
Automated Repair of Programs from Large
Language Models

Zhiyu Fan
National University of Singapore

Singapore

zhiyufan@comp.nus.edu.sg

Xiang Gao†
Beihang University

Beijing, China

xiang gao@buaa.edu.cn

Martin Mirchev
National University of Singapore

Singapore

mmirchev@comp.nus.edu.sg

Abhik Roychoudhury
National University of Singapore

Singapore

abhik@comp.nus.edu.sg

Shin Hwei Tan
Southern University of Science and Technology

Shenzhen, China

tansh3@sustech.edu.cn

Abstract—Large language models such as Codex, have shown
the capability to produce code for many programming tasks.
However, the success rate of existing models is low, especially
for complex programming tasks. One of the reasons is that
language models lack awareness of program semantics, resulting
in incorrect programs, or even programs which do not compile. In
this paper, we systematically study whether automated program
repair (APR) techniques can fix the incorrect solutions produced
by language models in LeetCode contests. The goal is to study
whether APR techniques can enhance reliability in the code
produced by large language models. Our study revealed that: (1)
automatically generated code shares common programming mis-
takes with human-crafted solutions, indicating APR techniques
may have potential to fix auto-generated code; (2) given bug
location information provided by a statistical fault localization
approach, the newly released Codex edit mode, which supports
editing code, is similar to or better than existing Java repair tools
TBar and Recoder in fixing incorrect solutions. By analyzing the
experimental results generated by these tools, we provide several
suggestions: (1) enhancing APR tools to surpass limitations in
patch space (e.g., introducing more flexible fault localization)
is desirable; (2) as large language models can derive more fix
patterns by training on more data, future APR tools could shift
focus from adding more fix patterns to synthesis/semantics based
approaches, (3) combination of language models with APR to
curate patch ingredients, is worth studying.

I. INTRODUCTION

Designing AI-based systems to automatically solve pro-

gramming tasks has gained considerable attention in recent

years. The most notable of these comes in the form of

transformer-based large-scale language models, which can

be used to achieve impressive performance in generating

text. The transformer-based models, such as Codex [1] and

AlphaCode [2], have successfully generated code for many

programming tasks in Python, Java, and C. Technically, these

techniques treat code generation as a transformation problem,

which takes as input natural language descriptions and trans-

forms them into programming language.
Although transformer-based models successfully solved

many programming tasks, their success rate is still relatively

†
Corresponding author

low. When evaluating on pass@5 metric [1], the best Codex

model achieves 24.52% passing rate at introductory-level

tasks and 3.08% passing rate at competition-level tasks [1]

from APPS dataset [3]. The best AlphaCode model achieves

20.36% and 7.75% passing rates on introductory-level and

competition-level tasks, respectively [2]. Lacking deep under-

standing of task descriptions and program semantics are the

main reasons that cause the low success rate. Transformer-

based models treat code generation as a sequence-to-sequence

transformation by treating description and code as token

sequences which cannot capture deep semantic features of

programs. In contrast, generating entire programs requires an

understanding of the entire task’s description which usually

comprises complex logic, and figuring out the solutions to

programming tasks relies on deep algorithm reasoning. Al-

though it is important to systematically study the reasons

behind the ineffectiveness of language models in solving

programming tasks, there is little to no study that characterizes

the defects made in the programs automatically generated by

language models, creating a gap in understanding how to

further improve these automatically generated programs.

Automated program repair (APR) is an emerging area

for automated rectification of programming errors [4]. APR

techniques take as inputs a buggy program and a correct-

ness specification, and produce a fixed program by slightly

changing the program to make it satisfy the given speci-

fication. Typical repair tools generate patches by reasoning

about the program semantics against the given specification.

For instance, semantic-based repair tools (e.g., SemFix [5],

Angelix [6]) generate patches via symbolic execution, while

search-based repair tools (e.g., GenProg [7], TBar [8]) search

for correct patches among a pre-defined search space. APR has

shown promising results in fixing real-world bugs but they are

still limited to generating small patches (usually one-line fixes)

due to the complexity of semantic reasoning, and search space

explosion – when considering multi-line fixes.

The strength and weakness of language models and APR

techniques inspire us to think about the following question:

1469

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00128

http://crossmark.crossref.org/dialog/?doi=10.1109%2FICSE48619.2023.00128&domain=pdf&date_stamp=2023-07-26

TABLE I
OUR KEY FINDINGS AND IMPLICATIONS ON THE BUG PATTERNS MADE BY CODEX AND THE EFFECTIVENESS WHEN APPLYING EXISTING REPAIR TOOLS

AND CODEX-E TO FIX THESE BUGS.

Findings on Bug Pattern (Section III) Implications
Auto-generated code share common mistakes with human programmers.
57% of bugs made by Codex are algorithm-related, and 11% of them
are due to syntax errors. To fix the remaining bugs made by Codex.
13.4% of them require small changes (e.g., changing operator and replacing
variables), 18.5% of them require larger patches.

As Codex generated code share common mistakes with human-written code,
using APR techniques to enhance reliability in auto-generated code by
automatically fixing the bugs in the auto-generated code is worth studying.

Auto-generated code contain negative symptoms or undesirable code pat-
terns such as: 1 names that indicate wrong algorithms; 2 similar code
blocks (code smells related); 3 producing irrelevant helper functions.

Instead of depending on token log-probability, language model designers can
consider incorporating rigorous code quality checks from the perspective of
a program itself to enhance code generation and recommendation.

Findings on APR’s effectiveness (Section IV) Implications
Existing pattern-based and learning-based APR approaches can fix a
small number of bugs in auto-generated code. The challenges in fixing
auto-generated code include: 1 limited search space; 2 unable to
generate multi-edit patches; 3 lack of awareness of program
dependencies.

Manually designing fix patterns is not scalable, and future research may
either need to look more at program synthesis based approaches, or need to
curate patterns automatically from huge training data.
Statistical fault localization is widely used by APR tools to determine fix
location, which might be limited. Advanced fix localization techniques based
on program dependency analysis may help to improve APR’s repairability.

Findings on Codex Edit Mode (Codex-e) (Section V) Implications
Given “proper” instructions (such as where to fix), Codex-e even out-
performed pattern-based and learning-based APR tools. With/Without
controlling the fault locations affect the characteristics of generated patches
by Codex-e. So, “what kind of guidance should be given to Codex-e?”,
needs to be further studied.

Considering the similar effectiveness of Codex-e with and without location
guidance, future APR research should strike a balance between controlling
the fault location and providing flexibility in the fault location (allowing
it to generate multi-hunk patches). This work would be along the lines of
engineering prompts for language model based code generators.

Codex-e is able to generate patches at flexible locations beyond the given
location or statement. This enables Codex-e to produce more correct and
larger patches, especially when the given location is not precise.

Future APR tools could explore more flexible forms of fix localization to
allow fixes to be generated at multiple locations.

Findings on Combining Search Space of different Tools (Section V) Implications
Combining the search space of different tools (TBar and Codex-e) could
produce the required patch ingredients to fix more incorrect solutions.

Combination of APR tools with language model based tools, for curating
patch ingredients (possibly via symbolic analysis of code fragments) — is
worth studying. One can combine multiple incorrect solutions produced by
Codex to get more patch ingredients. APR tools can consider using Codex
as a source of crafting rich patch ingredients.

can automated program repair improve the code produced
by language models? In this paper, we apply existing APR

techniques to the code generated by the Codex model, and

answer the following research questions:

(RQ1) What mistakes are common in auto-generated code?
Although we know that language models produce many

wrong solutions when solving programming tasks, several

open questions remain: (i) what are the types of bugs made by

language models; (ii) are the bugs made by language models

similar to the bugs made by human. We first study the bug

patterns of code produced by Codex, and whether they are

similar to bugs in human-written code.

