CS 520

Theory and Practice of Software Engineering
Fall 2019

Model Checking

October 24, 2019

10/24/19

coming up
e The third in-class will take place next Tuesday,
Oct 29.
o Sign up for a team on moodle

o Bring a laptop to class

e Final project

o Mid-point report due Nov 7

httos://people.cs.umass.edu/~brun/class/2019Fall/CS520/mi i todf

Systems are known to be error-prone

» Capture complex aspects such as:
— Threads and synchronization (e.g., Java locks)

— Dynamically heap allocated structured data types
(e.g., Java classes)

— Dynamically stack allocated procedures (e.g., Java
methods)

— Non-determinism

* Challenging to reason about all possible traces
through the systems

Potential uses of model checking

* Verification and validation (V&V)
* Debugging

Goal of model checking

Automate reasoning about whether all traces
through a system satisfy a given property
specification

* If so, report “Is satisfied”

* If not, report “May be violated” and

Model Checking
generate a counterexample trace

o e
that illustrates a potential violation 5 Q

of the property specification =

Model checker architecture

Property System
Specification
Property System Model
“Is satisfied” “May be violated” +

Counterexample Trace

https://people.cs.umass.edu/~brun/class/2019Fall/CS520/midProjectReport.pdf

Examples of model checkers

* NuSMV

* Spin

¢ Java Pathfinder (JPF)
* UPPAAL

* PRISM

Running example

public class BoundedBuffer {

static int BUFFER SIZE = 1;
static int N_PRODUCERS = 4;
static int N_CONSUMERS = 4;

static Object DATA = "fortytwo";

//—— the bounded buffer implementation
protected Object[] buf;

protected int in
protected int ou
protected int count= 0;
protected int size;

public BoundedBuffer(int size) { ... }
public synchronized void put(Object o) throws InterruptedException { ... }
public synchronized Object get() throws InterruptedException { ... }

static class Producer extends Thread {
// Tteratively calls put method

}

static class Consumer extends Thread {
/7 Tteratively calls get method

3

public static void main(String [] args) {
// 1. Creates bounded buffer, producers, and consumers
77 based on conmand Line arguments
/1 2. Starts the produces and consumers

}

y 9

Examples of property specifications

* Multi-threading and synchronization

— Deadlock
— Race detection

* Data structure consistency

— No buffer under/over flow

10/24/19

JPF: Model checker architecture

Property System
[Java Source File(s)]

Specification
[Finite State Automata]

Property
[Finite State Automata]

System Model
[Java Class File(s)
as Bytecode]

v v
“Is satisfied” “May be violated” +
Counterexample Trace
[Java Stack Trace]
[https://ti.arc.nasa.gov/tech/rse/vandv/jpf/]

Property specification

» System requirements are represented as a set
of property specifications

* Each property specification formally defines
an intended (or unintended) behavior of the
system

— May take into account real-time or probabilistic
constraints

10

Commonly used
property specification languages
* Graphs where the nodes (or edges) are

associated with elements from an alphabet

— Finite state automata (FSAs): Events, Labeled
transition system: Propositions

* Temporal logics

— Linear temporal logic (LTL), Computational tree
logic (CTL), CTL*

11

12

JPF: Property specifications

* gov.nasa.jpf.jvm.NotDeadlockedProperty
* gov.nasa.jpf.listener.PreciseRaceDetector

* No buffer under/over flow: Never throw exception
ArraylndexOutOfBounds:

public class NoUncaughtExceptionsProperty extends GenericProperty {

// <2do> that's a hack for now (makes us de-facto a singleton)
static ExceptionInfo uncaughtXi;

public NoUncaughtExceptionsProperty (Config config) {

uncaughtXi = null;
static void setExceptionInfo (ExceptionInfo xi) { uncaughtXi = xi; }
public ExceptionInfo getUncaughtExceptionInfo() { return uncaughtXi; }
public String getExplanation () { return null; }
public String getErrorMessage () { ... }
public void reset() { uncaughtXi = null; }

public boolean check (Search search, JWM vm) { return (uncaughtXi = null); }

1~

10/24/19

13

Commonly used
system modeling languages
* Automata such as communicating, timed, ...
* Labeled transition systems

* Compiler internal representations
—e.g., flow graphs, bytecode

System translation

Possible alternatives:

* Manually translate (e.g., Java to Labeled Transition
System)

* Automatically translate before execution

* Automatically “translate” during execution (e.g., JPF)

14

NOTE) The translation often incorporates compiler optimizations
to improve applicability and scalability.

15

Examples of
system translation optimizations

* Method inlining
* Slicing based on the property specification
— Keep code related to that property specification,
e.g., BoundedBuffer code related to
synchronization
— Remove code NOT related to it, e.g., Consumer

code related to how data gotten from the
BoundedBuffer is used

JPF: System translation

Steps:
1) Translate Java source file(s) to Java class file(s)

represented as bytecode
2) Optimize Java class file(s)

E

16

17

Reasoning engine: Conceptually

Generate the reachability graph for the given
system model and property:
* Each node captures a system model execution state,
e.g.,
<P1: Not started,...,C4: Not started,
BB lock is free, BB buf is empty, BB counts are zero>
* Each edge captures a current node executing an
“instruction” (e.g., P1 start) to generate the next
node, e.g.,
<P1: Started,...,C4: Not started,
BB lock is free, BB buf is empty, BB counts are zero>

18

Reasoning engine:
Determine results

Report:
* “May be violated” if a node is encountered
that illustrates a potential violation of the

property (and generate the counterexample
trace)

* “Is satisfied” if no such nodes are encountered

19

Counterexample traces: What?

