CS 621
Course Overview:
Static and Dynamic Analyses

Last time

What did we talk about?

ility / COIN Dynami i

——OUTSIDE SUPPORT
TO INSURGENT
~~FACTION:

AN
TACTICAL

COALITION
CAPACITY
RITI

POPULATION
CONDITIONS
& BELIEFS

POPULAR
SUPPORT

WORKING DRAFT - V3

Why is it important to study |
_software engineering? |

Just like cars

* US automobile industry used to be very complacent about quality
— lost a significant amount of market share

— complacency about software quality could lead to the same result

¢ There are many recalls for automobiles
— some fixed for free

¢ There are many defects in software
— some fixed for free
— some fixed in the the next release
« customer paying for the upgrade

Why is analysis important?

2/8/23

Trends in Software Expansion (semstein, 1997)
Projection
1000 T B
: in)
47
142 =
Expansion ;g0 -
Factor 75—
47
The ratio 30 —F
of machine
lines of /g/
codetoa 10 T
source line :
of code +
Order of Magnitude Increase Every Twenty Years E
T T T T T T
. N) I I B
1960 1965 1970 1975 1980 1985 1990 1995 2000
Machine Macro HighLevel Database | Ondine Prototyping | Subsccond | Object LargeScale
Instructions Assembler Language Manager Time Oriented
Sharing | Programming
Regression 6L Small
Testing Scale
Reuse

Accidents
¢ USS Yorktown

http://www.slothmud.org/~hayward/mic_humor/nt_navy.html

— Suffered a systems failure when bad data was fed into its computers
during maneuvers off the coast of Cape Charles,VA

— Ship towed into the Naval base at Norfolk,VA, because a database
overflow caused its propulsion system to fail

— Took two days of pier-side maintenance to fix the problem

* Ariane Five

http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html

— Reused a module developed for Ariane 4, which assumed that the
horizontal velocity component would not overflow a 16-bit variable

— Not true for Ariane 5, leading to self-destruction roughly 40 seconds
after launch

Today’s (and not only today’s) plan

* Static analysis
* Dynamic analysis
* Model checking

* Mutation testing

Bug localization

Symbolic execution

Significant increase in software control

+1960
- 8% of F-4 Fighter capability was
provided by software

-2000
- 85% of F-22 Fighter capability is
provided by software

GAO, Report to the Committee on Armed Services, U.S. Senate, March 2004, pg. 4

Any questions?

10

Areas we will cover in this course

* Static analysis

* Dynamic analysis
* Model checking
* Mutation testing
* Bug localization

* Symbolic execution

areas for your projects

11

12

http://www.slothmud.org/~hayward/mic_humor/nt_navy.html
http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html

As we go over each topic...

* Think whether this sounds interesting
* Think about what kind of a tool you could
make that uses this

* You are all programmers:
think about things you’ve done while
programming that were hard, and how these
kinds of analysis might make it easier

13

Manual Reviews

— Manual static analysis methods
 Reviews, walkthroughs, inspections
— Most can be applied at any step in the lifecycle
— Have been shown to improve reliability, but
« often the first thing dropped when time is tight
* labor intensive
« often done informally, no data/history, not repeatable

Static Analysis

¢ Two kinds we’ll consider:
— Manual
— Automatic

14

Reviews and walkthroughs

* Reviews

—author or one reviewer leads a presentation of the
artifact

—review is driven by presentation, issues raised

* Walkthroughs
— usually informal reviews of source code
— step-by-step, line-by-line review

15

Inspections

* Software inspections
— formal, multi-stage process
— significant background & preparation
— led by moderator
— many variations of this approach

16

Experimental results

* software inspections have repeatedly been
shown to be cost effective
* increases front-end costs
~15% increase to pre-code cost
* decreases overall cost

17

18

2/8/23

IBM study

* Doubled number of lines of code produced
per person

— some of this due to inspection process
* Reduced faults by 2/3
Found 60-90% of the faults

Found faults close to when they were
introduced

| The sooner a fault is found the less costly it is to fix J

19

What are the deficiencies?

* Tend to focus on error detection

— what about other "ilities” -- maintainability, portability, etc?
* Not applied consistently/rigorously

— inspection shows statistical improvement

* Human-intensive and often makes ineffective use of
human resources
— skilled software engineer reviewing coding standards,
spelling, etc.
— Lucent study: %M LoCS added to 5M LoCS required ~1500
inspections, ~5 people/inspection
— no automated support

21

Automatic static analysis

What about this code:

public double weird sqrt(int x) {
if (x > 0)
return sqgrt (x);
else
return 0;

Why are inspections effective?