(RQ2) Can APR tools effectively fix code from Codex?
Existing APR tools are mainly designed to fix human-

written bugs. APR tools typically generate patches by defining

transformation operators (search-based APR) or specifying the

program synthesis ingredients (semantics-based APR). These

operators and ingredients have been proven to be efficient in

fixing human-written bugs. We study how effective APR tools

(TBar and Recoder) are in fixing the code produced by Codex.

(RQ3) Can Codex edit mode fix program bugs?
In March 2022, a new version of Codex was released [9],

which can edit existing content in a complete program rather

than just completing a partial program. Codex edit mode (we

call this mode Codex-e throughout this paper) requires users

to provide instructions to guide the revision, such as “translate

the java program to javascript” [9]. To fix a bug, users need to

provide precise and clear instructions. How to automatically

produce such instructions still remains an open question. We

study whether the side effect of APR tools, such as fault

localization results, can be used to guide Codex-e, and how

effective Codex-e is in fixing program bugs.

Table I presents the key findings of our study. Our result

shows that existing APR tools (pattern-based and learning-

based APR) are still quite limited, including limited patch

space, fix locations and patch size — thus enhancing APR

tools to surpass these limitations (e.g., introducing a more flex-

ible fault localization strategy) is highly desirable. Specifically

we see possible collaboration between APR tools and Codex-e

for curating patch ingredients to construct complex patches.

Contributions: The contributions of this paper are:

• We present a systematic study of automated repair of buggy

programs produced from language models.

• To the best of our knowledge, we conduct the first study

that evaluates the efficacy of the newly released Codex edit

mode as an automated repair tool.

• We propose LMDefects, a new dataset that contains 113

Java programming tasks. Among them, 46 tasks have been

successfully solved by Codex and 67 of them remain un-

solved. Our dataset and scripts, including all initial solutions

produced by Codex and all patches produced by APR tools,

is available at https://github.com/zhiyufan/apr4codex.

1470

Initial
Solutions

Public Tests

False

APR Tools
(TBar, Recoder,

Codex-e)
Submit

Fixed
Solutions

Codex

Public static * task_name(args):
 /** Problem Description in
 * Leetcode
 */

Submit

Pass All
Tests

True

Fig. 1. The workflow of automatically fixing programs generated by Codex

II. STUDY SETTING

In this section, we present the setting of our study, including

the overall workflow, the Codex model, parameters, dataset,

APR tools, etc. All experiments were conducted on an Ubuntu-

16.04 server, with 64GB RAM and Intel(R) Xeon(R) CPU

E5-2660 @ 2.00GHz, and NVIDIA Titan V GPU.

a) Codex Model: Codex [1] is the model that powers

GitHub Copilot [10] which completes a program given a

natural language prompt. Codex supports many programming

languages (e.g., Python, C/C++, Java). Their training data

contains both natural language and billions of lines of public

code from GitHub. In our study, we use the pre-trained

Codex code-davinci-002 and Codex-e code-davinci-edit-001

model [11], which were both trained on data up to Jun 2021.

b) Methodology and Dataset: Figure 1 shows the overall

workflow of our study. LeetCode is an online judge platform,

which includes over 2,300 different problems, ranging from

easy to hard level. It also has a forum [12] with active

community where correct solutions for each programming task

can be found (important for our manual analysis of incorrect

solutions). We first use Codex to generate initial solutions for

each task and validate the correctness of generated solutions

on public example test cases. For each unsolved programming

task, existing test-based repair tools (using the public tests)

are then applied to fix the incorrect solutions produced by

Codex. The patched solutions are then validated using (1) the

public tests, and (2) the held-out (private) tests in the LeetCode

platform. To answer our research questions, we build a dataset

LMDefects with 113 programming tasks in LeetCode [13].

Each task is described using natural language text accompa-

nied with 1–3 public tests that provide examples with pairs of

(input, output). When a solution is submitted to LeetCode,

it runs a set of private tests to validate the correctness of

submissions. LeetCode has weekly and biweekly contests,

where it releases new programming tasks. In our study, we

only consider easy-level and medium-level problems because

Codex fails to solve most hard problems [1] (we also exclude

seven tasks that require customized data structures that Codex

is unlikely to handle). To prevent the case where the collected

dataset was used in the training set of Codex, we only consider

contests that are released after Jun 2021 (the end date where

the Codex training data is extracted from). Overall, we crawl

through all contests in LeetCode from 4 July 2021 until 6

Apr 2022. This leads to a total of 40 weekly contests and 20

biweekly contests. In total, LMDefects contains 60 easy and

53 medium-level programming tasks. Several datasets with

programming tasks exist [1], [2], [3], [14], [15], [16]. They

are either based on contests from programming competition

platforms (e.g., Codeforces) or hand-written programming

tasks. We do not use existing datasets because (1) Codex

was already trained on GitHub where solutions for many

previous programming tasks exist (e.g., APPS, CodeContest)

(2) some programming tasks do not have public tests which

is a prerequisite for APR techniques (e.g., HumanEval [1]),

(3) most APR tools only support Java programs, whereas the

HumanEval dataset curates Python programs.

c) Prompt and Parameters: Codex model takes as inputs

a prompt, which is the combination of natural language text

and code snippet, where the natural language text represents

the programming task description and the code snippet is the

starting point for language model to complete the code. We

evaluate Codex in zero-shot prompt settings (does not include

example input/output in the prompt). Note that public test

cases can also be embedded in the prompt (namely n-shots
prompt) but we feed the public tests in the natural language

description to guide APR tools instead of embedding them in

the prompt. Lines 1–3 in Figure 2 presents an example prompt

that we use for a LeetCode programming task 1. Given such

a prompt, we run Codex to generate 50 candidate solutions

and select the top five solutions with the highest probability

of being correct (via the best of parameter of Codex). The

selected solutions are first validated by running against the

public tests (e.g., lines 14–17 in Figure 2, we manually

convert the public tests into JUnit tests), and then validated

against private tests by submitting them to LeetCode. We reuse

the same setting as prior work [1]. Specifically, we (1) set

temperature to 0.8 (which has the best performance when

generating 50 candidate solutions), and (2) prepare the stop

sequences to be “public”, “class”, “//”, “System.out.print”. We

set the “max token length” to 2048.

d) APR Tools: To evaluate whether repair tools can

fix the incorrect solutions produced by Codex, we evaluate

on two Java APR tools because Java APR tools have been

widely studied, and many of them are open-source. Among

all the open-source Java APR tools, we select TBar and

Recoder because (1) they are the most recent representative

of different approaches (i.e., TBar represents a search-based

and pattern-based APR tool, whereas Recoder is a learning-

based approach), and (2) these tools have reported the best

results by generating the highest number of correct patches

on the Defects4J [17] benchmark (almost all Java APR tools

1https://leetcode.com/problems/minimum-operations-to-convert-number/

1471

1 public static int minimumOperations(int[] nums) {
2 /** You are given a 0-indexed array nums consisting

of n positive integers. ...
3 * Return the minimum number of operations required

to make the array alternating.*/
4 int n = nums.length;
5 int[] dp = new int[n];
6 dp[0] = 0; dp[1] = 1;
7 for (int i = 2; i < n; i++){
8 dp[i] = dp[i - 1] + 1;
9 if(nums[i] == nums[i - 2])

10 dp[i] = Math.min(dp[i - 2] + 1, dp[i]);
11 }
12 return dp[n - 1];
13 }
14 // Public Test 1:
15 // Input: nums = [3,1,3,2,4,3], Output: 3
16 // Public Test 2:
17 // Input: nums = [1,2,2,2,2], Output: 2

Fig. 2. An example of misaligned algorithm, taken from LeetCode program-
ming task minimumOperations on weekly-contest-280.

have been evaluated on it). Since both TBar and Recoder are

test-driven APR tools, we use the public test cases given in

the program description to guide the repair, while the private

test cases are applied to validate the patched solutions. We run

TBar and Recoder in default settings, and the repair process

stops if a patch that passes all public tests is found. We set the

timeout to 15 minutes, following the time limit used in prior

work on automated repair of programming assignments [18].

