
10/24/19

1

CS 520
Theory and Practice of Software Engineering

Fall 2019

Model Checking

October 24, 2019

1

coming up

● The third in-class will take place next Tuesday,
Oct 29.

○ Sign up for a team on moodle

○ Bring a laptop to class

● Final project

○ Mid-point report due Nov 7
https://people.cs.umass.edu/~brun/class/2019Fall/CS520/midProjectReport.pdf

2

Systems are known to be error-prone

• Capture complex aspects such as:
– Threads and synchronization (e.g., Java locks)
– Dynamically heap allocated structured data types

(e.g., Java classes)
– Dynamically stack allocated procedures (e.g., Java

methods)
– Non-determinism

• Challenging to reason about all possible traces
through the systems

3

3

Potential uses of model checking

• Verification and validation (V&V)
• Debugging

4

4

Goal of model checking
Automate reasoning about whether all traces
through a system satisfy a given property
specification
• If so, report “Is satisfied”
• If not, report “May be violated” and

generate a counterexample trace
that illustrates a potential violation
of the property specification

5

5

Model checker architecture

Property
Specification

Translator

System
Translator

Reasoning
Engine

Property
Specification

System

System ModelProperty

“May be violated” +
Counterexample Trace

“Is satisfied”

6

6

https://people.cs.umass.edu/~brun/class/2019Fall/CS520/midProjectReport.pdf

10/24/19

2

Examples of model checkers

• NuSMV
• Spin
• Java Pathfinder (JPF)
• UPPAAL
• PRISM

7

7

JPF: Model checker architecture

Property
Specification

Translator

System
Translator

Reasoning
Engine

[Java Virtual
Machine]

Property
Specification
[Finite State Automata]

System
[Java Source File(s)]

System Model
[Java Class File(s)
as Bytecode]

Property
[Finite State Automata]

“May be violated” +
Counterexample Trace
[Java Stack Trace]

“Is satisfied”

[https://ti.arc.nasa.gov/tech/rse/vandv/jpf/] 8

8

Running example

9

9

Property specification

• System requirements are represented as a set
of property specifications

• Each property specification formally defines
an intended (or unintended) behavior of the
system
–May take into account real-time or probabilistic

constraints

10

10

Examples of property specifications

• Multi-threading and synchronization
– Deadlock
– Race detection

• Data structure consistency
– No buffer under/over flow

11

11

Commonly used
property specification languages

• Graphs where the nodes (or edges) are
associated with elements from an alphabet
– Finite state automata (FSAs): Events, Labeled

transition system: Propositions

• Temporal logics
– Linear temporal logic (LTL), Computational tree

logic (CTL), CTL*

12

12

10/24/19

3

JPF: Property specifications
• gov.nasa.jpf.jvm.NotDeadlockedProperty
• gov.nasa.jpf.listener.PreciseRaceDetector
• No buffer under/over flow: Never throw exception

ArrayIndexOutOfBounds:

13

13

Commonly used
system modeling languages

• Automata such as communicating, timed, …
• Labeled transition systems
• Compiler internal representations
– e.g., flow graphs, bytecode

14

14

System translation

Possible alternatives:
• Manually translate (e.g., Java to Labeled Transition

System)
• Automatically translate before execution
• Automatically “translate” during execution (e.g., JPF)

NOTE) The translation often incorporates compiler optimizations
to improve applicability and scalability.

15

15

Examples of
system translation optimizations

• Method inlining
• Slicing based on the property specification
– Keep code related to that property specification,

e.g., BoundedBuffer code related to
synchronization

– Remove code NOT related to it, e.g., Consumer
code related to how data gotten from the
BoundedBuffer is used

16

16

JPF: System translation

17

Steps:
1) Translate Java source file(s) to Java class file(s)

represented as bytecode
2) Optimize Java class file(s)

17

Reasoning engine: Conceptually
Generate the reachability graph for the given
system model and property:
• Each node captures a system model execution state,

e.g.,
<P1: Not started,…,C4: Not started,
BB lock is free, BB buf is empty, BB counts are zero>

