detecting CCI issues, followed by its
ability to provide accurate revision to reduce developers’
efforts in rectifying these CCI issues.

A. Experimental settings

As the existing studies are predominantly on CCI detection
and very few have addressed CCI rectification, we use different
evaluation settings for RQ1 and RQ2 in our experimental
design.

1) CCI detection task evaluation (RQ1): We utilized the
widely used dataset from previous work as our training and
testing dataset [11], [12], [14] and also adopted the metrics
applied in these studies for evaluating C4RLLaMA’s accuracy
performance including Precision, Recall, F1-score and Accu-
racy. To ensure a fair and consistent evaluation, we established
specific selection criteria for the benchmark approaches. If
retraining was necessary, we mandated that these approaches
utilize the identical dataset as employed in our study. Ad-
ditionally, we required the algorithm or code to be either
provided or publicly accessible. In cases where retraining
was not required, we opted for commercially available large
language models, specifically ChatGPT and GPT4, recognized
for their robust performance. Consequently, we identified the
following approaches for benchmarking.

• CodeBERT BOW [11]: Build on CodeBERT [33], this
approach can support both post hoc and just-in-time tasks
with relatively good performance.

• SEQ, GRAPH & HYBRID: Three new baseline ap-
proaches proposed by Panthaplackel et al. [11] to detect
CCI issues, which are distinguished by different encoding
methods for different contents,i.e., comment, AST tree,
respectively. SEQ encodes comments using the GRU
network, GRAPH encodes comments using the AST tree,
and HYBRID is computed using a multi-head attention
mechanism combining the above two encoders.

• BERT & Longformer [14]: Steiner et al. used BERT and
Longformer to detect CCI. By utilizing the feature of
Longformer’s ability to handle longer sequence lengths
to reduce the information loss, it achieves state-of-the-art
performance for the CCI detection tasks.

• DocChecker [12]: Proposed by Dau et al., it achieves
fairly good performance by supplementary pre-training
based on UniXcoder [41]. As the paper only provides
performance evaluation on the post hoc task, we only
compare it on the post hoc task.

• ChatGPT&GPT 4: As the most famous large language
models that can effectively accomplish a variety of soft-
ware engineering tasks, we use 0-shot prompt engineering
to drive them and realize the CCI detection task.
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Fig. 2. The process of evaluate C4RLLaMA

2) CCI rectification task evaluation (RQ2): As previously
discussed, research on the rectification of CCI issues is notably
sparse. We identified only two studies that provide solutions
for CCI rectification. However, DocChecker [12] utilizes a
different dataset in the CCI rectification task, leaving us with
only one benchmarking study, namely the work conducted by
Panthaplackel et al. [11]. The evaluation metrics used in our
study were exactly derived from Panthaplackel et al.’s work
[11], i.e., xMatch, BLEU-4 [53], GLEU [54], Meteor [55], and
SARI [56]. While the rest are commonly used metrics, xMatch
tests the extent to which two texts are identical. The test dataset
was constructed by following the baseline approaches, i.e.,
by copying consistent comments when there is no CCI issue
and using corrected comments generated by the rectification
approach when there is a CCI issue. We use human evaluation
as complementary evidence to further assess the efficacy of
the revision content, which is mainly done by evaluating the
semantics to see whether the modification has really solved
the CCI issue. There are only two types of evaluation results,
successfully fixed and unsuccessfully fixed, according to the
following criteria: successfully fixed requires that the resulting
new comment is semantically related to the corresponding
code and does not contain explicit errors; otherwise, it is
considered unsuccessfully fixed. The criteria provide a clear
basis to determine whether an incorrect comment had been
correctly rectified, which is fairly achievable by senior students
majoring in software engineering. We then randomly selected
800 entries (at a 95% confidence level with a confidence
interval range of less than 4%) to serve as the dataset for
human evaluation.

B. Evaluation results

We present the evaluation results in this subsection.
1) RQ1: Detecting CCI issues: Results are presented in

TABLE VI and TABLE VII. It is clear that our proposed

TABLE VI
RESULTS FOR post hoc CCI DETECTION .