As Codex edit mode (Codex-e) can modify existing code by

generating program edits, we investigate whether Codex-e can

serve as an APR tool and compare it with TBar and Recoder.

III. RQ1: WHAT MISTAKES ARE COMMON IN

AUTO-GENERATED CODE?

Before we apply APR techniques in fixing the automatically

generated solutions, we investigate its feasibility by analyzing

the typical mistakes made in solutions produced by Codex.

Given a programming task in LMDefects for Codex to solve,

we first run the five auto-generated solutions on the public tests

and submit them to LeetCode online judge platform to validate

using private tests. If an auto-generated solution s by Codex

fails to pass all public and private tests, we consider s an

incorrect solution. If all the five auto-generated solutions for

a programming task are incorrect solutions, we consider this

task as unsolved. Overall, 46 programming tasks can be solved
by Codex. We study the mistakes of 335 incorrect solutions
Sbuggy in the remaining 67 unsolved programming tasks that

lead to compilation errors or test failures.

For each incorrect solution sbuggy ∈ Sbuggy , two annotators

(two authors of the paper) separately and manually fix it by

first referring to other solutions in LeetCode discussion forum

for repair hints, and then constructing a minimal patch that

fixes the bugs. The constructed patch for each incorrect solu-

tion is cross-validated by the two annotators who make sure

the patched solution sfixed is accepted by LeetCode platform.

Our goal is to construct a “ground truth” patch sfixed for

each incorrect solution to obtain the “diff” between sbuggy and

sfixed. Based on this “diff”, two authors manually classify

each sbuggy using the defect categories in Table II. Each

sbuggy is assigned to one defect category. If there is any

disagreement during the ground truth construction or defects

classification, annotators discuss with other authors to resolve

the disagreement (there were 14 initial disagreements, all of

which were successfully resolved).

We derive the defect classification based on categories

used in Codeflaws [14] (a benchmark that contains incorrect

submissions by participants in programming competitions).

The detailed classification and their definitions are shown

in Table II. It also shows the number of incorrect solutions

(both “Easy” and “Medium”) belongs to each category. The

example code of each defect category can be found in the

supplementary material. The defect classification in auto-

generated code overlap with those in Codeflaws. Specifically,

both Codeflaws and our dataset contain defects where either

multi-hunk or single-hunk fixes are required. Moreover, for

the single-hunk fixes, both datasets share similar mutation

operators (e.g., operator mutation, and variable mutation).

This indicates Codex made similar programming mistakes as

human participants. We think this is expected because Codex

is trained with a lot of human-written programs that can be

potentially buggy. Besides the above single and multi-hunk

bugs, syntax errors and algorithm-related errors are prevalent

in Codex generated solutions. We manually analyzed these

solutions to study the root causes behind these errors.

Syntax Errors. Our manual analysis revealed that auto-

generated programs that lead to compilation errors usually

have (1) incomplete code, or (2) invoking undefined vari-

ables/functions/classes. To reduce the likelihood of Codex in

generating incomplete code, we select the maximum token

length allowed (i.e., 2048 tokens) by Codex for generating 50

candidate solutions. Despite providing the maximum length

as the bound for code generation, Codex still generates in-

complete code where the average token length is 628. It is

worthwhile to study the feasibility of applying code comple-

tion techniques for fixing the auto-generated incomplete code

by Codex. Meanwhile, for programs with undefined functions,

one needs to synthesize the function body to resolve the

compilation errors. Future research can work on using pro-
gram synthesis techniques to resolve the undefined functions or
invoking Codex on a function-by-function basis to synthesize
the function body. Apart from these compilation errors, we

also observe that Codex is prone to generate programs which

fail to compile due to a missing/extra close bracket at the

end of the program (in total, there are 23 of these cases).

Since bracket mismatch can be fixed easily (using a regular

expression matching mechanism), we manually fix them and

further classify their defects into defect categories in Table II.

Misaligned Algorithm. Among all incorrect solutions, 191

solutions use wrong algorithms to solve the given tasks,

including TLE (Time Limit Exceeded). The problem of gen-

erating solutions that do not meet the user intention is known

as the misalignment problem [1]. All defects classified as

“misaligned algorithm” suffer from the misalignment problem.

Negative Symptoms in Auto-generated code. Auto-

generated patches are known to exhibit certain anti-patterns

1472

TABLE II
DEFECT CLASSIFICATION OF INCORRECT SOLUTIONS

Defect Category Sub-category Definition Easy Medium Total

Multi-hunk

(M-S) Similar
Similar single-hunk bugs (require similar fixes) exist at multiple
discontinuous program locations

7 2 9

(M-U) Unique
Distinct single-hunk bugs exist at multiple discontinuous program
locations, and the total lines of patches are no more than five lines

19 20 39

(M-L) Need Large Fix
The bug is (1) neither M-S or M-U and (2) needs to edit more than
five lines at multiple locations

5 9 14

Single-hunk [19]

(S-O) Operator Mutation
Replace arithmetic/logical/relational/bitwise operator with another op-
erator or insert/delete operators and relevant operands or modify
operator precedence

7 5 12

(S-C) Constant Mutation
Replace constant (not in array or function call) with a variable/con-
stant/function call

3 0 3

(S-V) Variable Mutation
Replace variable (not in array or function call) with a variable/con-
stant/function call

2 0 2

(S-A) Array Mutation
Replace the array access with other constant/variable, operands with
arithmetic operators, or replace an array with another array

1 0 1

(S-F) Function Call Mutation
Replace function call with another function call or change function
arguments

2 1 3

(S-AS) Add Statements Insert a continuous chunk of statements 8 1 9

(S-DS) Delete Statements Delete a continuous chunk of statements 2 3 5

(S-HO) Higher Order A single-hunk patch that combines multiple single-hunk bugs 5 5 10

Algorithm-related Misaligned Algorithm
The algorithm used is misaligned with the requirement given in the
task description

30 161 191

Syntax Error
Incomplete Code For the last line of the program, only parts of the program is printed 7 17 24

Invoke Undefined Program Elements Fails to compile due to invoking undefined variables/functions/classes 2 11 13

Total - - 100 235 335

(program transformations leading to nonsensical patches) [20].

Inspired by this, we analyze whether the code generated by

Codex contains negative symptoms that are unlikely to be

correct programs by studying the “Misaligned Algorithm” and

“Syntax Error” categories:

1 Names indicate Wrong Algorithms: In the “Misaligned

Algorithm” category, Codex is prone to generate solutions

with certain variable names which points to the underlying

algorithm/data structure used is wrong. Figure 2 shows an

example of using “dp” variable, where the algorithm used (i.e.,

“dp” refers to dynamic programming) is incorrect. We think

Codex solves the task with dynamic programming because

it is misled by other programs named “minimumOperations”

but for a different programming task in GitHub. Similarly, we

observe other variable names such as “pq” (priority queues),

“q” (queue) that indicate the wrong data structures being used.

2 Similar Code Blocks: We notice that when Codex strug-

gles to find a high quality solution for a given prompt, it

tends to repeatedly generate similar code blocks (code clones

with minor variations in variable names, statement usages, and

control structures). Figure 3 shows a solution with similar code

blocks (only variable names differ) at lines 5–8 and 9–12.

3 Irrelevant Helper Functions: Although we reuse

Codex’s setting in adding stop sequences (for terminating

code generation once we reach the end of a function), we

observe that Codex is still likely to produce redundant helper

functions which are irrelevant to the given prompt.

