More Course Overview:
Models, Tests, Bugs, and Symbols

But first

Homework 1 and 2

Yi and Jingbo’s lectures

What’s coming up

Idea proposal assighment

Overview of the final topics in this class

Homework 1

* Posted on class website

* Due Tuesday March 2, 9 AM on gradescope

— Everyone in the class should have gotten a
notification from gradescope about being added
to the class. If you didn’t get it, let me know!

Homework 2

A little different.
In-person, 2.5-hour session.
Sign up for a slot soon.

Slots will take place between
March 6 and March 28

More info soon!

Yi Ding

A Holistic View on Machine Learning for

Systems

‘Add to Calendar

o

Thursday, 02/16/2023
12:00pm to 1:00pm

Seminar
Speaker: i Ding

Title: A Holistic View on Machine Learning for
Systems

Abstract: Improving computer system
performance and resource efficiency are long:
standing goals. Recent approaches that use
machine learning methods to achieve these

goals rely on a predictor that predicts the

Q iatency,throughput, o energy consumption of
3 5ub computation {0 for example, id
Computer Science Building, Paroware gement or scheduling.

Room 150/151

Inthis talk, | will present a holistic view on machine learning for systems. | will

d blems do not always align, and thi hat

behavior. Instead, machine
learning for systems pipeline. The key insight in achieving this vision is making
proper tradeoffs between different stages within the pipeline. Based on this
vision, 1 will introd le of

systems'goals r and

O Minimize [@mp St

2/23/23

Latency Predictions for a Stragaler In Google Trace

Tuesday, 2/21, noon in CS151

Trustworthy Software Enabled by
Program Analysis and Synthesis

Avstract:

a5 software applatons i sutonomous. ding, healthcae, and. fnanco. Unlke. funclonal
coroctness, which has boun ho subject of oxionsve resoarc. tochriques Bal can formaly

emergng
Bhysica charactoristcs of the computng de e anaysis aigoritm
and then s soundoss, our techrique. synthasizes the agorthm automacaly whil

used 0 make socialy sensite dacisons. Finaly, | il 3bout my research in th futrs, which
Wil ocus o providing formal guaraices of secury, robusiness, and laimess (o oher omergng
applcatons.

Jingbo Wang

D) @ f(7) = f(xDrdr) =f(x)

Coming Up: 3 guest lectures and a day off

Tuesday, February 28: guest lecture
Thursday, March 2: Use class slot to discuss
project ideas and form teams. No lecture.
Tuesday, March 7: guest lecture

Thursday, March 9: guest lecture

... N0 more guest lectures after!

Tuesday, 2/28, noon CS 151

From Barriers to Bridges:
Designing Processes and Tools for
Inclusive Open-Source Communities.

Diversity and Inclusion in Open-Source Software (OSS) has a significant impact on the 0SS
ecosystem and society. The low state of diversity and inclusion in OSS (e.g., women
participation ranging from 1.5% to 11%) has unfortunate effects on OSS projects, individual
contributors, and society. In this talk, | will present my findings from three research
projects: (1) a conceptual model of the challenges faced by OSS contributors in a mature
055 organization, (2) a systematic inclusivity debugging process “Why/ Where/ Fix" based
on this conceptual model to help project leaders find and fix inclusivity bugs and (3) the
automation of a vertical slice of the inclusivity debugging process. Our results showed that
the “Why/ Where/ Fix” inclusivity debugging process reduced the number of inclusivity bugs
by 90%, produced positive effects across diverse cognitive styles, and made the project
more equitable. These results provide encouraging evidence that the Why/Where/Fix
process may provide an effective way to increase the equity and inclusion of information-
rich environments like OSS projects.

10

Idea Proposal Assignment

CS 621
Idea Proposal Assignment

Due: Monday, March 20, 2023, 9:00 AM EDT

Research idea write-up and presentation

‘This assignment can be done individually or in groups of 2 students. Your choice.
‘The assignment consists of:
1. Coming up with a creative new research idea.