Approach Precision Recall F1 Accuracy
CodeBert BOW 68.9 73.2 70.7 69.8

SEQ 60.6 73.4 66.3 62.8
GRAPH 62.6 72.6 67.2 64.6
HYBRID 56.3 80.8 66.3 58.9

BERT 72.1 71.9 72.0 72.1
Longformer 92.7 81.0 86.4 87.3
DocChecker - - 74.3 72.3

gpt-3.5-turbo-1106 62.6 62.0 62.3 62.5
gpt-4-0125-preview 59.2 81.7 68.7 62.6

CodeLLaMA-7B 94.0 84.6 89.0 89.6

C4RLLaMA approach significantly outperforms various pre-
vious approaches, both in post hoc and just-in-time modes.
Specifically, in post hoc mode, our fine-tuned 7B model
achieves F1 and Accuracy of 89.0% and 89.6%, respectively,
which are 2.6% and 2.7% better than Longformer, the state-
of-the-art approach. It is worth mentioning that ChatGPT and
GPT4 do not seem to show an advantage in detecting CCI
issues, which, to a fair degree, confirms the importance of
fine-tuning to improve the performance of large language
models on specific tasks. Meanwhile, in just-in-time mode, our
method C4RLLaMA also performs well, with F1 and Accuracy
reaching 84.1% and 84.5%, respectively, which are 3.2% better
than ‘GRAPH+feature’ and 2.7% better than ‘SEQ+feature’,
two state-of-the-art approaches. ChatGPT and GPT4 have very
high Recalls in this mode, which, however, is dragged down
by the lower Precision; hence their F1 is only about 66.7%,
and their Accuracy is only around 50%. In particular, it should
be noted that to obtain better model performance, in just-in-
time mode, SEQ, GRAPH, and HYBRID all add extra tags to
the code ‘Diff’ information, and these tags change the original
structure and content of the ‘Diff’, which we suspect degrades



TABLE VII
RESULTS FOR just-in-time CCI DETECTION.

Approach Precision Recall F1 Accuracy
CodeBERT BOW 67.4 76.8 71.6 69.6

SEQ 80.7 73.8 77.1 78.0
GRAPH 79.8 74.4 76.9 77.6
HYBRID 80.9 74.7 77.7 78.5

SEQ + features† 88.4 73.2 80.0 81.8
GRAPH + features† 83.8 78.3 80.9 81.5
HYBRID + features† 88.6 72.4 79.6 81.5

BERT 76.4 78.3 77.3 77.1
Longformer 80.3 76.5 78.3 78.8

gpt-3.5-turbo-1106 50.0 100.0 66.7 50.0
gpt-4-0125-preview 51.5 98.8 66.7 52.8

C4RLLaMA 85.8 82.6 84.1 84.5
C4RLLaMA

with standard Diff* 95.9 87.3 91.4 91.8

† As a variation, the ‘features‘ are derived from their prior
work [11], which typically includes linguistic (e.g., POS
tags) and lexical (e.g., comment/code overlap) features.

* We use the standard formatted ‘Diff’ to evaluate
C4RLLaMA.

the performance of the general purpose large language model.
Therefore, we processed the ‘Diff’ information to restore its
original form and re-evaluated C4RLLaMA, and the results
are shown in the bottom row of TABLE VII. In the case of
using the standard format ‘Diff’, the C4RLLaMA’s metrics
for detecting CCI in just-in-time mode improved significantly,
with its F1 and Accuracy remarkably reaching 91.4% and
91.8%, respectively, which largely corroborates the previous
speculation that the special ‘Diff’ format drags down the
C4RLLaMA’s performance. The performance of an LLM is
largely influenced by the data in the pre-training [57]. The just-
in-time dataset [11] uses a customized special format of ‘Diff’,
while the post-hoc dataset uses the regular ‘Diff’ format. As
CodeLLaMA [13] does not reveal the details of its pre-training
data, we can only speculate that its training data used the
regular instead of the special format of ‘Diff’, leading to the
performance discrepancy between the two datasets.

2) RQ2: Rectifying CCI issues: The C4RLLaMA approach
also exhibits a distinct advantage in rectifying CCI issues, as
depicted in TABLE VIII. In Panthaplack et al.’s work [11],
the researchers employed diverse strategies for model training.
These included a pre-training strategy encompassing solely
positive examples and a joint training strategy incorporating
both positive and negative examples. From the results in
TABLE VIII, it is evident that the C4RLLaMA approach
emerges as the superior performer in both post hoc and just-
in-time modes on all four metrics including BLEU-4, GLEU,
SARI and Meteor, reflecting the clear advantage of the large
language model in resolving CCI issues. In addition, akin to
CCI detection, the format of the ‘Diff’ continues to exert a
significant influence on the output results as the C4RLLaMA
approach performs much better with the standard formatted
‘Diff’ information. The sole metric where the C4RLLaMA
approach falls short of other approaches is xMatch. This can be
primarily attributed to the fact that large language models excel
at content generation, whereas the xMatch metric requires

exact content matches. Consequently, it is unlikely that the
C4RLLaMA based on the large language model could exhibit
an advantage in the xMatch metric, even if it yields reasonable
revisions.