1 public static int minimumSum(int num) {/** ...*/
2 String str = "" + num;
3 int first = Integer.MAX_VALUE;
4 int second = Integer.MAX_VALUE; ...
5 ++ if (firstNum.length() == 1) {
6 ++ first=firstNum.charAt(0) - ’0’;
7 ++ } else {
8 ++ first=Integer.parseInt(firstNum.toString());}
9 ++ if (secondNum.length() == 1) {

10 ++ second=secondNum.charAt(0) - ’0’;
11 ++ } else {
12 ++ second=Integer.parseInt(secondNum.toString());}
13 ...

Fig. 3. An example of generating similar code block (highlighted with “++”),
taken from LeetCode programming task minimumSum.

Auto-generated programs share common mistakes with

human-written programs, and contain certain negative

symptoms including: (1) names indicate wrong algorithms;

(2) similar code blocks; (3) irrelevant helper functions.

IV. RQ2: HOW EFFECTIVE ARE APR TOOLS IN FIXING THE

CODE PRODUCED BY CODEX?

Given the 298 compilable incorrect solutions by the Codex

model, we run TBar and Recoder to assess their ability in

generating patches. During the patch validation stage, the

automatically generated patches are categorized as below:

Plausible patches. Plausible patches are patches that make

the incorrect solutions pass the given public tests.

Correct patches. Correct patches are patches that make the

incorrect solutions pass both the public tests and private tests

and accepted by LeetCode.

Table III shows the number of generated patches and the

number of correctly fixed programming tasks by TBar and

1473

TABLE III
THE NUMBER OF PATCHES AND FIXED TASKS PRODUCED BY TBAR AND

RECODER (INCLUDE BOTH SINGLE-HUNK AND MULTI-HUNK)

Tool Correct/Plausible patches Correctly Fixed Tasks
easy medium easy medium

TBar 6/16 3/22 3 3
Recoder 6/16 5/20 3 5

1 // task delete-characters-to-make-fancy-string
2 public static String makeFancyString(String s){...
3 if(...) {
4 sb.deleteCharAt(i);
5 - i -= 2;
6 + i -= 1; // constant mutation (S-C-3)
7 }...}
8 // task watering-plants
9 public static int wateringPlants(int[] plants, int

capacity) {...
10 if (plants[i] > currWater) {
11 steps += (i - 1) * 2;
12 + steps++; //add a statement (S-O-10)
13 ...} ...}

Fig. 4. Two incorrect solutions fixed by Recoder but not TBar.

Recoder, respectively. Although TBar produces 16 and 22

plausible patches on easy-level and medium-level tasks, it only

produces 6 easy and 3 medium correct patches. Compared

to TBar, Recoder produces less plausible patches (16 and 20

on easy and medium level, respectively), and more correct

patches (6 and 5). The “Correctly Fixed Tasks” columns of

Table III show the number of programming tasks correctly

fixed by TBar and Recoder. Note that each programming task

corresponds to the five selected incorrect solutions. If any of

these solutions is correctly fixed (accepted by LeetCode), we

consider that this task has been solved. Overall, Recoder fixes

eight programming tasks whereas TBar only fixes six tasks.

Combining both tools, APR tools help Codex solve four more

easy-level and five more medium-level tasks.

We further analyze the type of defects fixed by the two

APR tools. Table IV shows the number of solutions that can be

correctly fixed for each defect category, where the “TBar” and

the “Recoder” columns show the number of patches produced

by the corresponding tools. For each category, the repair tools

may not fix the bug by minimally changing the program

(i.e., repair tools may fix a bug using different operators than

the minimal fix shown in the “Defect sub-category” column).

The results show that existing APR tools are still limited in

generating complex patches that require edits of multiple lines.

Figure 4 shows two examples where Recoder outperforms

TBar. In the first example, despite having the “Mutate Literal

Expression” pattern, TBar fails because it cannot find the

correct literal to replace due to limited patch space. For the

second example, TBar fails to generate the correct patch

because it does not have the “insert statement” pattern.

For tasks that require multi-line fixes, both TBar and Re-

coder fail to generate any correct patches, one of the reasons is

that the widely adapted statistical fault localization techniques

in TBar and Recoder focus on identifying each faulty line

separately, without considering program dependency among

the suspicious lines. For example, to fix the bug in Figure 5,

TABLE IV
THE NUMBER OF CORRECTLY FIXED SOLUTIONS BY TBAR AND RECODER,

REFER TABLE II FOR ABBREVIATION OF DEFECT CLASSIFICATION

Defect Total TBar Recoder
Sub-category easy medium easy medium easy medium

S-O 7 5 2 2 2 3
S-C 3 - - - 1 -
S-V 2 - 1 - 1 -
S-A 1 - - - - -
S-F 2 1 - - - -
S-AS 8 1 - - - 1
S-DS 2 3 2 1 2 1
S-HO 5 5 1 - - -
Total (Single-Hunk) 30 15 6 3 6 5
M-S/M-U/M-L 31 31 - - - -

one needs to (1) change s.length()−2 to s.length(), and (2)

simplify the if-condition. Using statistical fault localization,

APR tools will generate patches for line 4 and lines 5–6

separately (without noticing that after fixing the if-condition

at lines 5–6, the for-loop condition no longer need the extra

“-2” at line 4 to prevent the “IndexOutOfBoundException”).

1 public static int minimumMoves(String s) {
2 //S-HO-5
3 int count = 0;
4 - for (int i = 0; i < s.length() - 2; i++) {
5 - if (s.charAt(i)==s.charAt(i+1) && s.charAt(i+1)
6 - ==s.charAt(i + 2) && s.charAt(i)==’X’) {
7 + for (int i = 0; i < s.length(); i++) {
8 + if (s.charAt(i)==’X’) {
9 count++;

10 i += 2;
11 }}
12 return count;}

Fig. 5. An incorrect solution that should be fixed by modifying line 4 and
lines 5–6 together.

Existing pattern based and learning based APR are inef-

fective at fixing auto-generated code, challenges include:

(1) limited search space; (2) unable to generate multi-edit

patches; (3) lack of awareness of program dependencies.

TABLE V
THE NUMBER OF CORRECTLY FIXED SOLUTIONS USING CODEX-E, REFER

TABLE II FOR ABBREVIATION OF DEFECT CLASSIFICATION

Defect Sub Total Codex-ebug Codex-eline Codex-estm

Category -Category easy medium easy medium easy medium easy medium

S-O 7 5 4 3 1 2 2 4
S-C 3 - - - 1 - 1 -
S-V 2 - - - 1 - 1 -
S-A 1 - 1 - - - - -

Single S-F 2 1 1 - 2 - 2 -
-Hunk S-AS 8 1 - - - - 1 -

S-DS 2 3 2 - 1 - 2 -
S-HO 5 5 - - 1 - 1 -

Total - 30 15 8 3 7 2 10 4

Multi M-S 7 2 1 - 1 - 2 -
-Hunk M-U 19 20 1 2 - 1 - -

M-L 5 9 - - - - - -
Total - 31 31 2 2 1 1 2 -

V. RQ3: CAN CODEX EDIT MODE FIX PROGRAM BUGS?

Recently, OpenAI released a new edit mode of Codex

which has the ability to change the content of an existing

1474

program. Codex edit mode takes a program and a natural

language instruction as inputs, and outputs an edited program

based on the instruction. As Codex-e can edit the content of

programs, a natural question to ask would be “Can Codex-e fix

an incorrect program with proper instructions?” We designed

three strategies to construct the edit instruction for Codex-e.

• Codex-ebug: We tell Codex-e that a bug exists in the given

program and ask Codex-e to fix it. The instruction is simply

given as “Fix bug in the program”.

• Codex-eline: We follow existing automated program repair

techniques that use statistical fault localization technique

(Ochiai) [21], [22] on the generated incorrect solutions to get

a sequence of candidate fix line numbers. These candidate

line numbers are then provided to Codex-e as fix hints. The

instruction for Codex-e is formulated as “Fix line N”.

