

CS 520

Theory and Practice of Software Engineering
Fall 2019

Reasoning about Programs

November 21, 2019

1

Reasoning about programs

2

Ways to verify your code

- The hard way:
 - Make up some inputs
 - If it doesn't crash, ship it
 - When it fails in the field, attempt to debug
- The easier way:
 - Reason about possible behavior and desired outcomes
 - Construct simple tests that exercise that behavior
- Another way that can be easy
 - Prove that the system does what you want
 - Rep invariants are preserved
 - Implementation satisfies specification
 - Proof can be formal or informal (today, we will be informal)
 - Complementary to testing

3

Reasoning about code

- Determine what facts are true during execution
 - $x > 0$
 - for all nodes n : $n.next.previous == n$
 - array a is sorted
 - $x + y == z$
 - if $x \neq \text{null}$, then $x.a > x.b$
- Applications:
 - Ensure code is correct (via reasoning or testing)
 - Understand why code is incorrect

4

Forward reasoning

- You know what is true before running the code
What is true after running the code?
- Given a precondition, what is the postcondition?
- Applications:
 - Representation invariant holds before running code
Does it still hold after running code?
- Example:


```
// precondition: x is even
      x = x + 3;
      y = 2x;
      x = 5;
      // postcondition: ??
```

5

Backward reasoning

- You know what you want to be true after running the code
What must be true beforehand in order to ensure that?
- Given a postcondition, what is the corresponding precondition?
- Applications:
 - (Re-)establish rep invariant at method exit: what's required?
Reproduce a bug: what must the input have been?
- Example:


```
// precondition: ???
      x = x + 3;
      y = 2x;
      x = 5;
      // postcondition: y > x
```
- How did you (informally) compute this?

6

Forward vs. backward reasoning

- Forward reasoning is more intuitive for most people
 - Helps understand what will happen (simulates the code)
 - Introduces facts that may be irrelevant to goal
Set of current facts may get large
 - Takes longer to realize that the task is hopeless
- Backward reasoning is usually more helpful
 - Helps you understand what should happen
 - Given a specific goal, indicates how to achieve it
 - Given an error, gives a test case that exposes it

7

Forward reasoning example

```
assert x >= 0;
i = x;
  // x >= 0 & i = x
z = 0;
  // x >= 0 & i = x & z = 0
while (i != 0) {
  z = z + 1;           <= What property holds here?
  i = i - 1;           <= What property holds here?
}
  // x >= 0 & i = 0 & z = x
assert x == z;
```

8

Backward reasoning

Technique for backward reasoning:

- Compute the weakest precondition (wp)
- There is a wp rule for each statement in the programming language
- Weakest precondition yields strongest specification for the computation (analogous to function specifications)

9

Assignment

```
// precondition: ??  
x = e;  
// postcondition: Q  
Precondition: Q with all (free) occurrences of x  
replaced by e  
• Example:  
// assert: ??  
x = x + 1;  
// assert x > 0  
  
Precondition = (x+1) > 0
```

10

Method calls

```
// precondition: ??  
x = foo();  
// postcondition: Q
```

- If the method has no side effects: just like ordinary assignment
- If it has side effects: an assignment to every variable it modifies

Use the method specification to determine the new value

11

If statements

```
// precondition: ??  
if (b) S1 else S2  
// postcondition: Q  
Essentially case analysis:  
wp("if (b) S1 else S2", Q) =  
  (  b => wp("S1", Q)  
  & ~b => wp("S2", Q) )
```

12

If: an example

```
// precondition: ???
if (x == 0) {
    x = x + 1;
} else {
    x = (x/x);
}
// postcondition: x ≥ 0

Precondition:
wp("if (x==0) {x = x+1} else {x = x/x};", x ≥ 0) =
= ( x = 0 ⇒ wp("x = x+1", x ≥ 0)
  & x ≠ 0 ⇒ wp("x = x/x", x ≥ 0) )
= (x = 0 ⇒ x + 1 ≥ 0) & (x ≠ 0 ⇒ x/x ≥ 0)
= 1 ≥ 0 & 1 ≥ 0
= true
```

13

Reasoning About Loops

- A loop represents an unknown number of paths
 - Case analysis is problematic
 - Recursion presents the same issue
- Cannot enumerate all paths
 - That is what makes testing and reasoning hard

