
3/21/23

1

Automatic Test Generation

1

Idea Proposal Presentations

• This Thursday (March 23) in class
• I’ll have slides on my laptop, ready to go
• The goal is to narrow down the projects
– Select what you want to do!

2

Questions?

3

Key things to identify…

• When you read a paper
• When you listen to a lecture
• When you present a paper
• When you think of research ideas:

What is the scientific question?
What’s the key new idea that allows answering it?
How do you measure the success of the answer?

5

Automated Test Generation Idea:

• Automatically generate tests for software

• Why?
– Find bugs more quickly
– Conserve resources
– No need to write tests
– If software changes, no need to maintain tests
– No need for testers?

6

The Problem

• Automated testing is hard to do

• Probably impossible for whole systems

• Certainly impossible without specifications

7

3/21/23

2

Pre- & Post-Conditions

• A pre-condition is a predicate
– assumed to hold before a function executes

• A post-condition is a predicate
– known to hold after a function executes
– whenever the pre-condition also holds

8

Example

Pre-condition: l.contains(x)

List remove(LinkedList l, Element x) {
if (x == l.head())

return l.tail();

else
return

new LinkedList(l.head(),remove(l.tail(), x));
}

Post-condition: !(l.contains(x))
Does this post-condition hold?

How can the pre-condition change for the post condition to hold?

9

Are pre- and post-conditions a good idea?

• Most useful if they are executable
– written in the programming language itself
– a special case of assertions

• Recommended by software engineers
– and everyone who studies software engineering

• Can reduce ambiguity in specification

• May be somewhat imprecise and incomplete
– full pre- and post-conditions may be more complex than the code!
– still useful even if they do not cover every situation

10

Using Pre- and Post-Conditions

• Pre-/Post-Conditions are specifications

• To perform a test:
– Generate an input (any input)
– Check that the test input satisfies the pre-

condition
– Run test
– Check that the test result satisfies the post-

condition

Helps run tests, might even help write them!

11

How can we generate tests?

• Randomized testing

• Mutation Testing

• Korat

12

Random Testing

• Feed random inputs to a program

• Observe whether it behaves “correctly”
– execution satisfies pre- and post-conditions
– or just doesn’t crash

(A simple pre/post condition)

13

3/21/23

3

Random Testing: Good and Bad News

• Randomization is highly effective
– easy to implement
– provably good coverage for enough tests

• But
– to say anything rigorous, we must be able to

characterize the distribution of inputs
– easy for string utilities
– harder for systems with more arcane input

for example, parsers for context-free grammars

14

What about staged components?

input 1

input 2

input 3

output 1

output 2

output 3

If we only control the input to the whole system (input 1),
can we test the circle well?

15

Mutation Analysis

• How do we know our test suite is any good?

• Idea: Test variations on the program
– for example, replace x > 0 with x < 0
– or replace i by i+1 or i-1

• If the test suite is good, it should report failed
tests in the variants

16

Mutation Analysis Summary

• Mutate each statement in the program in
finitely many different ways

• Each modification is one mutant
• Check if a set of mutants is adequate
• Find a set of test cases that distinguishes the

program from the mutants

17

What Justifies Mutation Testing?

• Competent programmer assumption
– the program is close to correct

• Mutations are representative of common errors
– off by one errors, wrong comparison errors

• It formalizes test writing
– we write tests for corner cases and off-by-one errors.

There are an infinite number of them.
This way, we formalize the process.

• This is a start
– testing does not stop here

18

Back to automated testing

• Generate mutants of program P

• Generate tests
(somehow)

• For each test t
for each mutant M

if M(t) ≠ P(t) mark M as killed

• If the tests kill all mutants, the tests are adequate

19

3/21/23

4

What if a mutant is equivalent to the original?

• No test will kill it

• In practice, this is a real problem
– hard to solve

• We could try to prove program equivalence
– but automating this is very hard
– undecidable problem

20

Generating tests
This is the hard part!

• Use weakest-preconditions
– work backwards from statement to inputs

• Take short paths through loops
– try it 0 times, 1 time, 2 times

• Generate symbolic constraints on inputs that must be
satisfied

• Solve for inputs

21

Korat: A way to generate tests

Use pre- and post-conditions to
generate tests automatically

22

Problem Korat tackles:

• There are infinitely many tests
– which finite subset should we pick?