• Codex-estm: Considering that large language models like

Codex are trained with plain natural language, we further

investigate how Codex-e would respond if we directly use

the suspicious statements instead of the suspicious line

numbers as instructions. We use the program text of the

statements, e.g., s1 at the suspicious line, and formulate the

instruction to Codex-e as “Fix s1”.

For example, to fix the constant mutation bug for makeFan-
cyString in Figure 4, we give Codex-eline the instruction Fix
line 6, and provide Codex-estm the instruction Fix “i -= 2;”.

For each incorrect solution (we exclude solutions that

produce syntax errors as in Section IV), we select the ten

most suspicious statements and ask Codex-e to generate five

possible edits for each statement (i.e., Codex-e tries to fix an

incorrect solution within 50 attempts). Similar to the initial

solution generation in the regular Codex mode, we set the

temperature at 0.8 to increase the possibility of finding a

correct edit.
Table V shows the results for the three strategies, where

columns Codex-ebug , Codex-eline and Codex-estm show the

number of correct patches using corresponding edit instruc-

tions. With Fix bug in the program as instruction, Codex-ebug

only learns about the existence of bugs in the given program

without any information about the fault locations. Surprisingly,

with limited guidance, Codex-ebug successfully produced 15

correct patches where four of these patches involve multi-

hunk modifications (refer to supplementary material for the

example). In contrast, when giving the faulty line number

as instruction, Codex-eline fixes nine solutions that require

a single-hunk fix, and two solutions that requires a multi-

hunk fixes. Compared to Codex-ebug and Codex-eline, Codex-

estm produces the best results by successfully fixing 16 buggy

solutions. We attribute the effectiveness of Codex-estm to its

use of program texts (e.g., “i -= 2;”) that may guide a language

model like Codex in matching relevant statements.
Furthermore, we manually analyze patches produced by

Codex-e, and find that Codex-e is able to generate patches

at flexible locations. Prior APR work [8], [23], [24], [25] have

shown a significant performance gap with/without perfect fault

localization results. While existing APR tools strictly try to

produce patches at a given faulty line number, ignoring the

1 public static int[][] construct2DArray(int[]
original, int m, int n) {

2 // Instruction: Fix "for (int i=0; i<result.length
; i++){"

3 +if (n*m != original.length) // S-AS-8
4 + return new int[0][0];
5 int[][] result = new int[m][n];
6 for (int i=0; i<result.length; i++){
7 for (int j=0; j<result[i].length; j++){
8 - if (i*result[0].length+j >= original.length)
9 - return new int[0][0];

10 - else
11 result[i][j]=original[i*result[0].length+j];}}
12 return result;}

Fig. 6. Flexible fault localization example of LeetCode programming task
convert-1d-array-into-2d-array on biweekly-contest-62 fixed by Codex-estm

S-F-1, S-F-2, S-O-8,
S-AS-8, M-S-1, M-S-4

Total: 6 Codex-estm
Recoder

S-O-6,
S-AS-9
Total: 2

S-V-1, S-O-7,
S-O-9, S-O-11

S-DS-1, S-DS-2,
Total: 6 S-HO-1,

S-O-4
Total: 2

S-C-3,
S-O-10
Total: 2

TBar

S-DS-3
Total :1

Fig. 7. The repair results of different APR tools

possibility of fixing a bug in the relevant context, Codex-e does

not have such limitations. In the 16 correctly fixed solutions

by Codex-estm, 8 (50%) of them are fixed by editing beyond

the statement provided in the given instruction. Figure 6 shows

one such example. The instruction provided to Codex-estm is

Fix “for(int i =0; i<result.length; i++){”, and Codex-estm

fixes this by moving one if -then clause out of the loop body

and changing the if -condition. Compared to traditional APR

tools, using flexible fault localization is an important feature

enabling Codex-e to produce more correct patches.

The effectiveness of Codex-e with a given specific fault

location (Codex-estm) is nearly comparable to its effec-

tiveness without any location guidance (Codex-ebug).

A. Comparison between TBar, Recoder and Codex-estm.

To analyze the types of defects fixed by each tool and the

reasons behind the effectiveness of each approach, we compare

the patches produced by TBar, Recoder, and Codex-estm. As

our experiments show that Codex-estm gives the best overall

results among all strategies of Codex-e, we select Codex-estm

for comparison with other APR tools. Figure 7 shows a Venn

diagram to better illustrate the set of commonly and uniquely

produced patches by these three tools. We denote the set of

patches produced by TBar as TBar, patches produced by

Recoder as Recoder, and patches produced by Codex-estm

as Codex-estm. As shown in Figure 7, the patches produced

by TBar is a proper subset of Codex-estm ∪ Recoder. In

fact, the patches produced by TBar is almost subsumed by

the set Recoder. This is due to the restricted search space

1475

of pattern-based approaches (discussed in Section IV). If we

compare Codex-estm and Recoder, both approaches share

eight common patches, while Codex-estm has six more unique

patches, and Recoder has two more unique patches. We think

that Codex-estm outperforms Recoder because: (1) Codex-

estm can produce complex patches at flexible locations (e.g.,

Figure 6); and (2) Codex-estm is trained on a much larger

dataset than Recoder (Recoder uses 82868 human patches

for training), which helps Codex-estm learn more fix patterns

(e.g., Fig 8 where Codex-estm uses a lambda expression).

1 public static int minimumSum(int num){
2 // (using lambda expression) (S-F-1)
3 - Collections.sort(digits);
4 + Collections.sort(digits, (a, b) -> b - a); }

Fig. 8. An example that is uniquely fixed by Codex-estm

Despite being trained with less data, Recoder still produces

two unique patches. Figure 9 shows one of the uniquely fixed

solutions by Recoder. We think that Recoder can generate this

correct fix due to its syntax-guided decoder that can guide it to

copy the statement at line 6 and insert it at line 3 of Figure 9

(this invokes the copy operation of Recoder that copies the

AST subtree rooted at the set.remove(i) statement).

In another example (S-O-6) uniquely fixed by Recoder, it

correctly replaces a branch condition of the form if (a &&
b) with if (a) (which is also an AST edit operation).

These examples show that encoding AST information into

deep learning model may help in generating correct patches.

In future, researchers can consider incorporating AST informa-
tion into large language model like Codex-e and AlphaCode.

1 public static List<List<Integer>> findWinners(int
[][] matches) { ...

2 for (int i : map.keySet()) {
3 + set.remove(i); // (S-AS-9)
4 if (map.get(i) == 1) {
5 ans1.add(i);
6 set.remove(i);
7 } } ...}

Fig. 9. An example that is uniquely fixed by Recoder

B. Combine Patch Space of Different Tools.

a) Combine patch space of Codex-e and APR: We

further study whether the patch search space produced by

APR and Codex-e complement each other by evaluating

the patch ingredients produced by different tools. The patch
ingredient is defined to be the set of operators/operands (e.g.,

variables, literals, operators and etc.) used to construct the

corresponding patch. If APR and Codex-e produce patch

ingredients that complement each other, their combination will

be more likely to generate the correct patch. To do so, for

each incorrect solution, we first obtain the required patch
ingredients Icorrect by referring to the “ground truth” patch

constructed in Section III (i.e., the correct patch is built using

ingredients in Icorrect). Then, we investigate the following;

we do not consider Recoder+Codex or Recoder+Codex-e since

both Recoder and Codex/Codex-e are learning based tools.

TABLE VI
THE NUMBER OF INCORRECT SOLUTIONS THAT TBAR AND CODEX-E CAN

PRODUCE ALL REQUIRED PATCH INGREDIENTS, REFER TABLE II FOR

ABBREVIATION OF DEFECT CLASSIFICATION

Defect Sub-category Total TBar Codex-e TBar+Codex-e TBar+Codex

S-HO 10 1 3 4 5
M-S 9 3 2 4 4
M-U 39 - - 1 3
Total 58 4 5 9 12

1) Can an individual tool (TBar/Codex-e) produce all required

patch ingredients for each incorrect solution?

