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Designing a visualization involves a series of decisions, and
each design decision can afford different interpretations.
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Can you build a visualization to help viewers
see that “peaple are increasingly relying on
the internet to get their news” 7
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Challenge #1: What patterns people perceive

Challenge #1: What patterns people perceive
in a visualization is hard to predict.

Challenge #2: Language can be ambiguous,
making interpretation difficult.

in a visualization is hard to predict.
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Challenge #1: What patterns people perceive
in a visualization is hard to predict.

Who will win in Year 4, Blue or Green?

Student Government Election Voting Results

Percentage .
Support !

Bue Green  Blue Green B Green  Blue Green
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Challenge #1: What patterns people perceive
in a visualization is hard to predict.
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Visual features matter, but people might draw
different conclusions due to their motivation,
experience or background knowledge.
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Visual features matter, but people might draw
different conclusions due to their motivation,
experience or background knowledge.

Let's look at an example.
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I believe that as the number of people whose names
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People’s correlation estimation is associated with their beliefs.
The stronger the belief, the more likely people will overestimate the correlation.
(and vice versa)
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Visual features matter, but people might draw
different conclusions due to their motivation,
experience or background knowledge.
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Challenge #1: What patterns people perceive

in a visualization is hard to predict.

Visual features matter, but people might draw
different conclusions due to their motivation,
experience or background knowledge.
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How people perceive data can also be
subjected perceptual + cognitive biases.
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Visual features matter, but people might draw
different conclusions due to their motivation,
experience or background knowledge.
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Visual features matter, but people might draw
different conclusions due to their motivation,
experience or background knowledge.
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Ihave a hypothesis. Hoping to
see apositive correlation!

Challenge #1: What patterns people perceive
in a visualization is hard to predict.

Challenge #1: What patterns people perceive
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different conclusions due to their motivation,
experience or background knowledge.
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How people perceive data can also be
subjected perceptual + cognitive biases.

in a visualization is hard to predict.
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Psychophysics experiments to model how
people perceive visualizations.
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How people perceive data can also be
subjected perceptual + cognitive biases.
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Human Cognition

Psychophysics experiments to model how
people perceive visualizations.
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Psychophysics experiments to model how
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“Using the Safety GPS system gquses

people to get in fewer accidents!”
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Thinking about Causation
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“Using the Safety GPS system gauses

people to get in fewer accidents!”
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“People who use the Safety GPS
system tend to get in fewer

accidents - not necessarily causal”
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#Accidents

No GPS Use GPS

“People who use the Safety GPS
system tend to get in fewer
accidents - not necessarily causal”

Thinking about Causation
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Thinking about Correlation
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"People who use the Safety GPS
system tend to get in fewer
accidents - not necessarily causal”

“Using the Safety GPS system ause
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Can charts encourage
misperceptions of dispersion?

Reality

Real Distributio

in a visualization is hard to predict.

Visual features matter, but people might draw
different conclusions due to their motivation,
experience or background knowledge.
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How people perceive data can also be
subjected perceptual + cognitive biases.

Challenge #1: What patterns people perceive

Human cognition

Psychophysics experiments to model how
people perceive visualizations.

Can charts encourage
misperceptions of dispersion?

Group-

() Bar Chart

Can charts encourage
misperceptions of dispersion?
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Can charts encourage
misperceptions of dispersion?
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Human cogniton

Psychophysics experiments to model how
people perceive visualizations.
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Challenge #1: What patterns people perceive
in a visualization is hard to predict.

Visual features matter, but people might draw
different conclusions due to their motivation,
experience or background knowledge.
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How people perceive data can also be @j
subjected perceptual + cognitive biases. ~

To build a model that predict what people
takeaway from a visualization, we have to figure
out what people see in a visualization first.

Challenge #2: Language can be ambiguous,
making interpretation difficult.
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Challenge #2: Language can be ambiguous,
making interpretation difficult.
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Challenge #2: Language can be ambiguous,
making interpretation difficult.
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Vehicle 8 Component 2

Vehicle 8 Component 3

Vehicle A Component 1
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Most participants made multiple
comparisons that contained the entire set

128

129

- #i-4q

Vehicle A Component 1

— ik

Vehicle A Component 2

Vehicle A Component 3

What if we ask
them to indicate
which bars they
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Some conclusions are just difficult to

translate into mathematical expressions
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Part 3 of Vehicle Als less durable than
Part 2, but more than Part 1.