• And even finite subsets can be too big
– we need a subset which yields good coverage
– without a lot of redundancy
• many tests will just test the same thing
• we need a way to select a diverse test suit

23

Small test case hypothesis:

If a list function works on lists of length 0, 1, 2,
and 3, it probably works on all lists.

If there exists a test case that
causes the program to fail,
there exists a small test case
that causes the program to fail.

24

Korat’s insight

• Use the small test hypothesis

• We can often do a good job by testing all
inputs up to a certain, small size

25

3/21/23

5

How do we generate test inputs?

• Use the types!

• The class declaration
shows what values (or
null) can fill each field

• Simply enumerate all
possible shapes with a
fixed set of Nodes.

class BinaryTree{
Node root;
class Node {
Node left;
Node right;

}
}

26

A simple algorithm: put it all together

• User selects maximum input size k
• Generate all possible inputs up to size k
• Discard inputs where pre-condition is false
• Run the program on remaining inputs
• Check the results using the post-condition

27

Example: Binary Trees

• How many binary trees are there of size <= 3?

• 3 nodes
– 2 slots per node (left and right)
– 4 possible values (one of the nodes or null) for
• each slot
• the root

4 * (4 * 4)^3 = 2^14 = 16,384 possible trees

28

That’s a lot of trees!

• The number of trees explodes rapidly
> 1,000,000 trees of size <= 4
> 16,000,000 trees of size <= 5

• Limits us to testing only very small input sizes

• Can we do better?

29

Actually, I lied

• 16,384 trees is a gross overestimate!

• Many of the shapes are not trees:

• Many trees are isomorphic

n1 n2 n3 n2 n3 n1

30

How many trees really?

• There are only 9 distinct binary trees on 3 or
fewer nodes

31

3/21/23

6

Use our constraints to help us

• We want to avoid generating trees that don’t
satisfy the pre-condition in the first place.

• That means we must use the pre-condition to
guide the generation of tests

• And use the constraints on distinctness of
inputs

32

Observe the pre-condition

• Instrument the pre-condition
– add code to observe it at runtime
– in particular, record fields of the input the

precondition accesses

• Observation:
– if the pre-condition does not access a field, then

the result of the pre-condition did not depend on
that field.

33

Binary tree example

• Pre-condition checks
– if the root is null

return false
– all nodes must be unique
• no cycles
• every node has one parent
(except the root, which has 0)

34

Example:

• Consider the following “tree”

• The pre-condition accesses only the root
– since the root is null, every possible shape for the

other nodes would yield the same result

• This single input eliminates 25% of the tests

35

Karat enumerates the tests

• Start with the smallest
• Next test generated by
– expanding a null pointer field
– backtracking if all possibilities for a field are

exhausted

• Never enumerate parts of input not examined
by the precondition

36

Error specifications

We can have two specifications:
• Normal behavior specification

• Error behavior specification
under what circumstances exceptions are thrown

38

3/21/23

7

Korat Results

• Eliminating redundant tests is very effective
– there are only 429 binary trees of size 7
– infeasible to test on trees this large without the

techniques for eliminating redundant tests

• Time to generate and run all tests usually
seconds, sometimes minutes

39

Strengths

• Good for
– linked data structures
– small, easily specified procedures and methods
– unit testing

40

Weaknesses (conditions)

Only as good as the pre- and post-conditions
Pre-condition: l.contains(x)

List remove(LinkedList l, Element x) {
if (x == l.head())

return l.tail();

else
return

new LinkedList(l.head(),remove(l.tail(), x));
}

Post-condition: !(l.contains(x)

41

Weaknesses (conditions)

Only as good as the pre- and post-conditions
Pre-condition: !(l.isEmpty())

List remove(LinkedList l, Element x) {
if (x == l.head())

return l.tail();

else
return

new LinkedList(l.head(),remove(l.tail(), x));
}

Post-condition: l.isList()

42

Weaknesses (large data structures)

• Strong when we can enumerate all
possibilities
– four nodes, two edges per node

• Weaker when enumeration is weak
– integers
– floating point numbers
– strings

43

Weakness (nondeterminism)

Not as good for nondeterministic methods

For example, what about a condition that says
“Every packet sent is eventually acknowledged
by the receiver”?

44

3/21/23

8

Test generation

• Automatic test generation is a good idea
• Typed languages are a plus for generation
– C++, Java, UML (C, Lisp do not provide needed

types)
• Works well for unit tests
• Being adopted in industry
• Promising future

45