Represented as a sequence of reachability graph
nodes where:

1. Start at the initial node
2. For each current node at index i, be able to
generate its next node at index i+ 1

3. End at a final node illustrating the potential
violation of the property

21

Counterexample traces: Why?

Caused by issue with:

* Property specification
* System model

* System - Actual bug

10/24/19

Examples of reasoning engines

* Explicitly generate the reachability graph (e.g.,
Spin, JPF)

* Symbolically generate the reachability graph
(e.g., nuSMV)

— Save space by encoding each set of nodes as a
binary decision diagram

— Can complicate counterexample generation
* SAT solvers

20

JPF: Counterexample trace

waiting on: BoundedBuffer@14s
call stack:

at java.lang.Object.wait(Object.java)

at ffer.pu ffer.java;5s)

at BoundedBuffersProducer. run(BoundedBuffer, java: 1)

thread BoundedBuffersProducer:{id:2,nane:P2,status: WATTING, priority:5, lockCount:1,suspendCount: 0}
waiting on: BoundedBuffer@148
call stack:
at java.lang.Object.wait(Object.java)
at frer.put(ffer.iava;ss)
at BoundedBuffersProducer. run(

waiting on: BoundedBuffer@148

call stack:
at java.lang.Object.wait(Object.java)
at ffer.put(ffer.java:ss)
at ffersProducer. run(ffer

thread BoundedBuffersProducer:
waiting on: BoundedBuffer@14!
call stack:
at java.lang.Object.wait(Object.java)
at ffer. ffer.java:5s)
at BoundedBuffersProducer. run(BoundedBufier, java: 1)

thread BoundedBuffersConsumer:{id:5,name:C1,status: WATTING, priority:5, lockCount:1,suspendCount: 0}
waiting on: BoundedBuffer@148
call stack:
at java.lang.Object.wait(Object.java)
a frer.get(ffer.iava;66)
at BoundedBuffersConsuner. run(BoundedBuffer, java:110)

22

JPF: Demonstration

* System: Bounded buffer

* Property specifications:
— No deadlock: Violated
— No data races: Satisfied
— Never ArraylndexOutOfBounds: Satisfied

* Configuration: jpf.properties and .jpf files

23

24

Model checker evaluation

* Applied to benchmarks and actual systems
— Have found actual bugs

* Compared in terms of:
— performance: space and time

— counterexample traces generated: usually by their
length

25

Disadvantages of model checking

* Translating from the system to the system
model can be error-prone

* Writing property specifications can also be
error-prone

* May not scale well because of the state space
explosion problem

* May not generate counterexample traces that

are useful for debugging (e.g., too long, to
similar to each other)

27
Property specification patterns:
Behaviors
Absence
Occurrence of Universality
event/proposition
A (Bounded) Existence
Behavior
Order of (Chained) Precedence
events/propositions <
Aand B

(Chained) Response

[https://matthewbdwyer.github.io/psp/]

10/24/19

Potential benefits of model checking

* Automatically checks that all traces through a
given system model satisfies its property
specifications

— Can be re-checked after any changes

* Generates counterexample traces that can be
used for debugging

Generally requires less expertise than for formal
verification techniques

26

Property specification patterns:
Overview

* Consists of a:

— Behavior captures occurrence or order of
events/propositions (e.g., Absence of
ThrowArraylndexOutOfBounds)

— Scope captures parts of the trace where behavior
must be satisfied (e.g., Globally)

* Provides mapping to various property
specification languages (e.g., regular
expressions)

—e.g., “[- ThrowArraylndexOutOfBounds]”

[https://matthewbdwyer.github.io/psp/]

28
Property specification patterns:
Scopes
Global S I
Before R _oqgfT 3} -
R R
Afer Qo e
Q Q
Between Q and R — I 1 - -
Q Q@ R Q RQ
After Quntl R —— - 1 .
Q QR Q

[https://matthewbdwyer.github.io/psp/]

29

30

PROPEL: Overview

* Builds on the property specification patterns
specified as finite state automata

* Provides guidance to select among the
patterns and customize that pattern

[http://laser.cs.umass.edu/tools/propel.shtml]

31

Property specification patterns:
Extensions
* Add new property specification patterns
* Map to new property specification languages

* Provide support for real-time or probabilistic
constraints [http://ps-patterns.wikidot.com]

10/24/19

Scope J >

Behavior

PROPEL: Tool

[aD
b Behavior & Scope Disci

[Available from http://laser.cs.umass.edu/release/]

32

33

Examples of
model checker optimizations

* Abstraction of variables
—e.g., Integer type abstracted as zero or non-zero
* Partial order reduction for thread scheduler
—e.g., Thread1l

Search-based
counterexample trace generation

* Want to support:

— Breadth first search: Generally slow but short
counterexample traces that are different

— (Bounded) depth first search: Generally fast but long
counterexample traces that are similar

— A* search with heuristics

* [teratively generate the reachability graph
— Store a worklist of current nodes (e.g., BFS queue)

— Store a visited set of nodes (e.g., BFS hash set of
nodes)

35

34

