
11/1/22

1

Beta

• Beta is due next Tuesday
• Beta includes presentations

– 15 minutes per group
– at least 2 students per group
– practice practice practice

1

Team Assessment

• Due Thursday, Nov 3, by midnight

https://docs.google.com/forms/d/e/1FAIpQLSebRgKpUhnIiD9LWkV3ifgTGqLD
ou34pkWixnbkVv3kh8girw/viewform?usp=sf_link

– will take less than 5 minutes

2

First test

• Mean and median: 79
• Standard deviation: 9.8
• Max: 99
• Solution posted on moodle

3

What happened to multiple choice?

A. Questions 2 and 3 were multiple choice.
B. All questions were multiple choice, with just

a single choice. Single is multiple!
C. Yuriy never promised any multiple choice!
D. Yuriy has two small children who don’t let

him sleep and he screwed up and promised
you multiple choice, but then thought he
promised short-answer, and wrote short-
answer questions on the exam…

sorry

4

• Wednesday, 12:20-1:20
• Pizza at noon
• CS150/151
https://umass-amherst.zoom.us/j/96825563486?pwd=Uk9jdUVULzJqS0w4WUhjT2MwQTcxZz09

• No class Thursday

5

Debugging

6

https://docs.google.com/forms/d/e/1FAIpQLSebRgKpUhnIiD9LWkV3ifgTGqLDou34pkWixnbkVv3kh8girw/viewform?usp=sf_link
https://umass-amherst.zoom.us/j/96825563486?pwd=Uk9jdUVULzJqS0w4WUhjT2MwQTcxZz09

11/1/22

2

Ways to get your code right

• Validation
– Purpose is to uncover problems and increase confidence
– Combination of reasoning and test

• Debugging
– Finding out why a program is not functioning as intended

• Defensive programming
– Programming with validation and debugging in mind

• Testing ≠ debugging
– test: reveals existence of problem
– debug: pinpoint location + cause of problem

7

A bug – September 9, 1947
US Navy Admiral Grace Murray Hopper, working on Mark I at Harvard

8

A Bug’s Life

• Defect – mistake committed by a human
• Error – incorrect computation
• Failure – visible error: program violates its

specification
• Debugging starts when a failure is observed

– Unit testing
– Integration testing
– In the field

9

Defense in depth
1. Make errors impossible

– Java makes memory overwrite bugs impossible
2. Don’t introduce defects

– Correctness: get things right the first time
3. Make errors immediately visible

– Local visibility of errors: best to fail immediately
– Example: checkRep() routine to check representation invariants

4. Last resort is debugging
– Needed when effect of bug is distant from cause
– Design experiments to gain information about bug

• Fairly easy in a program with good modularity, representation hiding,
specs, unit tests etc.

• Much harder and more painstaking with a poor design, e.g., with rampant
rep exposure

10

First defense: Impossible by design

• In the language
– Java makes memory overwrite bugs impossible

• In the protocols/libraries/modules
– TCP/IP will guarantee that data is not reordered
– BigInteger will guarantee that there will be no overflow

• In self-imposed conventions
– Hierarchical locking makes deadlock bugs impossible
– Banning the use of recursion will make infinite recursion/insufficient

stack bugs go away
– Immutable data structures will guarantee behavioral equality
– Caution: You must maintain the discipline

11

Second defense: correctness
• Get things right the first time

– Don’t code before you think! Think before you code.
– If you're making lots of easy-to-find bugs, you're also making hard-to-

find bugs – don't use compiler as crutch
• Especially true, when debugging is going to be hard

– Concurrency
– Difficult test and instrument environments
– Program must meet timing deadlines

• Simplicity is key
– Modularity

• Divide program into chunks that are easy to understand
• Use abstract data types with well-defined interfaces
• Use defensive programming; avoid rep exposure

