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Design choices can lead to powerful and intuitive insights, or 
leave important patterns obscured and misunderstood.
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Misleading decreasing trend.

(Georgia Department of Public Health, 2020; Burns, Xiong, Cairo, Franconeri & Mahyar, 2020)

Design choices can lead to powerful and intuitive insights, or 
leave important patterns obscured and misunderstood.
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28 April27 April 2 May 1 May30 April 26 April4 May 6 May 5 May 2 May 7 May 3 May 8 May 9 May

(Georgia Department of Public Health, 2020; Burns, Xiong, Cairo, Franconeri & Mahyar, 2020)

Notice which day had the most/least # of cases.

Design choices can lead to powerful and intuitive insights, or 
leave important patterns obscured and misunderstood.
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Notice which day had the most/least # of cases.

28 April27 April 2 May 1 May30 April 26 April4 May 6 May 5 May 2 May 7 May 3 May 8 May 9 May 26 April May 9 26 April May 9

Notice the change in # of cases as time passes.

(Georgia Department of Public Health, 2020; Burns, Xiong, Cairo, Franconeri & Mahyar, 2020)

Design choices can lead to powerful and intuitive insights, or 
leave important patterns obscured and misunderstood.
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Interpretation 2

Data Scientists

Data
Visualization 2

Information Consumer
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Visualization 1
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Interpretation 2

Data Scientists

Data
Visualization 2

Visualization 3 Interpretation 3

Interpretation 1
Visualization 1

Designing a visualization involves a series of decisions, and 
each design decision can afford different interpretations.
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Vehicle A’s component 2 is more 
durable than that of B, but the other 

two are less durable.

Xiong, Setlur, Bach, Koh, Franconeri, 2021
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Vehicle A’s component 2 is more 
durable than that of B, but the other 

two are less durable.

Vehicle A and B are about equally 
durable.
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Vehicle A’s component 2 is more 
durable than that of B, but the other 

two are less durable.

Vehicle A and B are about equally 
durable.
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Matlen, Gentner & Franconeri, 2020
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Design 1 Interpretation 1
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Visualization Model Viewer Takeaways
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Your viewers are probably 
confused …

Ajani, Lee, Xiong, Knaflic, Kemper, Franconeri, 2021
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Your viewers are probably 
confused …

“People mostly get their news 
from TV and Radio. Least likely 

from their friends.”

Ajani, Lee, Xiong, Knaflic, Kemper, Franconeri, 2021
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Your viewers are probably 
confused …

“People mostly get their news 
from TV and Radio. Least likely 

from their friends.”

“People are increasingly relying 
on the internet to get their 

news.”

Ajani, Lee, Xiong, Knaflic, Kemper, Franconeri, 2021
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Visualization Model Viewer Takeaways

30

Can you build a visualization to help viewers 
see that “people are increasingly relying on 

the internet to get their news” ?

31

Can you build a visualization to help viewers 
see that “people are increasingly relying on 

the internet to get their news” ?

How’s this?
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Compare the user rating of Looking for Alaska and Gone Girl
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Compare the user rating of Looking for Alaska and Gone Girl
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Challenge #1: What patterns people perceive 
in a visualization is hard to predict.

Challenge #2: Language can be ambiguous, 
making interpretation difficult.
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Challenge #1: What patterns people perceive 
in a visualization is hard to predict.

Challenge #2: Language can be ambiguous, 
making interpretation difficult.

Who will win in Year 4, Blue or Green?

Xiong, van Weelden, Waytz, & Franconeri, 2020
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Challenge #1: What patterns people perceive 
in a visualization is hard to predict.

Challenge #2: Language can be ambiguous, 
making interpretation difficult.

Who will win in Year 4, Blue or Green?

Greenhas	increasing	support	over	the	past	3	years	and	is	likely	to	win	this	year	(Year	4).

Greenhas	been	decreasing	the	gap	between	the	two	parties	over	the	past	3	years	and	
is	likely	to	win	this	year	(Year	4).

Green
wins!

Blue has	been	winning	every	year	and	is	likely	to	win	again	this	year	(Year	4).