2. Anup to I-page write-up describing your research idea.
3A i class on Thursday, March 23, 2023.

Overview
Your primary job i this assignment is twofold:

1

¥ 1 and hoy " P i
how ateam of 10 weeks
‘One of the purposes of identifyi idea s to find i i
i i ially as While this

initial idea 2 y from the final . the initial idea will serve an
important ole in focusing you on a particular area of software engincering.

11

12

2/23/23

On to semester overview

13

Areas we will cover in this course

* Model checking

* Mutation testing

* Bug localization

* Symbolic execution

areas for your projects

Static analysis

* Using the source code to improve a program
* Manual code reviews and inspections
* Automatic inference of properties

Improve the software quality

Dynamic analysis

* Using the program executions to improve the
program

* Manual with debuggers, etc.
* Automatic inference over logged behavior
* Does not need source code or even binaries

Improve the software quality

14

15

As we go over each topic...

* Think whether this sounds interesting

* Think about what kind of a tool you could
make that uses this

* You are all programmers:
think about things you’ve done while

programming that were hard, and how these
kinds of analysis might make it easier

16

Model checking

* | actually meant:
— Model checking
— Model inference
— Model simulation

17

18

2/23/23

Model inference

problem:

| have a system (or a log of executions).

| want a small, descriptive model of what the
system does.

Model can be used to the system,

, detect

Logs are hard to read

1|74.15.155.103 [06/Jan/2011:07:24:13] "GET HTTP/1.1 /check-out.php”
2[13.15.232.201 [06/Jan/2011:07:24:19] "GET HTTP/1.1 /check-out.php"
3[13.15.232.201 [06/Jan/2011:07:25:33] "GET HTTP/1.1 /invalid-coupon.php"
4(74.15.155.103 [06/Jan/2011:07:27:05]) "GET HTTP/1.1 ivalid-coupon.php"
5|74.15.155.199 [06/Jan/2011:07:28:43] "GET HTTP/1.1 /check-out.php”
Log: 6|74.15.155.103 [06/Jan/2011:07:28:14] "GET HTTP/1.1 /reduce-price.php"
7|74.15.155.199 | "GET HTTP/1.1 /get-credit-card.php”
8/13.15.232.201 [06/Jan/2011:07:30:22] "GET HTTP/1.1 /reduce-price.php"
9(74.15.155.103 [06/Jan/2011:07:30:55) "GET HTTP/1.1 /check-out.php"
10[13.15.232.201 [06/Jan/2011:07:31:17] "GET HTTP/1.1 /check-out.php”
11[13.15.232.201 [06/Jan/2011:07:31:20] "GET HTTP/1.1 /get-credit-card.php"
12(74.15.155.103 [06/Jan/2011:07:31:44] "GET HTTP/1.1 /get-credit-card.php"

Model inference

« First, parse out the executions

check-out = valid-coupon = check-out = reduce-price = get-credit-card
check-out = invalid-coupon = check-out = reduce-price = get-credit-card

check-out = get-credit-card

« ...hard to understand

19
Infer the model
* Magic!
Generated Model:
e 01—y [> Careocan)
NG T =
22

20 21
So what’s the magic? K-Tails
* Lots of ways to do it: * let’s use k=1 as an example
— Try merging the executions into a small model * merge two states if their name is the same
— Mi rties then build del f th . .
pr::eFr’triZEzlc::Z en bulld a modettrom the ¢ (k=2 means merge two states if their name,
and all the states to which they have
) .) . transitions are “the same”)
— Use static or dynamic analysis to determine what
events can legally take place after others * and so on for larger k
23 24

2/23/23

Model checking

* Given a property and a model, check if the
model satisfies that property

Generated Model:

118 = vmm
oou on
reduce
check-out D ,,Ce
25 vaid
113 —> >
coupon
3 § e
13

* Reduce-price always followed by get-credit-card?