It should be noted that metrics such as BLEU-4, GLEU,
SARI, Meteor, and xMatch are based on the level of text
similarity. They are not the best for evaluating the efficacy
of rectifying CCI issues, which apparently can only revise
comments in the form of natural language. In the first example
in TABLE I, a correct change may take many forms such as
‘write’, ‘to write’, or ‘it is to write’. In turn, even if with the
original incorrect form (i.e., keep ‘Read’ unchanged), the text
similarity metrics may still be very high. This inevitably results
in the need to understand and analyze the semantic meaning of
the revised comment to determine whether the CCI issue has
been appropriately solved. To this end, we performed a human
evaluation of the results created by C4RLLaMA to rectify CCI
based on sampling. The result is depicted in Fig. 3. We can
observe that in post hoc mode, C4RLLaMA can successfully
fix 65% of CCI issues by revising the comment content, while
in just-in-time mode, the success rate is 55.9%, indicating
C4RLLaMA’s high potential for practical applications. We
performed a deep analysis of the cases that were determined to
be ‘unsuccessful fixes’, and we identified several situations that
are worth noting for future work. First, there are some cases
where C4RLLaMA only rephrased the inconsistent comment.
Although issues such as misspellings were properly rectified,
the semantic meaning was still incorrect. This seems to imply
that the 7B model we were using in this study has room for
improvement in terms of correctly understanding user intent.
Second, some CCI issues involve external information (e.g.,
even changes in requirements), which are rather difficult to
resolve. Nevertheless, we believe that CCI rectification still
has a chance to preserve some additional considerations of
the original developers at the time of developing the code with
respect to other entities associated with the current block of
code compared to the use of code summarization techniques
for comment-like generation, and thus it is worthwhile to
explore better solutions to the CCI issue.

TABLE VIII
RESULTS ON CCI REVISION.

Approach xMatch BLEU-4 GLEU SARI Meteor
Jointly trained SEQ 62.3 76.6 75.6 42.0 75.9

Jointly trained GRAPH 59.4 76.6 75.8 42.5 75.1
Jointly trained HYBRID 62.3 76.9 75.9 42.3 75.6

Pretrained SEQ 61.4 77.0 76.2 42.4 75.6
Pretrained GRAPH 60.8 76.6 75.8 41.8 74.9
Pretrained HYBRID 61.6 77.2 76.4 42.3 75.8
C4RLLaMA Post hoc 50.0 81.7 82.0 85.2 88.5

C4RLLaMA
just-in-time 50.0 77.5 77.5 82.0 86.8

C4RLLaMAjust-in-time
with standard ‘Diff’* 50.0 82.6 83.0 86.7 89.2

* We use the standard formatted ‘Diff’ to evaluate C4RLLaMA.
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Fig. 3. Human evaluation of the results on CCI revision.

V. DISCUSSION

In this work, we fine-tuned a large language model (i.e.,
CodeLLaMA) to detect and rectify CCI issues and conducted
empirical studies on publicly available datasets to confirm the
validity of our proposed C4RLLaMA approach. In this section,
we discuss some considerations in our work so far.

a) The reasons for the better performance of
C4RLLaMA: The task of code-comment consistency
checking necessitates a comprehensive understanding of
both the code and comment content, as well as the ability
to discern discrepancies between them. This requires the
applied approach to possess extensive knowledge to perform
these complex logical comparisons. Large language models,
pre-trained on vast amounts of data, have the potential to
excel in this task by gaining a profound understanding of both
code and language [57]–[59]. During the fine-tuning phase,
we devise training algorithms that concentrate a portion of
the model’s capabilities on the task of CCI detection and
rectification, thereby enhancing the large language model’s
capabilities. As some studies [11], [46] revealed that noisy
data cannot be completely eliminated from datasets curated
from Open Source Software (OSS) projects, the loss function
we designed in C4RLLaMA helps to mitigate the negative
impact of this noisy data, thereby improving the final
performance in terms of CCI detection and rectification.

b) Other implications of resolving CCI issues: Since
most large language models, including those oriented towards
code generation, do not disclose the details of the dataset
used for training, there is currently no information on whether
comments are included along with the code fed to the model
when it is pre-trained [13], [45]. However, many studies have
confirmed that for large language models, data quality is a
key factor in model performance [58], [59]. The inclusion of a
substantial number of inconsistent comments in the code used
for training these models could invariably compromise their
performance. In light of this, the research presented in this
paper could offer valuable insights for enhancing the quality
of code used in training large language models for code-
related tasks, particularly from the standpoint of eliminating
inconsistent comments.

