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Coming up

• Quiz 2 this Thursday, in class
• User reports due Nov 26
• Today: quiz review and 

Reasoning About Programs
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What’ll be on quiz 2?
• Types of questions

– Same as quiz 1
– True False and Multiple Choice

• Topics
– User Interfaces
– Design Patterns
– Testing
– Debugging
– Reasoning about Software
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User Interfaces

• Which UI elements are appropriate when
• User-centered testing
• Paper prototypes
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Design Paterns

• Creational design patterns
– Singleton
– Interning
– Flyweight
– Factories
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Testing

• Know about different kinds of tests
– unit, integration, regression, etc.

• Know about different heuristics
– black box, glass box (a.k.a. white box), boundaries

• Know about different kinds of coverage
– statement, path, etc.

• Know what’s hard about testing
– GUI, usability, covering all behavior, etc.
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Debugging

• Know four kinds of defense against bugs
– make impossible
– don’t introduce
– make errors visible
– last resort: debugging

• Representation (rep) invariants
• Assertions
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Reasoning about programs (today)

• Ways to verify your code
– testing, reasoning, proving

• Forward reasoning
• Backward reasoning
• Loop invariants
• Induction
• Practice some examples!
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Loop example
Find the weakest precondition
 for (int x = 1; x <> y;) {

  if (y > x) {

   y = y / 2;
   x=2*x; 

  } 

 }
 // postcondition: x=8, y=8, and x and y are ints

you can also find the loop invariant and decrement function
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Reasoning about programs
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Ways to verify your code
• The hard way:
– Make up some inputs
– If it doesn't crash, ship it
– When it fails in the field, attempt to debug

• The easier way:
– Reason about possible behavior and desired outcomes
– Construct simple tests that exercise that behavior

• Another way that can be easy
– Prove that the system does what you want

• Rep invariants are preserved
• Implementation satisfies specification

– Proof can be formal or informal (we will be informal)
– Complementary to testing
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Reasoning about code

• Determine what facts are true during execution
– x > 0
– for all nodes n:  n.next.previous == n
– array a is sorted
– x + y == z
– if  x != null, then  x.a > x.b

• Applications:
– Ensure code is correct (via reasoning or testing)
– Understand why code is incorrect
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Forward reasoning
• You know what is true before running the code

What is true after running the code?
• Given a precondition, what is the postcondition?

• Applications:
Representation invariant holds before running code
Does it still hold after running code?

• Example:
// precondition: x is even
x = x + 3;
y = 2x;
x = 5;
// postcondition:  ??
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Backward reasoning
• You know what you want to be true after running the code

What must be true beforehand in order to ensure that?
• Given a postcondition, what is the corresponding precondition?

• Applications:
(Re-)establish rep invariant at method exit:  what’s required?
Reproduce a bug:  what must the input have been?

• Example:
// precondition:  ??
x = x + 3;
y = 2x;
x = 5;
// postcondition:  y > x

• How did you (informally) compute this?
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Forward vs. backward reasoning

• Forward reasoning is more intuitive for most people
– Helps understand what will happen (simulates the code)
– Introduces facts that may be irrelevant to goal

Set of current facts may get large
– Takes longer to realize that the task is hopeless

• Backward reasoning is usually more helpful
– Helps you understand what should happen
– Given a specific goal, indicates how to achieve it
– Given an error, gives a test case that exposes it
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Forward reasoning example
assert x >= 0;
i = x;

// x ≥ 0  &  i = x
z = 0;

// x ≥ 0  &  i = x  &  z = 0
while (i != 0) {
   z = z + 1;
   i = i –1;
}

// x ≥ 0  &  i = 0  &  z = x
assert x == z;

Ü  What property holds here?

Ü  What property holds here?

15

Backward reasoning

Technique for backward reasoning:
• Compute the weakest precondition (wp)
• There is a wp rule for each statement in the 

programming language
• Weakest precondition yields strongest 

specification for the computation 
(analogous to function specifications)
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Assignment
// precondition: ??
x = e;
// postcondition: Q

Precondition: Q with all (free) occurrences of x 
replaced by e
• Example:

// assert:  ??
x = x + 1;
// assert x > 0

Precondition =  (x+1) > 0
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Method calls

// precondition: ??
x = foo();
// postcondition: Q

• If the method has no side effects: just like 
ordinary assignment

• If it has side effects:  an assignment to every 
variable it modifies

Use the method specification to 
determine the new value

18
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If statements

// precondition:  ??
if (b) S1 else S2
// postcondition: Q

Essentially case analysis:
 wp(“if (b) S1 else S2”, Q) =
      (        b Þ wp(“S1”, Q) 
      ∧ ¬ b Þ wp(“S2”, Q)  )
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If: an example
// precondition: ??
if (x == 0) {
    x = x + 1;
} else {
    x = (x/x); 
}
// postcondition:  x ³ 0

