
3/27/23

1

Upcoming

• Literature review assignment posted,
due April 11

• Project idea slides posted on Moodle
for teams! (2-4 members)

• Homework 3 will be posted shortly,
due April 18

1

Reproducing Field Failures

2

Lab Failures

When you are developing a piece of software,
and you run it, use it, and it fails, what do you
do to debug it?

3

Field Failures

After you have shipped a piece of software, and
a user runs it, uses it, and it fails, what can the
developer do to debug it?

4

Let’s try something

Describe for me a time your software failed.

Now describe it for me as your grandpa would.

5

Problems with Field Failures

• Users skip details
• Users describe what went wrong, not what

they did
• Users aren’t programmers, so they don’t know

what’s important
• Even if the users are programmers, they didn’t

build system è don’t know what’s important

6

3/27/23

2

What’s worse than a user who doesn’t
know what’s important to report?

A user who “figured out” the system,
understand exactly what the system must be
doing, and is telling you his or her inferences,
not observable effects.

7

How do we deal with field failures?

• We could record everything that happens at
runtime, ship it back to developers.

What’s wrong with this?

8

How do we deal with field failures?

• For privacy, only send stuff when something
goes wrong.

What’s wrong with this?

9

How do we deal with field failures?

• Anonymize inputs?
• Record sparingly?
• Deduce stuff locally?
• Find alternate inputs that lead to the same

bug?

10

Let’s back up

• Why worry about field failures?
– Testing is great, but you can’t catch everything
– Software ships with bugs all the time

• Why are field failures hard to debug?
– You don’t know the circumstances
– The environment (other installations, etc.) may

play a role
– Can’t rely on the user

11

Goals

• Capture the steps necessary to replicate a bug
• Generate a test case automatically
• No effort from user

12

3/27/23

3

There are some existing techniques
RecrashJ

• Monitor a running JVM, record inputs,
method invocations

• If an exception is uncaught, write down the
test case that generated it

• Privacy issues, 20X overhead (sometimes),
deep call stacks cause problems

13

There are some existing techniques
Scarpe

• Isolate subsystems and monitor what flows in
and what flows out

• Replay exceptions, but only within a
subsystem

• Faster but still 20X overhead,
hasn’t been evaluated very well

14

There are some existing techniques
BugRedux

• Use symbolic execution to guide test generation
• Observe an execution, record constraints that get

you down a path.
• When an exception happens, figure out a

different input that would follow the same path

Better for privacy, but constraint logging has to be
detailed (and slow) or input reconstruction won’t
work + symbolic execution scales poorly

15

Chronicler

Key idea: deterministic parts of the program are
easy to recreate. It’s the nondeterminism that
causes many bugs.
Nondeterminism: output dependence on factors
other than initial program state and input

What are some nondeterminism examples?

16

So what kinds of things do we need to watch?

• User input (we’ll call that nondeterminism)
– file.read()
– buf.readLine()
– etc.

• Native calls
– System.currentTimeMillis()
– Random()
– etc.

17

How does Chronicler capture nondeterminism?

Wrap the VM and log at a higher level

18

3/27/23

4

How to use Chronicler

19

Some implementation details

• Scan the API
–Mark all system methods as nondeterministic
–Mark anything that calls those as nondeterministic
– And propagate the nondeterministic upward

• Record and Replay
– Instrument bytecode to record results of

nondeterministic method calls
–When replaying, simply insert recorded values
– Can even work for GUI events (e.g., swing)

20

What can this log?

• Nondeterministic event dispatching, (some)
thread switches, GUI events, randomness

• If log gets too big, flush it to a file on disk

When do you write out a test to deliver to the
developer?

21

Implementation strategy

22

Performance (Dacapo benchmark)

23

What are some Chronicler weaknesses?

• privacy is not addressed
• some threads and processes are not recorded
• Java can do some crazy things, like mutate its

own method’s parameters and use reflection
to redefine a method at runtime

24

3/27/23

5

Let’s identify the 3 keys

What is the scientific question?

What’s the key new idea that allows answering it?

How do you measure the success of the answer?

25

Let’s identify the 3 keys

What is the scientific question?
• How to replay field bugs in the lab
What’s the key new idea that allows answering it?

How do you measure the success of the answer?

26

Let’s identify the 3 keys

What is the scientific question?
• How to replay field bugs in the lab
What’s the key new idea that allows answering it?
• Recoding all nondeterminism
How do you measure the success of the answer?

27

Let’s identify the 3 keys

What is the scientific question?
• How to replay field bugs in the lab
What’s the key new idea that allows answering it?
• Recoding all nondeterminism
How do you measure the success of the answer?
• Measure overhead
• Use it to find real bugs

28