c) Future improvements: Although C4RLLaMA has per-
formed quite well according to the results of this paper, there
are still a lot of directions to be explored and problems to be

solved. First of all, C4RLLaMA currently only uses the model
of CodeLLaMA 7B. However, many studies have shown that
the amount of model parameters has a significant impact on
the resultant model performance [43], [60]. Therefore, It is
worth using a large language model with more parameters
for the base model. Also, as new and more advanced large
language models continue to be released, it is promising that
these more capable models can yield better results. Secondly,
the data used in this paper is more likely to be examined
for just a single comment at a time, which is relatively less
difficult. In real-world scenarios, there are often interlinear
comments, code documents, and other scenarios with complex
semantics, which require the model to fully understand the
semantics of the code and natural language, and even include
complex logical and mathematical transformations that exist
between some of the documents and the code. Although a
large language model presents the potential to deal with these
types of problems, a lot of exploratory work is still needed.

d) Exploring more proactive ways to solve the comment
issue: Comment is undoubtedly helpful to code readers and
is hence one of the integral software artifacts. In this paper,
as well as in previous related studies, we note that an ex
post facto approach to CCI issues has generally been taken,
i.e., waiting until an CCI issue occurs (which is the case
even with the just-in-time mode, except that it has not been
committed to the repository of the code) and then trying to
figure out how to correct an error that has already occurred,
thus attempting to match the code with improved comments.
However, the emergence of the large language models, and in
particular the emergence of multiple programming assistants
geared towards programming based on large language models,
prompt us to wonder if there are more proactive ways to deal
with the challenge of commenting code. For example, training
a large language model to generate comments directly while
programming is a reasonable way for the programmer to pick
a more appropriate comment. Then, by integrating this feature
in IDEs and using C4RLLaMA with the just-in-time mode, it is
clear that most of the CCI issues can be avoided. This paper
reveals, to a large extent, that large language models have
impressive capabilities of understanding both source code and
natural language, and in this sense, a more proactive means of
coping with comments is already emerging. What is lacking
may be their practical use, which should be explored as a
future research direction.

VI. THREATS TO VALIDITY

This section discusses some of the factors that could poten-
tially impact the findings and conclusions of our study.

The claim regarding large language model: We do not
intend to stir up controversy, and in fact, there are no well-
recognized criteria or definitions for distinguishing large lan-
guage models. In this paper, we refer to the general-purpose
large language models represented by ChatGPT and LLaMA.
These large language models are significantly different from
previous models, such as Bert and Longformer, in terms of
model structure and the number of parameters, and it is also



evident that the performance of large models is significantly
improved by the phenomenon of ‘emergence’ due to a large
number of parameters [57].

The limited dataset: This study employs a dataset, origi-
nally compiled by a prior researcher, that exclusively contains
data in the Java language. The dataset is limited to three spe-
cific data types relevant to comments: ‘Summary’, ‘@param’,
and ‘@return’. Consequently, the task of CCI detection is
inherently constrained by these types of comment data to a
certain extent. It is widely acknowledged that the performance
of machine learning models is largely dictated by the quality
and relevance of the data they are trained on. While large
language models can achieve a degree of generalization across
different programming languages due to pre-training, they still
require training on meticulously curated data (e.g., data in
the relevant language, specific comment types, etc.) to yield
optimal results. This underscores the importance of careful
data preparation in the pursuit of more desirable outcomes in
machine learning tasks.

The definition of consistency/inconsistency: We take the
same treatment of consistency/inconsistency in our work as
in previous studies, i.e., since the datasets provided in these
studies are labeled and already have a clear distinction between
consistent and inconsistent items, we directly follow these
labels to determine whether there is a CCI issue. However,
we also found that there are naturally multiple ambiguous
interpretations of so-called consistency, and there are clearly
differences in the magnitude of the impact of the CCI issue.
We find that these phenomena have not been addressed in a
targeted manner in existing research so far and undoubtedly
have some implications for the conclusions of related studies
(e.g., do some of the inconsistencies, similar to those in
TABLE I, really need to be addressed?). This paper is no
exception. Nevertheless, as we have made great efforts to
ensure the validity of comparisons, we believe the conclusions
of this paper are still correct. However, from the perspective
of guiding practice, a more nuanced distinction between CCI
issues may be needed.