• Each edge captures a current node executing an
“instruction” (e.g., P1 start) to generate the next
node, e.g.,
<P1: Started,…,C4: Not started,
BB lock is free, BB buf is empty, BB counts are zero>

18

18

10/24/19

4

Reasoning engine:
Determine results

Report:
• “May be violated” if a node is encountered

that illustrates a potential violation of the
property (and generate the counterexample
trace)

• “Is satisfied” if no such nodes are encountered

19

19

Examples of reasoning engines

• Explicitly generate the reachability graph (e.g.,
Spin, JPF)

• Symbolically generate the reachability graph
(e.g., nuSMV)
– Save space by encoding each set of nodes as a

binary decision diagram
– Can complicate counterexample generation

• SAT solvers

20

20

Counterexample traces: What?

Represented as a sequence of reachability graph
nodes where:
1. Start at the initial node
2. For each current node at index i, be able to

generate its next node at index i + 1
3. End at a final node illustrating the potential

violation of the property

21

21

JPF: Counterexample trace

22

22

Counterexample traces: Why?

Caused by issue with:
• Property specification
• System model
• System - Actual bug

23

23

JPF: Demonstration

• System: Bounded buffer

• Property specifications:
– No deadlock: Violated
– No data races: Satisfied
– Never ArrayIndexOutOfBounds: Satisfied

• Configuration: jpf.properties and .jpf files

24

24

10/24/19

5

Model checker evaluation

• Applied to benchmarks and actual systems
– Have found actual bugs

• Compared in terms of:
– performance: space and time
– counterexample traces generated: usually by their

length

25

25

Potential benefits of model checking

• Automatically checks that all traces through a
given system model satisfies its property
specifications
– Can be re-checked after any changes

• Generates counterexample traces that can be
used for debugging

• Generally requires less expertise than for formal
verification techniques

26

26

Disadvantages of model checking

• Translating from the system to the system
model can be error-prone

• Writing property specifications can also be
error-prone

• May not scale well because of the state space
explosion problem

• May not generate counterexample traces that
are useful for debugging (e.g., too long, to
similar to each other)

27

27

Property specification patterns:
Overview

• Consists of a:
– Behavior captures occurrence or order of

events/propositions (e.g., Absence of
ThrowArrayIndexOutOfBounds)

– Scope captures parts of the trace where behavior
must be satisfied (e.g., Globally)

• Provides mapping to various property
specification languages (e.g., regular
expressions)
– e.g., “[- ThrowArrayIndexOutOfBounds]”

28[https://matthewbdwyer.github.io/psp/]

28

Property specification patterns:
Behaviors

29[https://matthewbdwyer.github.io/psp/]

Behavior

Occurrence of
event/proposition
A

Order of
events/propositions
A and B (Chained) Response

(Chained) Precedence

Absence

Universality

(Bounded) Existence

29

Property specification patterns:
Scopes

30[https://matthewbdwyer.github.io/psp/]

30

10/24/19

6

PROPEL: Overview

• Builds on the property specification patterns
specified as finite state automata

• Provides guidance to select among the
patterns and customize that pattern

31
[http://laser.cs.umass.edu/tools/propel.shtml]

31

PROPEL: Tool

32[Available from http://laser.cs.umass.edu/release/]

Scope

Behavior

32

Property specification patterns:
Extensions

• Add new property specification patterns
• Map to new property specification languages
• Provide support for real-time or probabilistic

constraints [http://ps-patterns.wikidot.com]

33

33

Examples of
model checker optimizations

• Abstraction of variables
– e.g., Integer type abstracted as zero or non-zero

• Partial order reduction for thread scheduler
– e.g., Thread 1 Thread 2

34

1.1

1.2

2.1

1.2

34

Search-based
counterexample trace generation

• Want to support:
– Breadth first search: Generally slow but short

counterexample traces that are different
– (Bounded) depth first search: Generally fast but long

counterexample traces that are similar
– A* search with heuristics

• Iteratively generate the reachability graph
– Store a worklist of current nodes (e.g., BFS queue)
– Store a visited set of nodes (e.g., BFS hash set of

nodes)
35

35