– Specification
• Write specs for all modules, so that an explicit, well-defined contract

exists between each module and its clients

12

11/1/22

3

Third defense: immediate visibility

• If we can't prevent bugs, we can try to localize them to
a small part of the program
– Assertions: catch bugs early, before failure has a chance to

contaminate (and be obscured by) further computation
– Unit testing: when you test a module in isolation, you can

be confident that any bug you find is in that unit (unless
it's in the test driver)

– Regression testing: run tests as often as possible when
changing code. If there is a failure, chances are there's a
mistake in the code you just changed

• When localized to a single method or small module,
bugs can be found simply by studying the program text

13

Benefits of immediate visibility

• Key difficulty of debugging is to find the code fragment
responsible for an observed problem
– A method may return an erroneous result, but be itself

error free, if there is prior corruption of representation
• The earlier a problem is observed, the easier it is to fix
– For example, frequently checking the rep invariant helps

the above problem
• General approach: fail-fast
– Check invariants, don't just assume them
– Don't try to recover from bugs – this just obscures them

14

How to debug a compiler

• Multiple passes
– Each operate on a complex IR
– Lot of information passing
– Very complex Rep Invariant
– Code generation at the end

• Bug types:
– Compiler crashes
– Generated program is buggy

Program

Front End

Intermediate

Representation

Optimization

Intermediate

Representation

Optimization

Intermediate

Representation

Code GenerationExecutableRUN

J
L

15

Don't hide bugs
// k is guaranteed to be present in a
int i = 0;
while (true) {

if (a[i]==k) break;
i++;

}

• This code fragment searches an array a for a value k.
– Value is guaranteed to be in the array.
– If that guarantee is broken (by a bug), the code throws an

exception and dies.
• Temptation: make code more “robust” by not failing

16

Don't hide bugs
// k is guaranteed to be present in a
int i = 0;
while (i<a.length) {

if (a[i]==k) break;
i++;

}

• Now at least the loop will always terminate
– But no longer guaranteed that a[i]==k
– If rest of code relies on this, then problems arise later
– All we've done is obscure the link between the bug's

origin and the eventual erroneous behavior it causes.

17

Don't hide bugs
// k is guaranteed to be present in a
int i = 0;
while (i<a.length) {

if (a[i]==k) break;
i++;

}
assert (i<a.length) : "key not found";

• Assertions let us document and check
invariants
Abort program as soon as problem is detected

18

11/1/22

4

Inserting Checks

• Insert checks galore with an intelligent
checking strategy
– Precondition checks
– Consistency checks
– Bug-specific checks

• Goal: stop the program as close to bug as
possible
Use debugger to see where you are, explore
program a bit

19

Checking For Preconditions

// k is guaranteed to be present in a
int i = 0;
while (i<a.length) {
if (a[i]==k) break;
i++;

}
assert (i<a.length) : "key not found";

Precondition violated? Get an assertion!

20

Downside of Assertions
static int sum(Integer a[], List<Integer> index) {

int s = 0;
for (e:index) {

assert(e < a.length, “Precondition violated”);
s = s + a[e];

}
return s;

}
Assertion not checked until we use the data
Fault occurs when bad index inserted into list
May be a long distance between fault activation and error detection

21

checkRep: Data Structure Consistency Checks

static void checkRep(Integer a[], List<Integer> index) {
for (e:index) {

assert(e < a.length, “Inconsistent Data Structure”);
}

}

• Perform check after all updates to minimize
distance between bug occurrence and bug
detection

• Can also write a single procedure to check ALL
data structures, then scatter calls to this
procedure throughout code

22

Bug-Specific Checks

static void check(Integer a[], List<Integer> index) {
for (e:index) {

assert(e != 1234, “Inconsistent Data Structure”);
}

}

Bug shows up as 1234 in list
Check for that specific condition

23

Checks In Production Code
• Should you include assertions and checks in production code?

– Yes: stop program if check fails – don’t want to
take chance program will do something wrong

– No: may need program to keep going, maybe bug
does not have such bad consequences

– Correct answer depends on context!
• Ariane 5 – program halted because of overflow in unused value,

exception thrown but not handled until top level, rocket crashes…

24