14

Loops: values and termination

```
// assert x ≥ 0 & y = 0
while (x != y) {
    y = y + 1;
}
// assert x = y
```

- 1) Pre-assertion guarantees that $x \geq y$
- 2) Every time through loop
 - $x \geq y$ holds and, if body is entered, $x > y$
 - y is incremented by 1
 - x is unchanged
 - Therefore, y is closer to x (but $x \geq y$ still holds)
- 3) Since there are only a finite number of integers between x and y , y will eventually equal x
- 4) Execution exits the loop as soon as $x = y$

15

Understanding loops by induction

- We just made an inductive argument
 - Inducting over the number of iterations
- Computation induction
 - Show that conjecture holds if zero iterations
 - Assume it holds after n iterations and show it holds after $n+1$
- There are two things to prove:
 - Some property is preserved (known as "partial correctness")
 - loop invariant is preserved by each iteration
 - The loop completes (known as "termination")
 - The "decrementing function" is reduced by each iteration

16

Loop invariant for the example

```
// assert x ≥ 0 & y = 0
while (x != y) {
    y = y + 1;
}
// assert x = y
```

- So, what is a suitable invariant?
- What makes the loop work?

Loop Invariant (LI) = $x \geq y$

1) $x \geq 0 \ \& \ y = 0 \Rightarrow$ LI

When you start, LI holds

2) LI $\&$ $x \neq y \{y = y + 1\} \rightarrow$ LI

While in the loop, LI holds

3) (LI $\&$ $\neg(x \neq y)) \rightarrow x = y$

After the loop, postcondition holds

17

Is anything missing?

```
// assert x ≥ 0 & y = 0
while (x != y) {
    y = y + 1;
}
// assert x = y
```

Does the loop terminate?

18

Decrementing Function

- Decrementing function $D(X)$
 - Maps state (program variables) to some well-ordered set
 - This greatly simplifies reasoning about termination
- Consider: `while (b) S;`
- We seek $D(X)$, where X is the state, such that
 - An execution of the loop reduces the function's value:
 $LI \& b \{s\} D(X_{post}) < D(X_{pre})$
 - If the function's value is minimal, the loop terminates:
 $(LI \& D(X) = \min Val) \Rightarrow \neg b$

20

Proving Termination

```
// assert x ≥ 0 & y = 0
// Loop invariant: x ≥ y
// Loop decrements: (x-y)
while (x != y) {
    y = y + 1;
}
// assert x = y
```

- Is " $x-y$ " a good decrementing function?
- Does the loop reduce the decrementing function's value?
 - $/\!\! assert (y \leq x); let d_{pre} = (x-y)$
 $y = y + 1;$
 $/\!\! assert (x_{post} - y_{post}) < d_{pre}$
 - If the function has minimum value, does the loop exit?
 $(x \geq y \& x - y = 0) \rightarrow (x = y)$

21

Choosing Loop Invariant

- For straight-line code, the wp (weakest precondition) function gives us the appropriate property
- For loops, you have to **guess**:
 - The loop invariant
 - The decrementing function
- Then, use reasoning techniques to prove the goal property
- If the proof doesn't work:
 - Maybe you chose a bad invariant or decrementing function
 - Choose another and try again
 - Maybe the loop is incorrect
 - Fix the code
- Automatically choosing loop invariants is a research topic

22

In practice

I don't routinely write loop invariants

I do write them when I am unsure about a loop and when I have evidence that a loop is not working

- Add invariant and decrementing function if missing
- Write code to check them
- Understand why the code doesn't work
- Reason to ensure that no similar bugs remain

23

More on Induction

- Induction is a very powerful tool

$$2^n = 1 + \sum_{k=1}^n 2^{k-1}$$

Proof by induction: **Base Case**

$$\text{For } n=1, \quad 1 + \sum_{k=1}^1 2^{k-1} = 1 + 2^0 = 1 + 1 = 2 = 2^1$$

24

Inductive Step

Assume $2^m = 1 + \sum_{k=1}^m 2^{k-1}$ and show that $2^{m+1} = 1 + \sum_{k=1}^{m+1} 2^{k-1}$

$$2^{m+1} = 1 + \sum_{k=1}^{m+1} 2^{k-1} = 1 + \sum_{k=1}^m 2^{k-1} + 2^m = 2^m + 2^m = 2 \times 2^m = 2^{m+1}$$

25

Is Induction Too Powerful?

26