* Knowing the product will be scrutinized causes
developers to produce a better product
(Hawthorne effect)

* Having others scrutinize a product increases
the probability that faults will be found

* Walkthroughs and reviews are not as formal
as inspections, but appear to also be effective
—hard to get empirical results

20

Automatic static analysis
What can you tell me about this code:

public int square (int x) {

return x * x;

22

23

Computing Control Flow Graphs (CFGs)

Procedure AVG

S1 count=0
S2 fread(fptr, n)
S3 while (not EOF) do
sS4 if(n<0)
S5 return (error)
else
S6 nums[count] =n
s7 count ++
endif
S8 fread(fptr, n)
endwhile
S9 avg = mean(nums,count)
$10 return(avg)

24

2/8/23

CFG with Maximal Basic Blocks

Procedure AVG

Sl count=0

S2 fread(fptr, n)
S3 while (not EOF) do
S4 if(n<0)
S5 return (error)
else
Sé nums[count] = n
S7 count ++
endif
S8 fread(fptr, n)
endwhile

S9 avg = mean(nums,count)
S10 return(avg)

CFG with Maximal Basic Blocks

Procedure AVG

S| count=0
S2 fread(fptr, n)
S3 while (not EOF) do

S4 if(n<0)
S5 return (error)
else
Sé6 nums[count] = n
s7 count ++
endif
S8 fread(fptr, n)
endwhile

S9 avg = mean(nums,count)
S10 return(avg)

25

26

What about data flow?

We can do the same thing as with control flow

27

Uses of Data-Flow Analyses

* Software Engineering Tasks
* E.g., Debugging

suppose that a has the incorrect value in the statement

&d need data dependence information: statements that can
affect the incorrect value at a given program point

29

Uses of Data-Flow Analyses

* Compiler Optimization
* E.g., Constant propagation

suppose every assignment to ¢ that reaches this statement assigns 5

then a can be replaced by 15

&d need to know reaching definitions: which definitions of
variable c reach a statement

28

Static analysis summary

* Manual or automatic
— very different
— manual removes bugs
* Analyze the source code to determine
— control flow
— data flow

 Build reachability graphs, data dependence
graphs, etc.

30

2/8/23

Dynamic analysis

* Assertions

* Detecting invariants

31

Detecting invariants

public int square (int x) {
return x * x;

}

Let’s run the code and watch it. What can we tell about it?

33

So why dynamic detection?

* Code can be complex
— Static analysis may not scale to large programs.
* Sometimes, logs is all you have access to

— Not all code is open source. If you use libraries,
others’ code, you may only be able to observe
executions.

* Fast

* Detects properties of actual usage, rather than
all possible usage

35

Assertions

public double area(int length, int width)
assert (length >=0);
assert (width >=0);

return length * width;

{

32

Why dynamic detection?

* |sit sound?

— If you learn a property about a program, must it
be true?

* Is it complete?

— Do you learn all properties that are true about a
program?

34
What can we do with static and
dynamic analyses?
* You have:

—a program

— some tests that pass

— some tests that fail
36

2/8/23

What can we do with static and
dynamic analyses?
* You have:
—a program
— some tests that pass
— some tests that fail

- What can we do statically?

37

What can we do with static and
dynamic analyses?

* You have:
— a program
— some tests that pass
— some tests that fail

‘What can we do dynamically?J

39

Static & Dynamic Analysis

* Automated fault localization

* Debugging assistance

* Automated program repair

* Causal testing

* Race detection

* (Automated) formal verification
* Bias in software...

41

Statically, we can...

* Think about the code long and hard, and fix it.
* Can we step through a failing test case?

See where the code goes wrong?

— but to automate this, we have to know where the
code is “supposed” to go

Can we reverse-engineer the conditions

necessary to get to the desired result?

38

Dynamically, we can...

Run the code and observe

which lines execute when

— lines that execute on failings tests only are more
likely buggy

We can detect code invariants and reason

about the code

We can muck with the code and see if it does
any better on the tests

40

Next time

Static analysis
Dynamic analysis
Model checking
Mutation testing
Bug localization

Symbolic execution

42

2/8/23

