11/18/19

In-Class Exercise: Reasoning About Mutants Z3

* Today we’ll learn how to use Z3, * Online interface: ntps://risesfun.com/z3
a formal theorem prover

7 H .
* And we ” use it to help us create tests ° TUtOflal: https://rise4fun.com/Z3/tutorial/guide

* In-class assignment:
https://people.cs.umass.edu/~brun/class/2019Fall/CS520/in-class4.pdf

2
7]
Z3’s language Z3’s language
1 (echo "starting 73...")
* Z3 uses a kind of programming language e ot a1
. . 4 (assert (> a 10))
* Can declare variables and functions, 5 Gossert (< (F tue) 100
define constraints, print things to the screen,
etc. This code prints “starting Z3..."” to the screen,
declares a constant a
declares a function Int f (Int Bool)
makes 2 assertions: a > 10 and f(a, true) < 100
asks “is this possible?”
4
Encoding programs in constraints Modeling Control Flow
Given a program P and a question about P, ot @geS(Stu f(‘)i“t . i:t 5, Oi“t)1
. . i c == return 0;
encode them into constraints and if (e == 4) return 0;
ask Z3 to answer the question! tf (a + b <c) return 1
if (a + b > ¢) return 2;
int P(int a, int Db){ if (a * b == c¢) return 3; // Does this ever happen??
P: return a + b; \ return 4;
:) .
To ask if doesStuff ever returns 3, encode:
L 5
Quest:?:\.lcfa\ntP i\ger return 07 I(c == 0) I(c == 4) la+b<c)
(declare-cons nt) *py e
§ (:sslr‘t = (+tabb§ ;)) ; We want a + b to be 0 I(a + b > C) (a b——C)
4 (check-sat) ; Find out if this is satisfiable
5 (get-model) ; It is, so let's get a satisfying model|

https://rise4fun.com/Z3
https://rise4fun.com/Z3/tutorial/guide
https://people.cs.umass.edu/~brun/class/2019Fall/CS520/in-class4.pdf

11/18/19

Modeling Control Flow

lint doesStuff (int a, int b, int c){
if (¢ ==) return 0;
if (¢ == 4) return 0;
if (a + b < ¢) return 1;
if (a + b > ¢) return 2;
if (a * b == c¢) return 3; // Does this ever happen??

return 4;

(define-sort JInt () (_ BitVec 32))
(declare-const a JInt)
(declare-const b JInt)
(declare-const ¢ JInt)

1

2

3

4

5

6 (assert (not (= c #x00000000)))

7 (assert (not (= c #x00000004)))

8 (assert (not (bvslt (bvadd a b) c)))
9 (assert (not (bvsgt (bvadd a b) €))
10 (assert (= (bvmul a b) <))

1
2
3

12 (check-sat)

Z3 for Mutation Testing

int normal_sum(int a, int b){

return a + Db;

int mutant_sum (int a, int b){

return a * Dbj;

(declare-const a Int)
(declare-const b Int)
(assert (= (+ a b) (* a b))
(check-sat)

(get-model)

[R NN

13 (get-model)]
7
We have to frame the question in terms of
“Does there exist an input such that...”

* If two functions are identical, then for all
inputs, they act the same.

* We can ask if two functions are NOT identical.
“Does there exist an input for which they
differ?”

1 (declare-const a Int)
2 (declare-const b Int)
3 (assert (not (= (+ a b) (* a b))))
4 (check-sat)
5 (get-model)
9

8
Now, you drive!
* In-class assignment:
https://neonle.cs.umass4edu/”brun/class/ZOlSFaII/CSSZO/in—cIass4.Edf
hd Online Z3 interface: https://rise4fun.com/Z3
hd Tutorial: https://rise4fun.com/Z3/tutorial/guide
10

https://people.cs.umass.edu/~brun/class/2018Fall/CS520/in-class4.pdf
https://rise4fun.com/Z3
https://rise4fun.com/Z3/tutorial/guide

