
10/24/19

1

CS 520
Theory and Practice of Software Engineering

Fall 2019

Model Checking

October 24, 2019

1

coming up

● The third in-class will take place next Tuesday, 
Oct 29.

○ Sign up for a team on moodle

○ Bring a laptop to class

● Final project

○ Mid-point report due Nov 7
https://people.cs.umass.edu/~brun/class/2019Fall/CS520/midProjectReport.pdf
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Systems are known to be error-prone

• Capture complex aspects such as:
– Threads and synchronization (e.g., Java locks)
– Dynamically heap allocated structured data types 

(e.g., Java classes)
– Dynamically stack allocated procedures (e.g., Java 

methods)
– Non-determinism

• Challenging to reason about all possible traces 
through the systems 
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Potential uses of model checking

• Verification and validation (V&V)
• Debugging
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Goal of model checking
Automate reasoning about whether all traces
through a system satisfy a given property 
specification
• If so, report “Is satisfied”
• If not, report “May be violated” and 

generate a counterexample trace 
that illustrates a potential violation
of the property specification
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Model checker architecture
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https://people.cs.umass.edu/~brun/class/2019Fall/CS520/midProjectReport.pdf
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Examples of model checkers

• NuSMV
• Spin
• Java Pathfinder (JPF)
• UPPAAL
• PRISM
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JPF: Model checker architecture
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[https://ti.arc.nasa.gov/tech/rse/vandv/jpf/] 8
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Running example
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Property specification

• System requirements are represented as a set 
of property specifications

• Each property specification formally defines 
an intended (or unintended) behavior of the 
system
–May take into account real-time or probabilistic 

constraints
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Examples of property specifications

• Multi-threading and synchronization
– Deadlock
– Race detection

• Data structure consistency
– No buffer under/over flow
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Commonly used
property specification languages

• Graphs where the nodes (or edges) are 
associated with elements from an alphabet
– Finite state automata (FSAs): Events, Labeled 

transition system: Propositions

• Temporal logics
– Linear temporal logic (LTL), Computational tree 

logic (CTL), CTL*
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JPF: Property specifications
• gov.nasa.jpf.jvm.NotDeadlockedProperty
• gov.nasa.jpf.listener.PreciseRaceDetector
• No buffer under/over flow: Never throw exception 

ArrayIndexOutOfBounds:
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Commonly used
system modeling languages

• Automata such as communicating, timed, …
• Labeled transition systems
• Compiler internal representations
– e.g., flow graphs, bytecode
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System translation

Possible alternatives:
• Manually translate (e.g., Java to Labeled Transition 

System)
• Automatically translate before execution
• Automatically “translate” during execution (e.g., JPF)

NOTE) The translation often incorporates compiler optimizations 
to improve applicability and scalability.
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Examples of 
system translation optimizations

• Method inlining
• Slicing based on the property specification
– Keep code related to that property specification, 

e.g., BoundedBuffer code related to 
synchronization 

– Remove code NOT related to it, e.g., Consumer 
code related to how data gotten from the 
BoundedBuffer is used
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JPF: System translation
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Steps:
1) Translate Java source file(s) to Java class file(s) 

represented as bytecode
2) Optimize Java class file(s)
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Reasoning engine: Conceptually
Generate the reachability graph for the given 
system model and property:
• Each node captures a system model execution state, 

e.g., 
<P1: Not started,…,C4: Not started,
BB lock is free, BB buf is empty, BB counts are zero>

• Each edge captures a current node executing an 
“instruction” (e.g., P1 start) to generate the next 
node, e.g., 
<P1: Started,…,C4: Not started,
BB lock is free, BB buf is empty, BB counts are zero>
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Reasoning engine: 
Determine results

Report:
• “May be violated” if a node is encountered 

that illustrates a potential violation of the 
property (and generate the counterexample 
trace)

• “Is satisfied” if no such nodes are encountered

19

19

Examples of reasoning engines

• Explicitly generate the reachability graph (e.g., 
Spin, JPF)

• Symbolically generate the reachability graph 
(e.g., nuSMV)
– Save space by encoding each set of nodes as a 

binary decision diagram
– Can complicate counterexample generation

• SAT solvers
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Counterexample traces: What?

Represented as a sequence of reachability graph 
nodes where:
1. Start at the initial node
2. For each current node at index i, be able to 

generate its next node at index i + 1
3. End at a final node illustrating the potential 

violation of the property
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JPF: Counterexample trace
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Counterexample traces: Why?

Caused by issue with:
• Property specification 
• System model
• System - Actual bug
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JPF: Demonstration

• System: Bounded buffer

• Property specifications: 
– No deadlock: Violated
– No data races: Satisfied
– Never ArrayIndexOutOfBounds: Satisfied

• Configuration: jpf.properties and .jpf files

24

24



10/24/19

5

Model checker evaluation

• Applied to benchmarks and actual systems
– Have found actual bugs

• Compared in terms of:
– performance: space and time
– counterexample traces generated: usually by their 

length 
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Potential benefits of model checking

• Automatically checks that all traces through a 
given system model satisfies its property 
specifications
– Can be re-checked after any changes

• Generates counterexample traces that can be 
used for debugging

• Generally requires less expertise than for formal 
verification techniques
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Disadvantages of model checking

• Translating from the system to the system 
model can be error-prone

• Writing property specifications can also be 
error-prone

• May not scale well because of the state space 
explosion problem

• May not generate counterexample traces that 
are useful for debugging (e.g., too long, to 
similar to each other)
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Property specification patterns:
Overview

• Consists of a:
– Behavior captures occurrence or order of 

events/propositions (e.g., Absence of 
ThrowArrayIndexOutOfBounds)

– Scope captures parts of the trace where behavior 
must be satisfied (e.g., Globally)

• Provides mapping to various property 
specification languages (e.g., regular 
expressions)
– e.g., “[- ThrowArrayIndexOutOfBounds]”

28[https://matthewbdwyer.github.io/psp/]
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Property specification patterns:
Behaviors

29[https://matthewbdwyer.github.io/psp/]

Behavior

Occurrence of
event/proposition 
A

Order of
events/propositions 
A and B (Chained) Response

(Chained) Precedence

Absence

Universality

(Bounded) Existence
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Property specification patterns:
Scopes

30[https://matthewbdwyer.github.io/psp/]
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PROPEL: Overview

• Builds on the property specification patterns 
specified as finite state automata

• Provides guidance to select among the 
patterns and customize that pattern

31
[http://laser.cs.umass.edu/tools/propel.shtml]
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PROPEL: Tool

32[Available from http://laser.cs.umass.edu/release/]

Scope

Behavior
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Property specification patterns:
Extensions

• Add new property specification patterns
• Map to new property specification languages
• Provide support for real-time or probabilistic 

constraints [http://ps-patterns.wikidot.com]
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Examples of
model checker optimizations

• Abstraction of variables
– e.g., Integer type abstracted as zero or non-zero 

• Partial order reduction for thread scheduler
– e.g.,   Thread 1 Thread 2
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Search-based
counterexample trace generation

• Want to support:
– Breadth first search: Generally slow but short 

counterexample traces that are different
– (Bounded) depth first search: Generally fast but long 

counterexample traces that are similar
– A* search with heuristics

• Iteratively generate the reachability graph
– Store a worklist of current nodes (e.g., BFS queue)
– Store a visited set of nodes (e.g., BFS hash set of 

nodes)
35
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