A3<A2
A3>A1
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Durability
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Part 3 of Vehicl A'is less durable than
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The durabiliies are the same for both
vehicles, but for different parts

(A1+A2+A3) = (B1+82+B3)
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Challenge #2: Language can be ambiguous,
making interpretation difficult.

Paper A received a
higher score from Scores
Reviewer 1and 2

A

Reviewer | Reviewer 2
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Challenge #2: Language can be ambiguous,
making interpretation difficult.

Paper A received a higher score from Reviewer 1and 2

" -l

Roviewr 1 Reveen2

Reiows 1 Revener2
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Challenge #2: Language can be ambiguous,

making interpretation difficult.

LT

Challenge #2: Language can be ambiguous,
making interpretation difficult.

Scores

A B A B

Reviewer 1 Reviewer 2

Paper A recelved a
higher score from
Reviewer 1 and 2
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Challenge #2: Language can be ambiguous,
making interpretation difficult.

Paper A recelved a
higher score from Scores
Reviewer 1 and 2 1
A B AB

Reviewer | Reviewer 2

Paper A received a
higher summary score
from the combination of
Reviewer 1and 2
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A B A B
Reviewer | Reviewer 2
Sumof &> Sumof &

Challenge #2: Language can be ambiguous,
making interpretation difficult.

Paper A received a
higher score from Scores
Reviewer 1and 2
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Reviewer 1 Reviewer 2
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Reviewer 1 and 2 from Reviewer 2.
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Challenge #2: Language can be ambiguous,
making interpretation difficult.

Paper A received a higher score from Reviewer 1and 2.

A B A B
Reiews 1 Revn? Reviewer | Reviewer 2

Let's say we generated enough insight to predict what
people will verbally conclude from a visualization.

—
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Challenge #2: Language can be ambiguous,
making interpretation difficult.

Roiews 1 Rienen2

A B A B
Reviewer 1 Reviewer 2

Let’s say we generated enough insight to predict what
people will verbally conclude from a visualization.
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When we implement a Natural Language Interface that
allows the users to input natural language queries,
those inputs can still be ambiguous and underspecified.
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guity by showing them a visualization!
(that best answers their queries)

Compare the popularity of Movies A and B S 2 Compare the popularity of long movies

What do they mean by popularity? What do they mean by long movies?

Do they mean box offce? Higher than average in the dataset?

2
Maybe a combination between box office Top 10 percentie in length?
and user rating?

Anything over an hour?
But combination how?

163

Compare the silver medals won
by tall gthletes to shortgthletes.

00006
wief 000G |
|
L9 31‘

S 2 Compare the popularity of Movies A and B

What do they mean by popularity?
Do they mean box office?

Maybe a combination between box office
and user rating?

But combination how?

Q Compare the popularity of Movies A and B

Compare the popularity of long movies

What do they mean by popularity? What do they mean by long movies?

Do they mean boxoffice? Higher than average in the dataset?

N ?
Maybe a combination between box office Top 10 percentile in length’
and user rating? )

Anything over an hour?
But combination how?
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Compare the performance of
squid game and midnight mass

Compare the box office numbers
for gllhighly-rated movies

Compare the silver medals won
by tall gthletes to short gthletes

Compare the gerformance of
squid game and midnight mass

Compare the box office numbers
@lLhighlvrated movies

Compare the silver medals won
by tallathleics to

164

165

%9 Compare @ bghhegted book wih SalrHlahl-1gted Books vih respect to price

800001 o o Similar high-rated books
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The Alchemist (high-rated book)

Books

Similar igh-rated books

% Compare g highly-roted book with gimilgr hightrated books with respect to price
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Average Price ($)
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@ Prolific

Compare ghigh

“Please rank the following visualization with regards to how
easy a viewer can use them to make that comparison”

‘with gigilgy z with respect to price

price$)
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in a visualization is hard to predict.

Challenge #1: What patterns people perceive

Challenge #2: Language can be ambiguous,
making interpretation difficult.

I e —r——r

Visual features matter, but people might draw
different conclusions due to their motivation,
experience or background knowledge.

=04 re0s =05

How people perceive data can also be q\
j + cognitive biases.

A B A B A B A B
Reviewer 1 Reviewer 2 Reviewer | Reviewer 2

Let's say we generated enough insight to predict what

When we implement a Natural Language Interface that
allows the users to input natural language queries,
those inputs can still be ambiguous and underspecified.
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easy a viewer can use them to make that comparison”
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Visualization
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The US criminal legal system is very complex.