Blue won	in	the	most	recent	year	(Year	3)	and	is	likely	to	win	again	this	year	(Year	4).

Blue
wins!

Xiong, van Weelden, Waytz, & Franconeri, 2020
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Challenge #1: What patterns people perceive 
in a visualization is hard to predict.

Challenge #2: Language can be ambiguous, 
making interpretation difficult.

What do you think the outcome of the election is in Year 4?
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Greenhas	increasing	support	over	the	past	3	years	and	is	likely	to	win	this	year	(Year	4).

Greenhas	been	decreasing	the	gap	between	the	two	parties	over	the	past	3	years	and	
is	likely	to	win	this	year	(Year	4).

Green
wins!

Blue has	been	winning	every	year	and	is	likely	to	win	again	this	year	(Year	4).

Blue won	in	the	most	recent	year	(Year	3)	and	is	likely	to	win	again	this	year	(Year	4).

Blue
wins!
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Xiong, van Weelden, Waytz, & Franconeri, 2020
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Challenge #1: What patterns people perceive 
in a visualization is hard to predict.

Challenge #2: Language can be ambiguous, 
making interpretation difficult.

What do you think the outcome of the election is in Year 4?
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Xiong, van Weelden, Waytz, & Franconeri, 2020
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Challenge #1: What patterns people perceive 
in a visualization is hard to predict.
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making interpretation difficult.
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Challenge #1: What patterns people perceive 
in a visualization is hard to predict.

Challenge #2: Language can be ambiguous, 
making interpretation difficult.
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Challenge #1: What patterns people perceive 
in a visualization is hard to predict.

Challenge #2: Language can be ambiguous, 
making interpretation difficult.
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Visual features matter, but people might draw 
different conclusions due to their motivation, 

experience or background knowledge.
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Challenge #1: What patterns people perceive 
in a visualization is hard to predict.

Challenge #2: Language can be ambiguous, 
making interpretation difficult.
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% 47 32.5 44 38 51 47

Visual features matter, but people might draw 
different conclusions due to their motivation, 

experience or background knowledge.

Believe in 
underdogs!

Green 
wins!

Increasing 
pattern 
salient!
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Challenge #1: What patterns people perceive 
in a visualization is hard to predict.

Challenge #2: Language can be ambiguous, 
making interpretation difficult.

Visual features matter, but people might draw 
different conclusions due to their motivation, 

experience or background knowledge.
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Let’s look at an example.
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Xiong, Stokes, Kim, Franconeri, 2022
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Xiong, Stokes, Kim, Franconeri, 2022
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To what extent does this happen in visual analysis?
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I believe that as the number of people whose names 
begin with “T” in a neighborhood increases, the 
number of trees in the same neighborhood increases.

1 Strongly Disagree 7 Strongly Agree

I believe that as the number of households with guns 
increases, the number of violent crimes increases

1 Strongly Disagree 7 Strongly Agree

How much do you agree with…

I believe that as the number of environmental 
regulations increases, air quality increases.

1 Strongly Disagree 7 Strongly Agree

I believe that as the total rainfall in the US 
increases, the number of US lawyers increases.
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I believe that as the number of people whose names 
begin with “T” in a neighborhood increases, the 
number of trees in the same neighborhood increases.
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I believe that as the number of people whose names 
begin with “T” in a neighborhood increases, the 
number of trees in the same neighborhood increases.
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Names with “T”

Trees

Xiong, Stokes, Kim, Franconeri, 2022
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Names with “T”

Trees

Those must be outliers.

Xiong, Stokes, Kim, Franconeri, 2022
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Names with “T”

Trees

Those must be outliers.

Let me pretend that they 
don’t exist.
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173 174

Paper A received a higher score from Reviewer 1 and 2.

> >

Reviewer 1 Reviewer 2

Scores

A B A B
Reviewer 1 Reviewer 2

Scores

A B A B

>

Challenge #2: Language can be ambiguous, 
making interpretation difficult.