2) Can combining TBar and Codex-e (run TBar and Codex-e

sequentially) produce all required patch ingredients?

Table VI shows the number of incorrect solutions whose

required patch ingredients are covered by the patch space of

each APR technique. “TBar+Codex-e” represents the com-

bined patch space of TBar and Codex-e. Our results show

that combining Codex-e and TBar could successfully generate

the required patch ingredients of 9 incorrect solutions (with 2

of them cannot be generated by TBar and Codex-e separately).

Figure 10 shows an incorrect solution that can be fixed

by changing n>0 to n!=0 and inserting a bound check

nums .size()>0. For this incorrect solution, none of the APR

tools in our experiment generates a correct fix. However, the

two required patch ingredients could be separately produced

by TBar and Codex-e. Specifically, TBar fixes the first bug

by changing the incorrect operator from “>” to “!=” which

makes the solution pass the public tests. When we submit this

partially fixed solution to LeetCode, the program still fails by

throwing IndexOutOfBoundsException. By encoding

the error message into the edit instruction (“Fix IndexOut-

OfBoundsException”), Codex-e successfully fixes the bug by

appending the check nums.size()>0.

1 public static long smallestNumber(long num) {
2 long n = num;
3 ArrayList<Integer> nums = new ArrayList<>();
4 - while(n > 0){ // Fixed by TBar
5 + while(n != 0){
6 nums.add((int)(n % 10));
7 n = n / 10;
8 }
9 Collections.sort(nums);

10 - if(nums.get(0) == 0){ // Fixed by Codex-e
11 + if(nums.size() > 0 && nums.get(0) == 0){
12 for(int i = 1; i < nums.size(); i++){ ...

Fig. 10. Combined patch space of TBar and Codex-e

b) Combine APR with Multiple Solutions of Codex:
Codex generates a set of program candidates — each of

them may slightly vary in their understanding of the problem

description and hence represent slightly different code. We

study the feasibility of combining the patch ingredients from

these candidates (“TBar+Codex” setting). Table VI shows

that “TBar+Codex” is the most effective among the evaluated

combinations by producing all required patch ingredients for

12 incorrect solutions. Figure 11 shows an example incorrect

solution which requires two patch ingredients. TBar generates

the first patch ingredient (i.e., removing the if-branch from

1476

lines 7–9) but the second patch ingredient (adding a for-

loop to calculate the sum of absolute value of array freq)

does not exist in the patch space of any APR technique

(including Codex-e). This is mainly because generating such

a large and unseen code snippet is not supported by most

of the existing APR tools, and Codex-e does not have a

relevant hint in instruction. However, Codex produces many

candidate solutions that can be used for enriching the patch

space. By borrowing the code from other candidate solutions,

and modifying the variable name, we can successfully fix the

below incorrect solution.

1 public static int minSteps(String s, String t) {
2 int[] freq = new int[26];
3 for(char c : s.toCharArray())
4 freq[c - ’a’]++;
5 int steps = 0;
6 for(char c : t.toCharArray())
7 - if(freq[c - ’a’] == 0) // Fixed by TBar
8 - steps++;
9 - else

10 freq[c - ’a’]--;
11 // Find in another candidate solution of minSteps
12 + for(int fr : freq)
13 + steps += Math.abs(fr);
14 return steps;
15 }

Fig. 11. Obtaining patch ingredients from multiple candidate solutions

Compared to fixing incorrect solutions with only APR

techniques, both Codex-e and Codex’s multiple solutions could

provide required patch ingredients to construct correct fixes.

By using patch ingredients extracted from (1) TBar’s and

Codex-e’s patches, and (2) TBar’s patches and multiple

generated solutions by Codex — we successfully identify

the required patch ingredients of more incorrect solutions.

VI. IMPLICATIONS AND DISCUSSIONS

Our study identifies several important implications and sug-

gestions for the language models and program repair research.

A. Open dataset for language model defects.

To push the limits of the code generation capability of

a large language model like Codex, we believe that our

systematic investigation of the mistakes made by language

models is an important initial step. It would be beneficial to

have a community-driven dataset and more analysis of the

defects within the dataset to facilitate future improvement

of the auto-generated programs. We propose the LMDefects

dataset as an initiative towards this direction.

B. Negative symptoms of auto-generated Codex programs.

We have identified several negative symptoms among auto-

generated Codex programs, including code that contains: (1)

names that indicate wrong algorithms, (2) repeatedly pro-

ducing similar code blocks, (3) irrelevant function helpers.

Moreover, we observed that even after manually fixing all

auto-generated Codex programs with syntax errors of bracket

mismatches, these programs are still incorrect as they fail to

pass the held-out tests in LeetCode.

C. Use of function names in auto-generated code.

Based on our manual analysis of the generated solutions,

Codex seems to rely heavily on the function name for solving

the programming tasks (e.g., minimumOperations in Fig-

ure 2) . In fact, a recent study has also observed the tendency

of Codex in generating solutions based on function name [26].

Compared to the long prompt (function signature and the

problem description), the function name is more concise and

easier to search in GitHub. However, this strategy fails when a

customized algorithm is required to solve a programming task.

Relying on the function’s name to search for relevant code will

reduce the generation power of Codex to a simple API search

engine that returns the implementation for a given API. Future
language models designed for code generation should focus
on summarizing useful information from problem description
to reduce reliance on function names.

D. Pattern-based APR versus learning-based APR.

Section IV shows that Recoder generates a few more correct

fixes than TBar. The reasons are that pattern-based APR

requires (1) additional fix patterns, or (2) a large search space

for fix ingredients (e.g., specific literal). Figure 4 shows an

example that can be uniquely fixes by Recoder by adding

a statement steps + +; at line 12, which is not supported

by TBar. However, Figure 7 shows that TBar also uniquely

fixes two solutions where Recoder fails. For example, although

Recoder has used the operator mutation for fixing other bugs,

it fails to fix incorrect solution (S-O-4) that requires changing

the relational operator in “<” to “!=” where TBar succeeded.

This indicates learning-based APR cannot guarantee a learned

pattern is always correctly applied in fixing all programs.

Future APR research on designing fixing operators could work
on either (1) incorporating domain-specific knowledge into
learning new patterns and (2) improving the generalizability
of learned patterns.

E. How can APR research help language models?

Although our study shows that existing APR techniques can

only help to fix a small number of bugs in auto-generated

programs by Codex, we believe that APR research can benefit

future research in language models in the following aspects:

Test-driven repair framework. Our study adapts the test-

driven repair framework [27], [28] that relies on the quality of

test cases, and our results show that the public tests (input/out-

put examples in Figure 2) in LeetCode can guide APR tools

to generate correct fixes for Codex programs. Specifically,

our study shows that we can apply test-driven repair for (1)

fixing incorrect solutions generated by the original mode of

Codex, and (2) guiding Codex-e by using fault localization

information to generate more correct fixes. Language models

currently produce a new program from scratch using only

natural language instructions. Instead of producing the correct

program from scratch, future code generation can first produce

an edit of the incorrect program, and further refine it via an

iterative test-driven approach.

1477

Prioritization of correct programs. Our study shows that

several negative symptoms exist in auto-generated Codex pro-

grams. As our study shows that auto-generated programs with

these symptoms are unlikely to lead to correct programs, future

designers of language models can integrate a filter function

into the language model to automatically eliminate programs

with negative symptoms. Another alternative solution is to

encode these symptoms into the ranking function to guide

the language model in selecting better programs. Both of

these directions indicate the potential of incorporating recent

advancement of APR research in patch correctness assess-

ment [29], [30] and patch prioritization [31], [32] to guide

language models like Codex in generating better programs.