179

182

180

Trust and Data Visualization in Criminal Legal Reform

183

184

Growing demands for change.

District Attorney’s (DA) offices and
prosecutors play a major role.

Progressive Prosecution through data
transparency and dissemination.

186
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Online data dashboards.

'

Progressive Prosecution through data
transparency and dissemination.
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Cases Referred to the Prosecutor ©

Decisions after Case Review ©

Multnomah County
District Attorney.

Blas Crime Cases.

146 256 138
T —

Total Defendants Wost Common Bias

Race/Color

ngilhght;i Data ’

See Data Trands on the navi

Criminal Case Filings by Type

Lake County State’s Attorney's
Data Dashboard

don bar for more data

Felony APP Participant Race
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How does sharing criminal legal data via dashboards
impact public understanding + trust in the legal system?
?

-

Approval ratings  Understood the  Reported trust in
for the DA information the data

Highlighted Data

How does sharing criminal legal data via dashboards
impact public understanding + trust in the legal system?

?

-~

I\ Design of visualization dashboards
seem to matter!

Highlighted Data
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Approval ratings  Understood the ~ Reported trust in

for the DA information the data
- -
-
- -

seem to matter!

146 I8A 128

t Design of visualization dashboards

*this is correlational data

How does sharing criminal legal data via dashboards
impact public understanding + trust in the legal system?
?

S

Highlighted Data

Approval ratings  Understood the  Reported trust in

for the DA i the data
- -
- -
- -
o @5 35 40 45 2 B3

How does sharing criminal legal data via dashboards
impact public understanding + trust in the legal system?
?
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@theCindyXiong.
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Visualization design can
change how people
understand data and make
decisions.
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@theCindyXiong
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Visualization design can
change how people
understand data and make
decisions.
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To Solve #1: Creating
descriptive models of how
people actually understand
visualizations

@theCindyXiong
"

Visualization design can
change how people
understand data and make
decisions.
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To Solve #1: Creating
descriptive models of how
people actually understand
visualizations

To Solve #2: Effectively map
natural language

descriptions of user intents
to patterns they see in data.
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Visualization design can
change how people
understand data and make
decisions.

P

To Solve #1: Creating
descriptive models of how
people actually understand
visualizations

To Solve #2: Effectively map
natural language
descriptions of user intents
to patterns they see in data.

You have a lot of power as a visualization designer.
Design your visualizations thoughtfully.

@theCindyXiong m

Many thanks to my students...

L& O

@theCindyXiong.
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People who use the Safety GPS system tend to get

Nelther agree nor
Disagree  Somewhat disagree disagree Somewhat agree

fewer accidents

New Safety GPS System Usage
and Average # Accidents Involved

# Accidents

No GPS Use GPS

New Safety GPS System Usage
and Average # Accidents Involved

#Accidonts \

No GPS Use GPS
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New Safety GPS System Usage
and Average # Accidents Involved

#Accidents

No GPS Use GPS|

New Safety GPS System Usage
and Average # Accidents Involved

#Accidents

No GPS Use GPS|
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Neither agree nor

Oisagree  Somewnat disagr Someuhat agree
If people were to use the Safety GPS system,
they would get in fewer accidents.
Neithe agree nor
Disagree  Somewhat isagree sagree Somewhat agree

People who use the Safety GPS system tend to get in fewer accidents

New Safety GPS System Usage
and Average # Accidents Involved

#Accidents

No GPS

New Safety GPS System Usage
and Average # Accidents Involved

Use GPS

#Accidents \

No GPS

Use GPS

New Safety GPS System Usage

People who use the Safety GPS system tend to get in fewer accidents
and Average # Accidents Involved

Oisagree  Somewnat dsagree Somewnat agree Agree
If people were to use the Safety GPS system, #Accidents
they would get in fewer accidents
Neither agree nor
Dissgree  Somewnat sagree dsagree Somenhat agree Agree
NoGPS  Use GPS

New Safety GPS System Usage

People who use the Safety GPS system tend to get in fewer accidents and Average # Accidents Involved

Nefther agree nor
sagree.

Disagree  Somewhat disagree Somewnat agree Agree
If people were to use the Safety GPS system, #Accidents \
they would get in fewer accidents

Neiter agree nor
Disagree  Somewnat disagree Somenhat agree Agree

No GPS Use GPS
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New Safety GPS System Usage

New Safety GPS System Usage

People who use the Safety GPS system tend to get in fewer accidents
and Average # Accidents Involved

Somewhat agree Agree

Disagree  Somewhat disagree

If people were to use the Safety GPS system, 4 Accidents
they would get in fewer accidents.