Cindy
Data 

Visualization
Human Cognition 

& Perception

Green Likely Wins Tie Blue Likely Wins
0

5

10

15

Number of People

Green Likely Wins Tie Blue Likely Wins
0

5

10

15

Number of People

Year 1 Year 2 Year 3 Year 4
Party Blue Green Blue Green Blue Green Blue Green

% 47 32.5 44 38 51 47

Challenge #1: What patterns people perceive 
in a visualization is hard to predict.

Visual features matter, but people might draw 
different conclusions due to their motivation, 

experience or background knowledge.

How people perceive data can also be 
subjected perceptual + cognitive biases.

Let’s say we generated enough insight to predict what 
people will verbally conclude from a visualization. 

When we implement a Natural Language Interface that 
allows the users to input natural language queries, 

those inputs can still be ambiguous and underspecified. 

175

Visualization Model Viewer Takeaways
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me
Data 

Visualization
Human Cognition 

& Perception

178

me
Data 

Visualization
Human Cognition 

& Perception

Society?

179 180

“identify opportunities for cognitive biases and provide 
input to writing practice standards and guidelines to help 

scientists and practitioners make better decisions”

181

Trust

182

Trust and Data Visualization in Criminal Legal Reform

183

The US criminal legal system is very complex.

184
Bureau of Justice Statistics 2022

185
Francis and Wright-Rigueur 2021; Taylor 2016

Growing demands for change.

District Attorney’s (DA) offices and 
prosecutors play a major role.

Progressive Prosecution through data 
transparency and dissemination.

186
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Progressive Prosecution through data 
transparency and dissemination.

Online data dashboards.

187 188 189

190 191

How does sharing criminal legal data via dashboards 
impact public understanding + trust in the legal system?

192

Approval ratings 
for the DA

Understood the 
information

Reported trust in 
the data

How does sharing criminal legal data via dashboards 
impact public understanding + trust in the legal system?
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Approval ratings 
for the DA

Understood the 
information

Reported trust in 
the data

How does sharing criminal legal data via dashboards 
impact public understanding + trust in the legal system?

Design of visualization dashboards 
seem to matter!
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Approval ratings 
for the DA

Understood the 
information

Reported trust in 
the data

How does sharing criminal legal data via dashboards 
impact public understanding + trust in the legal system?

Design of visualization dashboards 
seem to matter!

*this is correlational data
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cindy.xiong@cs.umass.edu
@theCindyXiong

196

Visualization design can 
change how people 
understand data and make 
decisions.

cindy.xiong@cs.umass.edu
@theCindyXiong

197

Visualization design can 
change how people 
understand data and make 
decisions.

To Solve #1: Creating 
descriptive models of how 
people actually understand 
visualizations

cindy.xiong@cs.umass.edu
@theCindyXiong
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Visualization design can 
change how people 
understand data and make 
decisions.

To Solve #1: Creating 
descriptive models of how 
people actually understand 
visualizations

To Solve #2: Effectively map 
natural language 
descriptions of user intents 
to patterns they see in data.

cindy.xiong@cs.umass.edu
@theCindyXiong

199

You have a lot of power as a visualization designer.
Design your visualizations thoughtfully.

Visualization design can 
change how people 
understand data and make 
decisions.

To Solve #1: Creating 
descriptive models of how 
people actually understand 
visualizations

To Solve #2: Effectively map 
natural language 
descriptions of user intents 
to patterns they see in data.

cindy.xiong@cs.umass.edu
@theCindyXiong

200

Many thanks to my students…

and collaborators…

cindy.xiong@cs.umass.edu
@theCindyXiong
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205 206

Correlation 
Estimation

0.4

0.3

0.6

0.5

Training to 
Read 

Correlation time
Distractor

Task
XY Label Real-World Variable Label

Training to 
Read 

Correlation time
Distractor

Task
XY Label XY Label (Again!)

Correlation 
Estimation

0.4

0.3

0.6

0.5

*

no meaningful 
differences

Elicited 
Belief

Elicited 
Belief

Real-world variable labels make people underestimate the correlation on average

207

Correlation 
Estimation

0.4

0.3

0.6

0.5

Training to 
Read 

Correlation time
Distractor

Task
XY Label Real-World Variable Label

Training to 
Read 

Correlation time
Distractor

Task
XY Label XY Label (Again!)