Obtaining patch ingredients. Our study in Section V-B

shows that we can effectively combine the patch space of TBar

and Codex/Codex-e to obtain the required patch ingredients

for generating complex fixes. Future research can work on

automatically searching and merging the patch ingredients in

generating more complex programs/patches. Specifically, we

may leverage semantics-based repair approaches to extract

code snippets with the same semantic meaning as patch

ingredients from the candidate solutions and further stitch

these ingredients with incorrect solution to finally produce a

correct solution that satisfies the semantic specifications.

F. Balance between control / flexibility for guiding Codex-e.

Section V shows that patches produced by Codex-e rely

heavily on the types of provided edit instruction. Compared

to Codex-ebug and Codex-estm, Codex-eline generates the

least number of correct fixes. Although the number of fixed

solutions by Codex-ebug and Codex-estm are quite close (15

versus 16 bugs), the fixed defect category varies. Codex-ebug

fixes two more multi-hunk bugs, whereas Codex-estm fixes

three more single-hunk bugs. Since edit instruction like Fix
bug in the program does not indicate a specific edit target,

Codex-e may search for the statements to edit across the

entire program based on its learned knowledge. The flexibility

encourages generation of large patches but also may lose

precision when fixing bugs that require single-line fixes. In

contrast, Codex-estm is provided with a code context (given

by fault localization), which steers the edit to the direction that

change the most relevant code context. In another perspective,

we can also regard Codex-estm and Codex-eline as test-based

APR tools that fix bugs based on fault localization given by test

cases, whereas Codex-ebug generates edits without guidance.

Encoding the suspicious code context into the instruction

provides more control and performs better at fixing simple

bugs, whereas providing general instruction may find more

complex and larger edits due to the increased flexibility. In

the future, it is worthwhile to study how to construct edit

instructions to guide Codex-e in generating more correct fixes.

G. New Usage of Language Models

Automatically generated code from LLMs is gaining trac-

tion. The quality of automatically generated code from LLM

can be improved by more training data in the form of more

open-source code repositories. However, code generated by

LLMs can still be untrustworthy. Our work can help to

automatically improve the auto-generated code.

Based on our implications, we suggest a practical use

case for future software development. We suggest a test-

driven development (TDD) workflow where developers specify

requirements in natural language and a few test cases. LLMs

are responsible for generating a program that may or may not

be correct, and semantic program repair approaches [5], [6]

may tweak the auto-generated code to increase its possibility

of being correct by using the given test cases. For instance, if a

developer wants to write a specialized library function, LLMs

can generate code for the initial function given the initial

method signature and natural language description, while APR

can fix small mistakes in the generated function by validating

via test cases. This can be a preparation for the time when

more of the code is generated by automated tools like Codex.

VII. THREATS TO VALIDITY

External Threats: During the defect categorization, we

eliminate the potential bias by first asking two annotators (two

authors of the paper) to manually construct and cross-validate

the “ground truth patch”, if there is any disagreement on patch

or defect classification result for a Sbuggy , they further discuss

with the other authors to resolve any unclear categorization

(e.g., when multiple fixes exist for a bug) until a consensus is

reached. We also release our dataset and classification result

for public verification. As the performance of the Codex

model and repair tools may varies in different settings, our

experiments may not generalize beyond the studied configu-

rations and other programming languages beyond Java. We

mitigate this threat by reusing configurations given in prior

work, and evaluating on several APR tools that use different

algorithms (e.g., search-based and learning-based). Although

other large language models (e.g., AlphaCode [2]) exist, our

study only evaluates on the Codex language model and the

Codex edit mode. Nevertheless, our implications of using

APR to fix incorrect solutions from LLMs are still generally

applicable because the workflow is orthogonal to any LLMs.

As the underlying algorithm used in Codex-e has not been

documented, we only use it as a black-box APR tool that

produces patches by editing existing programs. To ensure that

the training data does not overlap with the evaluated tasks, we

have confirmed with the developer of Codex-e that Codex and

Codex-e use the same dataset for training. Nevertheless, our

experiments show that Codex-e is able to generate fixes for

many incorrect solutions.

Internal Threats: Our automated scripts may have bugs

that can affect our reported results. To mitigate this threat, we

will make our scripts available upon acceptance.

Construct Threats: Construct threats may arise when our

evaluation metric of the number of correctly fixed solution-

s/tasks may be too coarse-grained to reflect the effectiveness

of APR. Nevertheless, we followed the same metrics used by

APR research and recent code generation research.

1478

Conclusion Threats: Conclusion threats include (1) over-

fitting of our benchmark and (2) subjectivity of ground truth

construction. We minimize (1) by constructing a new dataset

that does not overlap with the training set of the Codex model.

In the experiment, the program generation, and program repair

procedure are all automated, while the ground truth construc-

tion involves subjective opinions, we minimize it by cross-

validating between two annotators.

VIII. RELATED WORK

Automated Program Repair: Automated Program Repair

(APR) has gained a lot of attention from both academia and

industry in recent years [33]. APR techniques include search-

based, semantic-based and learning-based APR. Search-based

APR tools [34], [35], [36], [37], [38], [39], [8], [40] (e.g.,

GenProg [7]) take a buggy program and a correct criteria

as inputs, and generate patches in two steps: (1) producing

patches using predefined code transformation operators; and

(2) searching for a patch over the patch space that satisfies

a correctness criteria (e.g. passes given tests). Search-based

repair can scale to large programs, but often not to large

search spaces. Semantics-based APR techniques (e.g., Sem-

Fix [5], Nopol [41], and Angelix [6]) generate patches by

(1) formulating a repair constraint that needs to be satisfied

by a program passing a given test-suite; and (2) solving the

repair constraint to generate patches.The application of deep

learning techniques in program repair has been explored in

past few years. DeepRepair [42] and DeepFix [43] are the

early attempts to fix bugs by learning fixes from similar code.

SequenceR [44] adapts neural machine translation (NMT)

to generate patch, whereas CoCoNuT [24] and CURE [25]

further improve the results by either encoding program context

or using a programming language model. DLFix [45] uses

two-layer tree-based RNN to learn code transformations, and

Recoder [23] designed a syntax-guided learning approach

to improve the decoder of a DL model. In this work, we

select Recoder because it fixes the most number of bugs

in Defects4J [17] among those DL-based APR tools whose

training model is publicly available.

Large Language Model for Code Generation: Large

language models such as GPT-3 [46] have shown promising

performance in the NLP domain. Hendrycks et al. [3] proposed

APPS dataset and evaluated the code generation performance

of several variant GPT models with APPS as the fine-tuned

data. Later Codex [1], the back-end model that powers GitHub

Copilot, Alphacode [2], Codewhisperer [47], and [48] have

emerged as language model based automatic code generation

platforms. There are emerging approaches combining program

synthesis with large language model on fixing API usage [49]

and synthesizing regular expression [50], whereas we focus

on fixing general errors in code from programming com-

petitions. Nguyen et al. [51] evaluated the quality of code

generated by Copilot on a small set of randomly selected

LeetCode programming tasks (33 tasks with 132 solutions).

Compared to their work, we performed a detailed analysis

of 113 programming tasks via the larger dataset LMDefects

which we built. The most relevant papers to us are studies

on how language model can fix bugs [52], [53]; we evaluated

whether APR tools (including and combining Codex-e) can

fix programs automatically produced by Codex.

IX. PERSPECTIVE

In this paper, we study the mistakes made by auto-generated

programs from language models like Codex, and investigate

whether automated program repair (APR) tools can fix the

auto-generated buggy programs. Our study of code generated

from language models reveal that: (1) programs produced

by Codex share common defect categories as human pro-

grammers; (2) existing APR tools (TBar and Recoder) do

not perform well at fixing bugs in auto-generated programs

(3) given proper instructions such as information from fault

localization, Codex edit mode (Codex-e) shows promising

results in code edit generation, which outperforms TBar and

Recoder. Our study leads us to the following view-points:

• We suggest enhancing language models with software

engineering artifacts such as fault location, with the goal

of generating higher quality code.