Precondition:
       wp(“if (x==0) {x = x+1} else {x = x/x}”, x ³ 0) =

= (     x = 0 Þ wp(“x = x+1”, x ³ 0)
     &  x ¹ 0 Þ wp(“x = x/x”, x ³ 0)    )
= (x = 0 Þ x + 1 ³ 0)  &  (x ¹ 0 Þ x/x ³ 0)
= 1 ³ 0  &  1 ³ 0
= true   

20

Reasoning About Loops

• A loop represents an unknown number of paths
– Case analysis is problematic
– Recursion presents the same issue

• Cannot enumerate all paths
– That is what makes testing and reasoning hard
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Loops:  values and termination

1) Pre-assertion guarantees that x ³ y
2) Every time through loop

x ³ y holds and, if body is entered, x > y
y is incremented by 1
x is unchanged
Therefore, y is closer to x   (but x ³ y still holds)

3) Since there are only a finite number of integers 
between x and y, y will eventually equal x
4) Execution exits the loop as soon as x = y

// assert x ³ 0 & y = 0
while (x != y) {
    y = y + 1;
}
// assert x = y
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Understanding loops by induction
• We just made an inductive argument

Inducting over the number of iterations

• Computation induction
Show that conjecture holds if zero iterations
Assume it holds after n iterations and show it holds after n+1

• There are two things to prove:
Some property is preserved (known as “partial correctness”)

loop invariant is preserved by each iteration

The loop completes (known as “termination”)
The “decrementing function” is reduced by each iteration
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Loop invariant for the example

• So, what is a suitable invariant?
• What makes the loop work?

LI = x ³ y

1) x ³ 0  &  y = 0 Þ LI
2) LI  &  x ¹ y {y = y+1;} LI
3) (LI  &  ¬(x ¹ y))   Þ   x = y

// assert x ³ 0 & y = 0
while (x != y) {
    y = y + 1;
}
// assert x = y

24
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Is anything missing?

Does the loop terminate?

// assert x ³ 0 & y = 0
while (x != y) {
    y = y + 1;
}
// assert x = y
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Decrementing Function

• Decrementing function D(X)
– Maps state (program variables) to some well-ordered set
– This greatly simplifies reasoning about termination

• Consider:  while (b) S;
• We seek D(X), where X is the state, such that

1. An execution of the loop reduces the function’s value:
LI & b {S} D(Xpost) < D(Xpre) 

2. If the function’s value is minimal, the loop terminates:
(LI & D(X) = minVal) Þ ¬b
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Proving Termination

• Is “x-y” a good decrementing function?
1. Does the loop reduce the decrementing function’s value? 

// assert (y ³ x); let dpre = (x – y)
y = y + 1;
// assert (xpost – ypost) < dpre

2. If the function has minimum value, does the loop exit?
       (x ³ y & x – y = 0) è (x = y)

// assert x ³ 0 & y = 0
// Loop invariant: x ³ y
// Loop decrements:  (x-y)
while (x != y) {
    y = y + 1;
}
// assert x = y

28

Choosing Loop Invariant
• For straight-line code, the wp (weakest precondition) 

function gives us the appropriate property
• For loops, you have to guess:

– The loop invariant
– The decrementing function

• Then, use reasoning techniques to prove the goal property
• If the proof doesn't work:

– Maybe you chose a bad invariant or decrementing function
• Choose another and try again

– Maybe the loop is incorrect
• Fix the code

• Automatically choosing loop invariants is a research topic
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In practice

I don’t routinely write loop invariants

I do write them when I am unsure about a loop and 
when I have evidence that a loop is not working
– Add invariant and decrementing function if missing
– Write code to check them
– Understand why the code doesn't work
– Reason to ensure that no similar bugs remain
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More on Induction

• Induction is a very powerful tool

Proof by induction: Base Case

For n=1, 

2n =1+ 2k−1
k=1

n

∑

1+ 2k−1
k=1

1

∑ =1+ 20 =1+1= 2 = 21
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Inductive Step

Assume                          and show that 2m =1+ 2k−1
k=1

m

∑ 2m+1 =1+ 2k−1
k=1

m+1

∑

2m+1 =1+ 2k−1
k=1

m+1

∑ =1+ 2k−1
k=1

m

∑ + 2m = 2m + 2m = 2×2m = 2m+1
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Is Induction Too Powerful?
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