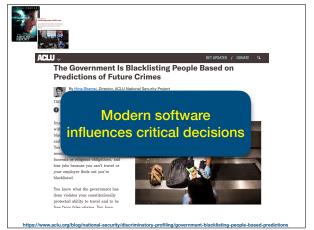
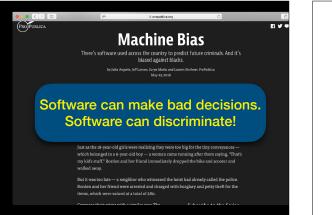
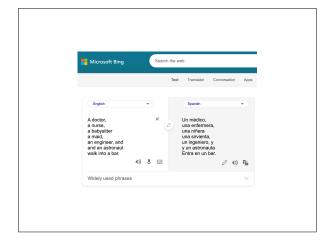
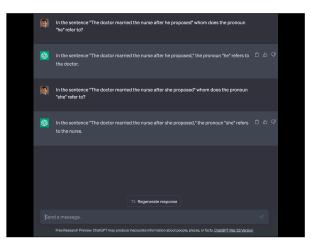
Bias in Software Systems Image: Comparison of the compar



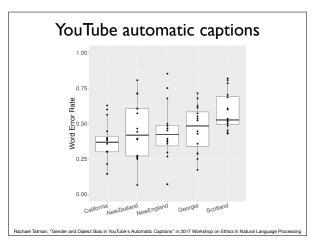




6	In the sentence "The doctor married the nurse after he proposed" whom does the prono "he" refer to?	
	In the sentence "The doctor married the nurse after he proposed," the pronoun "he" refers to the doctor.	•)
	ර ආ < G :	
6	In the sentence "The doctor married the nurse after she proposed" whom does the pronoun "she" refer to?	
	Show drafts 🗸	•
+	In the sentence "The doctor married the nurse after she proposed," the pronoun "she" refers to the nurse.	
	ம் ஏ ∉ < <mark>G</mark> :	

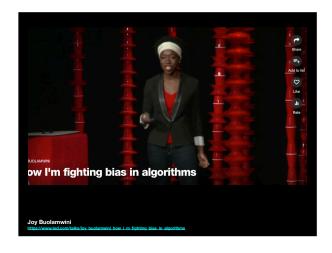


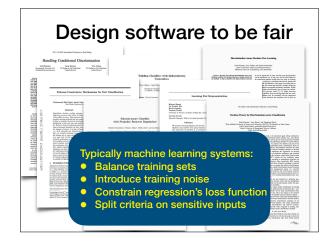
YouTube automatic captions

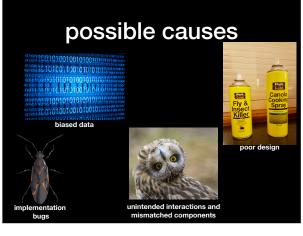


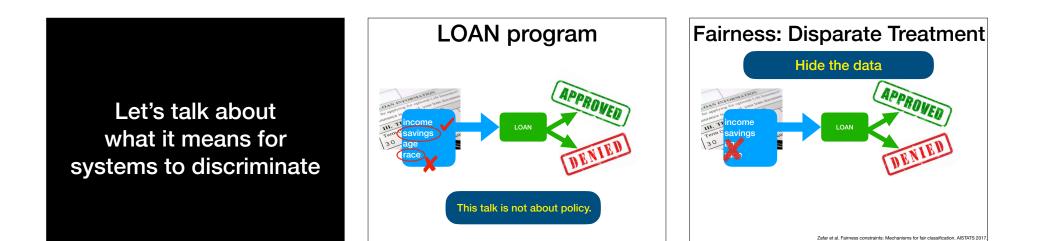
YouTube automatic captions

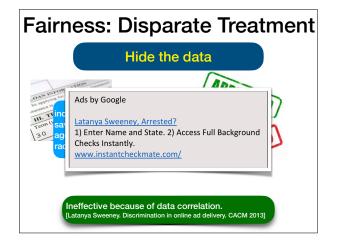
Rachael Tatman, "Gender and Dialect Bias in YouTube's Automatic Captions" in 2017 Workshop on Ethics in Natural Language Proc.