• We suggest directions for automated program repair

(APR) research inspired by language models, such as (i)

extracting patch ingredients from automatically generated

solution set of Codex, and (ii) making fault localization

(fix localization) in program repair more flexible (iii)

shifting focus from adding more fix patterns to semantic

program repair approaches to improve trustworthiness of

auto-generated code.

X. ACKNOWLEDGEMENT

We thank the anonymous reviewers for their suggestions.

This work was partially supported by a Singapore Min-

istry of Education (MoE) Tier 3 grant ”Automated Program

Repair”, MOE-MOET32021-0001, and the National Natural

Science Foundation of China (Grant No. 61902170, 62202026,

62141209).

REFERENCES

[1] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray,
R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser,
M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings,
M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain,
W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra,
E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati,
K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish,
I. Sutskever, and W. Zaremba, “Evaluating large language models
trained on code,” CoRR, vol. abs/2107.03374, 2021. [Online]. Available:
https://arxiv.org/abs/2107.03374

[2] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago et al., “Competition-
level code generation with alphacode,” Science, vol. 378, no. 6624, pp.
1092–1097, 2022.

[3] D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo,
C. Burns, S. Puranik, H. He, D. Song, and J. Steinhardt, “Measuring
coding challenge competence with apps,” NeurIPS, 2021.

1479

[4] M. Martinez and M. Monperrus, “Astor: A program repair library for
java (demo),” in Proceedings of the 25th International Symposium
on Software Testing and Analysis, ser. ISSTA 2016. New York,
NY, USA: ACM, 2016, pp. 441–444. [Online]. Available: http:
//doi.acm.org/10.1145/2931037.2948705

[5] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 772–781. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486890

[6] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Software Engineering
(ICSE), 2016 IEEE/ACM 38th International Conference on. IEEE,
2016, pp. 691–701.

[7] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in IEEE/ACM International
Conference on Software Engineering (ICSE), 2009.

[8] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting
template-based automated program repair,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 31–42.

[9] “Codex edit mode,” 2022. [Online]. Available: https://openai.com/blog/
gpt-3-edit-insert

[10] “Github copilot,” 2021. [Online]. Available: https://copilot.github.com
[11] “Codex model,” 2022. [Online]. Available: https://https://beta.openai.

com/playground
[12] “Leetcode discussion forum.” [Online]. Available: https://leetcode.com/

discuss/
[13] “Leetcode contest,” 2022. [Online]. Available: https://leetcode.com/

contest
[14] S. H. Tan, J. Yi, S. Mechtaev, A. Roychoudhury et al., “Codeflaws: a

programming competition benchmark for evaluating automated program
repair tools,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C). IEEE, 2017, pp. 180–
182.

[15] E. Caballero, . OpenAI, and I. Sutskever, “Description2Code
Dataset,” 8 2016. [Online]. Available: https://github.com/ethancaballero/
description2code

[16] R. Puri, D. S. Kung, G. Janssen, W. Zhang, G. Domeniconi, V. Zolotov,
J. Dolby, J. Chen, M. Choudhury, L. Decker et al., “Project codenet: a
large-scale ai for code dataset for learning a diversity of coding tasks,”
ArXiv. Available at https://arxiv. org/abs, vol. 2105, 2021.

[17] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, 2014, pp. 437–440.

[18] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roychoudhury,
“A feasibility study of using automated program repair for introductory
programming assignments,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 740–751.

[19] S. Saha et al., “Harnessing evolution for multi-hunk program repair,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 13–24.

[20] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-
patterns in search-based program repair,” in Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, 2016, pp. 727–738.

[21] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: an eclipse
plug-in for testing and debugging,” in Proceedings of the 27th
IEEE/ACM international conference on automated software engineering,
2012, pp. 378–381.

[22] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and industrial
conference practice and research techniques-MUTATION (TAICPART-
MUTATION 2007). IEEE, 2007, pp. 89–98.

[23] Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang,
“A syntax-guided edit decoder for neural program repair,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 341–353.

[24] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT international
symposium on software testing and analysis, 2020, pp. 101–114.

[25] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine
translation for automatic program repair,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1161–1173.

[26] E. Jones and J. Steinhardt, “Capturing failures of large language models
via human cognitive biases,” arXiv preprint arXiv:2202.12299, 2022.

[27] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, 2015, pp. 24–36.

[28] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Trans. Softw.
Eng., vol. 38, no. 1, pp. 54–72, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2011.104

[29] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-
patterns in search-based program repair,” in Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. ACM, 2016, pp. 727–738.

[30] S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao, and
H. Jin, “Automated patch correctness assessment: How far are we?”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 968–980.

[31] H. Ye, J. Gu, M. Martinez, T. Durieux, and M. Monperrus, “Automated
classification of overfitting patches with statically extracted code fea-
tures,” IEEE Transactions on Software Engineering, 2021.

[32] A. Ghanbari, “Objsim: lightweight automatic patch prioritization via ob-
ject similarity,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020, pp. 541–544.

[33] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, vol. 62, pp. 56–65, 2019.

[34] S. H. Tan and A. Roychoudhury, “Relifix: Automated repair of software
regressions,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ser. ICSE ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 471–482. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818813

[35] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing
crashes in android apps,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York,
NY, USA: ACM, 2018, pp. 187–198. [Online]. Available: http:
//doi.acm.org/10.1145/3180155.3180243

[36] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-
aware patch generation for better automated program repair,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 1–11.

[37] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” ser. ISSTA, 2018.

[38] S. Mechtaev, X. Gao, S. H. Tan, and A. Roychoudhury, “Test-
equivalence analysis for automatic patch generation,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 27, 2018.

[39] Y. Yuan and W. Banzhaf, “Arja: Automated repair of java programs via
multi-objective genetic programming,” IEEE Transactions on software
engineering, vol. 46, no. 10, pp. 1040–1067, 2018.

[40] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Avatar: Fixing
semantic bugs with fix patterns of static analysis violations,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2019, pp. 1–12.

[41] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote,
T. Durieux, D. L. Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, vol. PP, no. 99, pp. 1–1, 2016.

[42] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2016, pp. 87–98.

[43] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common
c language errors by deep learning,” in Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[44] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,
and M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Transactions on Software Engineering,
vol. 47, no. 9, pp. 1943–1959, 2019.

[45] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code trans-
formation learning for automated program repair,” in Proceedings of

1480

the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 602–614.

[46] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[47] “Amazon codewhisperer,” 2022. [Online]. Available: https://aws.
amazon.com/codewhisperer/

[48] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le et al., “Program synthesis with large
language models,” arXiv preprint arXiv:2108.07732, 2021.

[49] N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Ra-
jamani, and R. Sharma, “Jigsaw: Large language models meet program
synthesis,” in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 1219–1231.

[50] K. Rahmani, M. Raza, S. Gulwani, V. Le, D. Morris, A. Radhakrishna,
G. Soares, and A. Tiwari, “Multi-modal program inference: A marriage
of pre-trained language models and component-based synthesis,” Proc.
ACM Program. Lang., vol. 5, no. OOPSLA, oct 2021. [Online].
Available: https://doi.org/10.1145/3485535

[51] N. Nguyen and S. Nadi, “An empirical evaluation of github copilot’s
code suggestions,” in 2022 IEEE/ACM 19th International Conference
on Mining Software Repositories (MSR). IEEE, 2022, pp. 1–5.

[52] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Can
openai codex and other large language models help us fix security bugs?”
arXiv preprint arXiv:2112.02125, 2021.

[53] J. A. Prenner, H. Babii, and R. Robbes, “Can openai’s codex fix bugs?:
An evaluation on quixbugs,” in 2022 IEEE/ACM International Workshop
on Automated Program Repair (APR). IEEE, 2022, pp. 69–75.

1481