The baseline labeling issue regarding dataset: The
dataset from previous researchers used in this study assumed
that the collected items were relatively well maintained, i.e.,
that all CCI issues were fixed in a timely manner, a re-
quirement that the researchers who provided the dataset also
acknowledged would be difficult to fully satisfy in reality. This
may have led to a small number of untimely modifications
being recognized in the dataset as not having CCI issues. And
we also found that some of the CCI rectifications were not
fixing code comments, but rather fixing spelling. These facts
could have a negative effect on the performance of C4RLLaMA
regarding accuracy. However, from our sampling results, this
type of phenomenon does not occur frequently, so we believe
this risk is manageable.

Unable to replicate original algorithm for comparative
evaluations: Owing to the absence of certain information
in the original dataset (e.g., AST tree), we were unable to
replicate the algorithms in study [11] with complete accuracy.

However, we believe this does not affect the comparative eval-
uation presented in VI,VII, and VIII as the data is presumed to
represent the optimal performance of the benchmark methods
in their respective studies. Despite this, it did prevent us from
conducting a human evaluation to compare the effectiveness
of the CCI issue rectification between our C4RLLaMA method
and the benchmark methods [11]. Consequently, it remains an
open question as to whether the rectification results of the
C4RLLaMA method at the semantic level outperform those of
the benchmark methods

No comparison with code summarization techniques:
Code summarization enables developers to quickly under-
stand a given implementation by generating natural language
from the given code implementation. Ideally, developers can
avoid CCI issues by using code summarization to generate
various comments after modifying the code implementation.
Alternatively, after identifying the CCI issue, the developer
can simply delete the corresponding comment and use the
content generated by the code summarization as the new
code comment. However, considering that code summaries and
comments do present not exactly the same content, and our
dataset is specific to code comments. As such, it is impossible
to conduct a fair comparison. Therefore, we did not analyze
code summaries comparatively during the evaluation process.

Exclusion of GPT series in CCI rectification comparative
study: In our comparative study of CCI rectification, we did
not include the GPT series of large language models. This
omission does not preclude the potential of these models
to outperform others in addressing CCI issues. However, it
is important to note that the GPT series has demonstrated
suboptimal performance in detecting CCI issues. It is generally
more practical for practitioners to first detect CCI issues before
attempting to rectify them. Therefore, the effectiveness of the
GPT series in CCI revision remains an open question.

Constraints to the large language model: As the training
of large language models consumes a lot of resources, we
only carried out the related work described in this paper
on CodeLLaMA, one of the most representative code large
language models. Also, due to resource constraints, we only
used a model of 7B parameters. In fact, there are also several
large language models oriented to coding tasks, each of which
also has several different parameter size settings. All these
factors obviously have an impact on the results of our study.
Limited by time and GPU resources, we were not able to
conduct experiments on each of them. We recognize this
validity risk and will always adopt an open mind to try
different large language models at the right time. On the
other hand, as one of the most well-known open-source large
language models, the LLaMA series has been widely studied,
so the C4RLLaMA approach based on CodeLLaMA is laid on
a solid foundation, and the results deserve to be generalized.

Errors from human evaluation: Despite using clear cri-
teria and consistency checks to ensure the accuracy of human
evaluations, errors in manual evaluation are still possible,
which may, to a certain degree, affect the results. We miti-
gated this risk by employing evaluators with a background in



software engineering, ensuring they have the necessary exper-
tise to enact the criteria when determining the consistency
of rectified comments and the corresponding source code.
Besides, this risk is also largely mitigated by the high degree
of consistency between the results of human evaluation and
objective evaluations based on multiple metrics, as shown in
TABLE VIII.

VII. CONCLUSION AND FUTURE WORK

In this study, we present a novel approach, C4RLLaMA
for the detection and rectification of CCI. Leveraging the
power of large language models, we fine-tune our model
based on CodeLLaMA to achieve state-of-the-art performance
on both tasks. Specifically, C4RLLaMA successfully detects
approximately 90% of CCI issues, with over half of these
issues being automatically and correctly rectified, irrespective
of whether the model operates in post hoc or just-in-time
mode.

This research represents an early attempt to utilize a
large language model to address CCI issues. Our findings
underscore the immense potential of large language models
in resolving CCI issues, while also highlighting areas for
further enhancement. For instance, one promising avenue for
future research involves fine-tuning a large language model
to directly generate code comments. Additionally, exploring
the performance boundaries of C4RLLaMA by employing a
more powerful large language model as a base could prove
beneficial. Such an approach may significantly automate the
resolution of CCI issues, thereby making it a practical solution
for large-scale applications.

ARTIFACTS

In order to facilitate the verification or replication of our
work, we provide the dataset, algorithmic code, as well as
associated instructions used in the study, as detailed in the
following URL. https://github.com/aiopsplus/C4RLLaMA
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