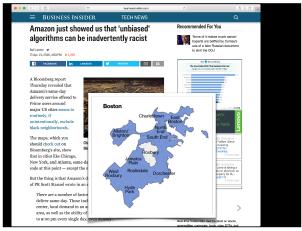


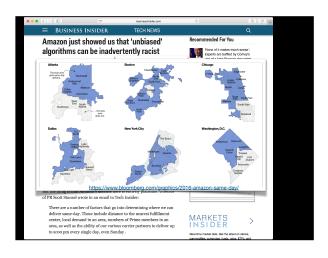


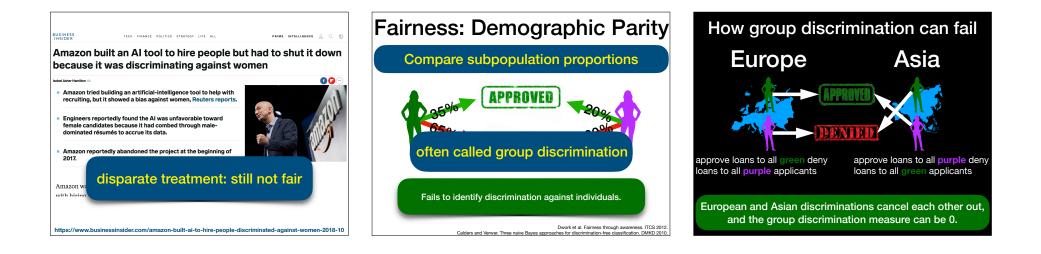












Fairness: Disparate Impact

Prohibits using a facially neutral practice that has an unjustified adverse impact on members of a protected class.

80% rule: Employer's hiring rates for protected groups may not differ by more than 80%.

Zafar et al. Fairness constraints: Mechanisms for fair classification. AISTATS 2017

Fairness: Delayed Impact

Making seemingly fair decisions can (but shouldn't), in the long term, produce unfair consequences

Liu et al., Delayed impact of fair machine learning. ICML 2018

Fairness: Predictive Equality

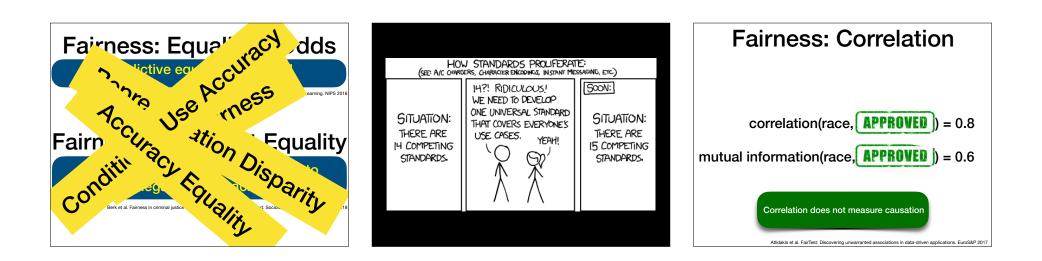
False positive rates should not differ

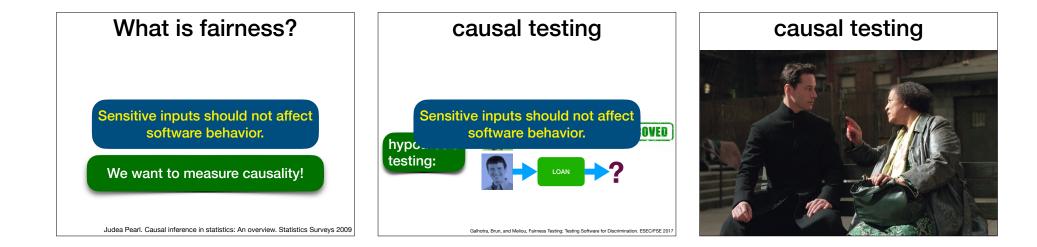
Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. FATML 2016 Corbett-Davies. Algorithmic decision making and the cost of fairness. KDD 2017