25

Mutation

* Take a program

* Create a mutant with one or a few small
changes:
—changea+toa-—
— add/subtract 1 somewhere
—increment/decrement a loop counter
—delete aline
—insert a line from one place in another

* Repeat to create many mutants

Model simulation

* Given a model, you can generate new
executions that have not been observed before!

Generated Model:

18 - valld 4.
cou on

reduce ©
check-out price
25 o J
T T i

coupon
3 7
¥

12
113

Mutation testing

* Evaluate the tests
—not the program!
—not a type of testing!
— does not improve a program directly; improves tests!

26

27

Why create mutants?

* Suppose you have a program and a test suite
e All the tests pass

* What does that mean about your program?

1. Program is correct

2. Tests only test parts of the program that are
correct and the rest, who knows

3. Tests and program may be written by the same
person, using the same implicit assumptions

28

Let’s write some tests

// returns the factorial of the input n
int factorial (int n) {
if (n <= 0)
return 1;
if (n == 1)
return 1;
else
return n * factorial(n-1);

29

30

2/23/23

* Run the tests on the main program

* Run the tests on the mutants
— what if the tests pass?

OK, so how do we test the tests?

31

Consider this mutant

// returns the factorial of the input n
int factorial (int n) {

if (n<=2)

return 1;

if (n==1)

return 1;

else

return n * factorial(n-1);

}

Mutation testing evaluates the tests

If a test “kills a mutant” then that’s a good test

¢ If some mutants aren’t killed, the test suite is
lacking

* Solution: write more tests!

* s it OK to write more tests until all mutants
are killed and then stop?

Consider this mutant

// returns the factorial of the input n
int factorial (int n) {
if (n <=0)
return 1;
if(n==1)
return 1;
else
return n * factorial(n+1);

}

32

33

Consider this mutant

// returns the factorial of the input n
int factorial (int n) {

if (n==0)

return 1;

if (n==1)

return 1;

else

return n * factorial(n-1);

}

34

Bug localization

contain a bug

* Narrowing down the most likely place to

35

36

2/23/23

Failure-inducing input

* This HTML input makes Mozilla crash
(segmentation fault).

* Which portion is the failure-inducing one?

Delta Debugging: Try half the input

* Will the program still crash?

Minimizing via binary search

| <SELECT_NAME="priority" MULTIPLE_SIZE=T> X
2 <s >riority" MULTIPLE_SIZE=T> v
"priority” iU v
"priority” MULTIPLE, SIZE=T> v/

« 57 test to simplify the

896 line HTML input to
the “<SELECT>" tag that
causes the crash

* Each character is
relevant (as shown from
line 20 to 26)

* Only removes deltas
from the failing test

25 <SELEC
26 <SELECT

37

Impact analysis

Run the code on passing test cases
Run the code on failing test cases
Keep track of which lines execute

Lines that executes only on passing test cases
are OK. So are lines that execute on both.

Lines that only execute on failing test cases
are suspicious.

40

38

39

What else can you do to localize a bug?

Regressions: suppose a test used to pass and
now fails.

— consider the latest changes

— do delta debugging on the changes

Can we automatically fix bugs?

Take a program that passes most test cases
and fails one or two, and tweak it
— write (tweak) a very similar program
(with minimal change) that passes all the tests

[see Weimer et al., Al Einding Patches Using Genetic Programming, ICSE 2009]

41

42

2/23/23

http://www.cs.virginia.edu/~weimer/p/weimer-icse2009-genprog.pdf

Symbolic execution
* “Think” about the code, rather than execute

it, but execute it anyway. But don’t use
numbers. Just think about the numbers.

* Clear, right?

43

void test(int x, int y) {
if (x > 0) {

if (y == hash(x))
S0, e

else

if (x>3 &&y>10)
53 I
else
54—
}
}

Why symbolic execution?

A different way to reasoning about the code

Can determine what parts are reachable and
under what conditions

Can be compared to developers’ expectations
about those conditions

Can be used to document

— For example, “this method can only be called if x>0”
or “this method throws an exception is pts == null”

44

45

2/23/23