*

Elicited 
Belief

Elicited 
Belief

no meaningful 
differences

208 209 210

People who use the Safety GPS system tend to get in fewer accidents

211

People who use the Safety GPS system tend to get in fewer accidents

If people were to use the Safety GPS system, 
they would get in fewer accidents.

212

People who use the Safety GPS system tend to get in fewer accidents

If people were to use the Safety GPS system, 
they would get in fewer accidents.

If people were to use the Safety GPS system, 
they would get in fewer accidents.

People who use the Safety GPS system tend to get in fewer accidents

213
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People who use the Safety GPS system tend to get in fewer accidents

If people were to use the Safety GPS system, 
they would get in fewer accidents.

If people were to use the Safety GPS system, 
they would get in fewer accidents.

People who use the Safety GPS system tend to get in fewer accidents

89.0

87.2
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People who use the Safety GPS system tend to get in fewer accidents

If people were to use the Safety GPS system, 
they would get in fewer accidents.

If people were to use the Safety GPS system, 
they would get in fewer accidents.

People who use the Safety GPS system tend to get in fewer accidents

89.0

87.2

76.6

68.4

215

If people were to use the Safety GPS system, 
they would get in fewer accidents.

People who use the Safety GPS system tend to get in fewer accidents

If people were to use the Safety GPS system, 
they would get in fewer accidents.

People who use the Safety GPS system tend to get in fewer accidents

76.6

68.4

89.0

87.2
*

*

216

Encoding Marks

# Bins 
(Aggregation) 2 binscontinuous

217 218

Income Brackets (in $1000)

# Meetings per Month

219

220 221

2 bins 8 bins 16 bins
Most Aggregation Least Aggregation

bar

222



4/25/23

25

2 bins 8 bins 16 bins
Most Aggregation Least Aggregation

line

bar

223

2 bins

8 bins

16 bins

Most Aggregation

Least Aggregation
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Correlation

Causation

Neither Somewhat AgreeSomewhat DisagreeDisagree Agree
1007550250

2 bins

8 bins

16 bins

Most Aggregation

Least Aggregation

225

69.8

Correlation

Causation

92.3

82.9

63.7

84.8

92.3

More aggregation, more causal.

Neither Somewhat AgreeSomewhat DisagreeDisagree Agree
1007550250

2 bins

8 bins

16 bins

Most Aggregation

Least Aggregation
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2 bins 8 bins 16 bins
Most Aggregation Least Aggregation

line

bar

more causal

227

2 bins 8 bins 16 bins
Most Aggregation Least Aggregation

line

bar

more causal
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bar

line

Rectangular bar encoding marks, least causal.

(rec tan g u lar sh ap es)

(lin e  sh ap es)
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Correlation

Causation

84.7

82.1

77.8

bar

line

Rectangular bar encoding marks, less causal.

74.3

Neither Somewhat AgreeSomewhat DisagreeDisagree Agree
1007550250

(rec tan g u la r sh ap es)

(lin e  sh ap es)
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2 bins 8 bins 16 bins
Most Aggregation Least Aggregation

line

bar

more causal
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2 bins 8 bins 16 bins
Most Aggregation Least Aggregation

line

bar

more causal

Not super causal

232
Xiong, Shapiro, Hullman, Franconeri 2020

Bar charts appear more 
causal because they group 
data into two bins. 

233
Xiong, Shapiro, Hullman, Franconeri 2020

Bar charts appear more 
causal because they group 
data into two bins. 

Consider dis-aggregating 
data to reduce misguided 
causal conclusions.

GPS Usage

234
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Categorical	Prototype	Effects

Actual	Stimulus	Value										Category	Prototype

Bias	Toward	the	Prototype
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236

Categorical	Prototype	Effects

Actual	Stimulus	Value

237

237

Categorical	Prototype	Effects

Category	Prototype
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238

Categorical	Prototype	Effects

239

239

Categorical	Prototype	Effects

Overestimation																												Underestimation

Bias	Toward	the	Prototype

240

240



4/25/23

27

241

Does	the	aspect	ratio of	a	mark bias	position	estimates?