Neither agree no
s isagree ‘Somewnat agree Agree

Disagree  Somewhat disagree

No GPS Use GPS|

. . New Safety GPS System Usage
People who use the Safety GPS system tend to get in fewer accidents and Average # Accidents Involved

People who use the Safety GPS system tend to get in fewer accidents

Neither agree

Somewhat agree

Disagree  Somewhat disagree

If people were to use the Safety GPS system,
they would get in fewer accidents.

Neltn
Disagree  Somewhat disagree isagree ‘Somewhat agree Agree

People who use the Safety GPS system tend to get in fewer accidents

New Safety GPS System Usage.
and Average # Accidents Involved

#Accidents

No GPS Use GPS

New Safety GPS System Usage
and Average # Accidents Involved

People who use the Safety GPS system tend to get in fewer accidents

Nefther agree no
Disagree  Somewhat cisagree sagree.

If people were to use the Safety GPS system,
they would get in fewer accidents

Neither agree nor

Disagr ‘Somewnat disagree

People who use the Safety GPS system tend to get in fewer accidents

and Average # Accidents Involved

# Accidents

No GPS Use GPS|

New Safety GPS System Usage
and Average # Accidents Involved

If people were to use the Safety GPS system, # Accidents
they would get in fewer accidents
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2 bins 8 bins
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Most Aggregation
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Not super causal

line

more causal
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Categorical Prototype Effects

Category Prototype

4/25/23

New Safety GPS System Usage
and Average # Accidents Involved

New Safety GPS System Usage
and Average # Accidents Involved

# Accidents \ #Accidents

No GPS Use GPS No GPS Use GPS

Bar charts appear more
causal because they group
data into two bins.

New Safety GPS System Usage
and Average # Accidents Involved

# Accidents

GPS Usage

Consider dis-aggregating
data to reduce misguided
causal conclusions.

New Safety GPS System Usage
and Average # Accidents Involved

#Accidents

No GPS Use GPS,

Bar charts appear more
causal because they group
data into two bins.
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Categorical Prototype Effects

Actual Stimulus Value Category Prototype

Bias Toward the Prototype

Categorical Prototype Effects

Actual Stimulus Value
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Categorical Prototype Effects
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Categorical Prototype Effects

Overestimation

Bias Toward the Prototype

Underestimation
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Does the aspect ratio of a mark bias position estimates?

Wide Aspect Ratio Square Aspect Ratio Tall Aspect Ratio

241

Trial Display

Visual Noise Mask
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Response
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Response

Aspect ratio of a mark can bias position estimates

Underestimation

+ 4

Overestimation
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Experiment #1:
Can chart design impact stereotyping? v/

Jtter Plots vs. Bar Charts

Eimphasized foriabiity
Lees Stereotyping

personal attribution

bars

agree-100

Winner | Verbal Description Type
= adjacent Component 2 is the most durable Superlatives
component in vehicle A. e.g. max =A
_ adjacent The total durability of components in | A-B
-7 vehicle A is higher than that in vehicle | comparison
—L J— B eg,A>B
overlaid Overall component 2s are more 1-2-3
stacked durable than components 3s. comparison
EEE eg,1<3
vertical In vehicle B, component 1 is more Pair-
S durable than component 2. comparison
1511 (AB)
Y eg., B1>B2
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(23 ~
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Experimental Stimuli: 3 designs, 6 topics
News Car Holiday Plants Prison Tires
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™ | I 1
Focused
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Experimental Procedure

Memory Assessments Subjective Ratings
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Stimuli 0 Stimuli q Ended
Graphs Conclusion e Ratings
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Recall Conclusion

Recalled Conclusions: Focused designs led to

more

There have been changes Most people get their news

" over the interval of 2000 to from the television and get

Recalled 3010 witn having the least news from their
conclusions the biggest gain in friends.
percentage.
Coded Trends Television Friends
categories

a0
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Disclosure

Trust
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Quant Ratings Qual Reasons
Quantitative Ratings: Focused designs are rated as more Qualitative Ratings
oo e ) R e
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7
" =
Decluttered ol ol ol o
“The middle graph was by far the because it clearly conveyed the
Cluttered [ I e} ol information, ignoring extraneous details and highlighting the key conclusion. The
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1 2 3 4 5 12 4 s 2 3 4 5 2 3 4 to differentiate overlapping lines.” [P15]
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