Fairness: Equal Opportunity

False negative rates should not differ

Hardt et al. Equality of Opportunity in Supervised Learning. NIPS 2016 Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments FATML 2016

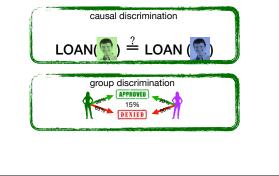




causal testing

ngell, Johnson, Brun, and Mellou, Themis: Automatically Testing Software for Discrimination. ESEC/FSE 2018 D

discrimination measures



apparent discrimination

Evaluation

Eight open-source decision systems trained on two public data sets

Census income dataset: financial data

Statlog German credit dataset:

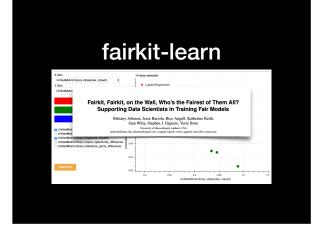
"good" or "bad" credit?

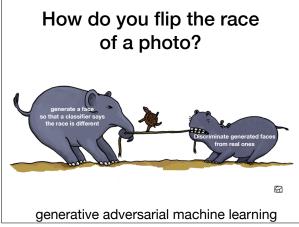
45K people income > \$50K?

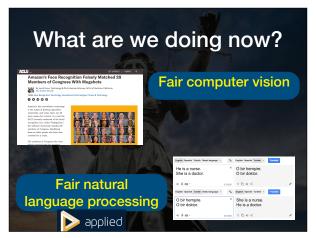
credit data

1K people

discrimination-aware logistic regression	[88]	
discrimination-aware decision tree	[40]	•
discrimination-aware naive Bayes	[18]	
discrimination-aware decision tree	[91]	
naive Bayes		•
decision tree	scikit-	
logistic regression	learn	
SVM		



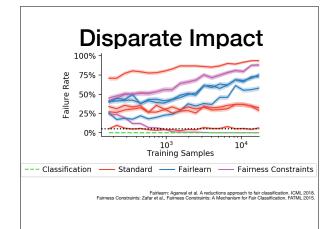


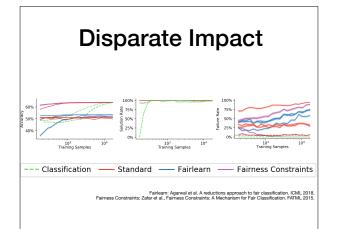


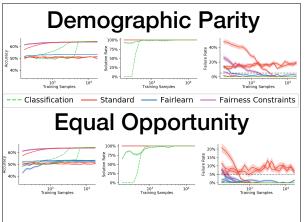
But what's the holy grail?

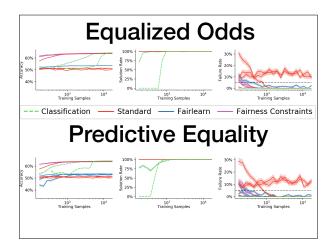
Provably fair machine learning:

Provide (high-probability) guarantees that the classifier is fair on unseen data.









- Causality-based definition and method for measuring software fairness
- Themis, an automated test-suite generator for fairness testing
- Evaluation on real-world software, demonstrating software is biased and our methods can catch it
- Provable guarantees on fairness in machine learning

UMassAmherst

ORACLE

Contributions

http://fairness.cs.umass.edu

- Causality-based definition and method for measuring software fairness
- Themis, an automated test-suite generator for fairness testing
- Evaluation on real-world software, demonstrating software is biased and our methods can catch it
- Provable guarantees on fairness in machine learning