
9/18/24

1

Working in Teams

1

Lecture outline

• Why is teamwork hard?

• Not getting into each other’s way

• Positive teamwork

2

Team pros and cons

• Benefits
– Attack bigger problems in a short period of time
– Utilize the collective experience of everyone

• Risks
– Communication and coordination issues
– Groupthink: diffusion of responsibility; going along
– Working by inertia; not planning ahead
– Conflict or mistrust between team members

3

Communication: powerful but costly!

• Communication requirements increase with
increasing numbers of people

• Everybody to everybody: quadratic cost
• Every attempt to communicate is a chance to

miscommunicate
• But not communicating will guarantee

miscommunication

4

What about conflicts?

• Two people want to work on the same file
– Google docs lets you do that

But…
• What about same line?
• What about relationships between different

parts of the file?
• What about design decisions?

What can cause conflicts?

5

Version control

Version control aims to allow
multiple people to work in

parallel.

6

9/18/24

2

Centralized version control

• (old model)
• Examples: Concurrent Versions System (CVS)

 Subversion (SVN)
Main Repository

Yuriy’s
laptop

checkout

Yuriy’s
desktop
checkout

Lee’s
checkout

Demetre’s
desktop
checkout

Demetre’s
laptop

checkout

7

Doing work

• I update my checkout (working copy)
• I edit
• I update my checkout again
• I merge changes if necessary
• I commit my changes to the Main

Main Repository

Yuriy’s
laptop

checkout

Yuriy’s
desktop
checkout

Lee’s
checkout

Demetre’s
desktop
checkout

Demetre’s
laptop

checkout

8

Problems with centralized VC

• What if I don’t have a network connection?

• What if I am implementing a big change?

• What if I want to explore project history later?

9

Distributed version control

(new model)
• Examples: Mercurial (Hg), Git, Bazaar, Darcs, …

• Local operations are fast (and possible)
• History is more accurate
• Merging algorithms are far better

10

Distributed version control model
Main Repository

Yuriy’s
laptop

checkout

Yuriy’s
desktop
checkout

Lee’s
checkout

Demetre’s
Desktop
checkout

Demetre’s
laptop

checkout

Demetre’s Laptop
Repository

Demetre’s Desktop
Repository

Lee’s Repository

Yuriy’s Laptop
Repository

Yuriy’s Desktop
Repository

11

Doing work

• I pull from the Main
• I update my checkout
• I edit
• I commit
• I pull from the Main
• I merge tips if necessary and commit again
• I push my changes to the Main

Main Repository

Yuriy’s
desktop
checkout

Yuriy’s Desktop
Repository

12

9/18/24

3

History view (log)

• Bill and Melinda work at the
same time

• At the end, all repositories have
the same, rich history

main

13

How frequent are conflicts?

Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin, Early Detection of Collaboration Conflicts
and Risks, IEEE TSE, vol. 39, no. 10, October 2013, pp. 1358–1375, https://doi.org/10.1109/TSE.2013.28

14

How frequent are conflicts?

15

How frequent are conflicts?

16

How frequent are conflicts?

17

Where do conflicts come from?

18

https://doi.org/10.1109/TSE.2013.28

9/18/24

4

Higher order conflicts

19

What VC does the cloud provide?

• code.google.com has SVN and Hg
• bitbucket.org has Hg and git
• github.com has git
• sourceforge.net has SVN, CVS, git, Hg, Bazaar

• You can run whatever you want locally

20

Lecture outline

• Why is teamwork hard?

• Not getting into each other’s way

èPositive teamwork

21

Team structures

• Tricky balance among
– progress on the project/product
– expertise and knowledge
– communication needs

“A team is a set of people with complementary
skills who are committed to a common
purpose, performance goals, and approach for
which they hold themselves mutually
accountable.”

– Katzenbach and Smith

22

Common SW team responsibilities

• Project management
• Functional management
• Developers: programmers, testers, integrators
• Lead developer/architect (“tech lead”)

• These could be all different team members, or
some members could span multiple roles.

• Key: Identify and stress roles and responsibilities

23

Issues affecting team success
• Presence of a shared mission and goals

• Motivation and commitment of team members

• Experience level
– and presence of experienced members

• Team size
– and the need for bounded yet sufficient communication

• Team organization
– and results-driven structure

• Reward structure within the team
– incentives, enjoyment, empowerment (ownership, autonomy)

24

http://code.google.com/
https://bitbucket.org/
https://github.com/
http://sourceforge.net/

9/18/24

5

• Dominion model
– Pros

• clear chain of responsibility
• people are used to it

– Cons:
• single point of failure at the commander
• less or no sense of ownership by everyone

• Communion model
– Pros

• a community of leaders, each in his/her own domain
• inherent sense of ownership

– Cons
• people aren't used to it (and this scares them)

Team structure models

25

Team leadership

• Who makes the important product-wide
decisions in your team?
– One person?
– All, by unanimous consent?
– Other options?...

– Is this an unspoken or an explicit agreement
among team members?

26

Surgical/Chief Programmer Team
[Baker, Mills, Brooks]

Chief: all key decisions

Copilot: chief’s assistant

Administrator: manages people, hardware, resources

Editor: edits chief’s documentation

Secretaries (2): for administrator and for editor

Program clerk: keeps all project records

Toolsmith: builds programming tools for chief

Tester: develops and runs unit and system tests

Language lawyer: programming language expert, advises chief

27

Microsoft’s team structure
[microsoft.com]

• Program Manager. Leads the technical side of a
product development team, managing and
defining the functional specifications and defining
how the product will work.

• Software Design Engineer. Codes and designs
new software, often collaborating as a member
of a software development team to create and
build products.

• Software Test Engineer. Tests and critiques
software to assure quality and identify potential
improvement opportunities and projects.

28

Toshiba Software Factory [Y. Matsumoto]

• Late 1970’s structure for 2,300 software
developers producing real-time industrial
application software systems (such as traffic
control, factory automation, etc.)

• Unit Workload Order Sheets (UWOS) precisely
define a software component to be built

• Assigned by project management to developers
based on scope/size/skills needed

• Completed UWOS fed back into management
system

• Highly measured to allow for process improvement

29

Common factors in good teams

• Clear roles and responsibilities
– Each person knows and is accountable for their work

• Monitor individual performance
– Who is doing what, are we getting the work done?

• Effective communication system
– Available, credible, tracking of issues, decisions
– Problems aren't allowed to fester ("boiled frogs")

• Fact based decisions
– Focus on the facts, not the politics, personalities, …

30

9/18/24

6

What motivates you?
• Achievement
• Recognition
• Advancement
• Salary
• Possibility for growth
• Interpersonal relationships

– Subordinate
– Superior
– Peer

• Status
• Technical supervision

opportunities

• Company policies
• Work itself
• Work conditions
• Personal life
• Job security
• Responsibility
• Competition
• Time pressure
• Tangible goals
• Social responsibility
• Other?

Motivation

31

De-motivators
• What takes away your motivation?

– Micro-management or no management
– Lack of ownership
– Lack of effective reward structure

• Including lack of simple appreciation for job well done

– Excessive pressure and resulting "burnout"
– Allowing "broken windows" to persist
– Lack of focus in the overall direction
– Productivity barriers

• Asking too much; not allowing sufficient learning time; using the wrong tools

– Too little challenge
– Work not aligned with personal interests and goals
– Poor communication inside the team

32