Wide	Aspect	Ratio													Square	Aspect	Ratio									Tall	Aspect	Ratio

242

242

Trial	Display

243

243

Visual	Noise	Mask

244

244

Response

245

245

Response

246

246

Wide	Aspect	Ratio													Square	Aspect	Ratio									Tall	Aspect	Ratio

Overestimation

Underestimation

Aspect	ratio of	a	mark	can	bias	position	estimates

247

247

Absolute	Error	(pixels)

Wide	Ratio Tall	RatioSquare	Ratio

Signed	Error	(pixels)

Wide	Ratio Tall	RatioSquare	Ratio
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250 251 252

253

Winner Verbal Description Type

adjacent Component 2 is the most durable 
component in vehicle A.

Superlatives
e.g. max = A

adjacent The total durability of components in 
vehicle A is higher than that in vehicle 
B

A-B 
comparison
e.g., A > B

overlaid 
stacked

Overall component 2s are more 
durable than components 3s. 

1-2-3 
comparison
e.g., 1 < 3

vertical In vehicle B, component 1 is more 
durable than component 2. 

Pair-
comparison
(AB)
e.g., B1 > B2

overlaid Vehicle A’s component 3 is less 
durable than vehicle B’s component 3

Pair-
comparison
(1-2-3)
e.g., A3 < B3

254

254 255

Experimental Stimuli: 3 designs, 6 topics

Cluttered

Decluttere
d

Focused

Car HolidayNews Plants Prison Tires

256

Experimental Procedure

Stimuli Redraw 
Graphs

Recall 
Conclusion

Quantitativ
e Ratings

Open-
Ended 

Response

10 seconds 1-2 minutes

Memory Assessments Subjective Ratings

Visually appealing?

1. Very hideous 
…
5. Very beautiful

Stimuli

Internet percent is 

increasing...
...

Explain ratingConclusions?Redraw the graphStudy this!

There’s too many 

colors...
...

257

Redrawn Graphs: Focused designs led to the 
most relevant information redrawn

Focused
Decluttere

dCluttered

Average % Relevant

Stimuli Redraw Graphs Recall Conclusion Quant Ratings Qual ReasonsStimuli

258
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Recalled Conclusions: Focused designs led to 
more relevant conclusions

There have been changes 
over the interval of 2000 to 
2010 with Internet having 
the biggest gain in 
percentage.

Most people get their news 
from the television and get 
the least news from their 
friends.

Trends Internet Television Friends

Recalled 
conclusions

Coded 
categories

Focused

Decluttered
Cluttered

% of participants
37%

Stimuli Redraw Graphs Recall Conclusion Quant Ratings Qual ReasonsStimuli

22%
20%

259

Quantitative Ratings: Focused designs are rated as more 
aesthetically appealing, clear, and professional.

Stimuli Redraw Graphs Recall Conclusion Quant Ratings Qual ReasonsStimuli

260

Qualitative Ratings

“The middle graph was by far the most appealing because it clearly conveyed the 
information, ignoring extraneous details and highlighting the key conclusion. The 
left graph suffered from overcrowding, and the right graph's lack of color made it 
difficult to differentiate overlapping lines.” [P15]

Stimuli Redraw Graphs Recall Conclusion Quant Ratings Qual ReasonsStimuli
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262

1 only 1 in 3

1 only 1 in 6

3 only 3 in 6

Application 1 Application 2 ComplexSimple
Which application will you use?

263

Application 1 Application 2 ComplexSimple

111

Accuracy Clarity Disclosure Thoroughness Trust

3.39

5

2

3

4
3.40

simple complex

3.65

3.04

** *

2.88

3.68

**

2.83

3.76

3.36 3.39

simple complex simple complex simple complex simple complex

120

1
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Trust

1

5

Clarity
ThoroughnessTransparency

Accuracy

Disclosure
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Trust

1

5

Clarity
Thoroughness

Accuracy
Disclosure

Transparency
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