CS 520

Theory and Practice of Software Engineering
Fall 2019

Debugging

October 3, 2018

10/3/19

Ways to get your code right

Validation

— Purpose is to uncover problems and increase confidence

— Combination of reasoning and test

Debugging

— Finding out why a program is not functioning as intended
Defensive programming

— Programming with validation and debugging in mind
Testing # debugging

— test: reveals existence of problem

— debug: pinpoint location + cause of problem

A bug — September 9, 1947

74 US Navy Admiral Grace Murray Hopper, working on Mark | at Harvard

e 5 i
06w Oackom shavtol 5/-:7-0 2037 57 015
/000 . SWBJ -~ ondom S 9057 ¥YC 7S coah
1oc o) me-ne EFSERLI ceen) 70/5 72505900
63y PrO >+ 2. 130ya0Cyis
Con ok 5 uaanm

(rd (A S B «/.»JJ;T; WM : 1
i e
(o ok

o0 Started Gosine B e (S.u cheet)

DAPPRT, &%

\Say

Qe\m\‘ﬁo PH SR

(CES relay -

Fictiattanee e S L
ey CL\J‘(Qt:;\\l‘. a '{51 b 1{“1
1we | L fpm .

A Bug’s Life

* Defect — mistake committed by a human
* Error —incorrect computation
* Failure —visible error: program violates its

specification

* Debugging starts when a failure is observed

— Unit testing
— Integration testing
— In the field

Defense in depth

1. Make errors impossible
— Java makes memory overwrite bugs impossible
2. Don’tintroduce defects
— Correctness: get things right the first time
3. Make errors immediately visible
— Local visibility of errors: best to fail immediately
— Example: checkRep() routine to check representation invariants
4. Last resort is debugging
— Needed when effect of bug is distant from cause
— Design experiments to gain information about bug
* Fairly easy in a program with good modularity, representation hiding,
specs, unit tests etc.
* Much harder and more painstaking with a poor design, e.g., with rampant
rep exposure

First defense: Impossible by design

In the language

— Java makes memory overwrite bugs impossible

In the protocols/libraries/modules

— TCP/IP will guarantee that data is not reordered
— BiglInteger will guarantee that there will be no overflow

In self-imposed conventions
— Hierarchical locking makes deadlock bugs impossible

— Banning the use of recursion will make infinite recursion/insufficient
stack bugs go away

— Immutable data structures will guarantee behavioral equality
— Caution: You must maintain the discipline

Second defense: correctness

Get things right the first time
— Don’t code before you think! Think before you code.
— If you're making lots of easy-to-find bugs,
you're also making hard-to-find bugs

— don't use compiler as crutch
Especially true, when debugging is going to be hard
— Concurrency

— Difficult test and instrument environments

— Program must meet timing deadlines
Simplicity is key

— Modularity
« Divide program into chunks that are easy to understand
* Use abstract data types with well-defined interfaces
* Use defensive programming; avoid rep exposure

— Specification
* Write specs for all modules, so that an explicit, well-defined contract

exists between each module and its clients

Third defense: immediate visibility

* If we can't prevent bugs, we can try to localize them to
a small part of the program

— Assertions: catch bugs early, before failure has a chance to
contaminate (and be obscured by) further computation

— Unit testing: when you test a module in isolation, you can
be confident that any bug you find is in that unit (unless
it's in the test driver)

— Regression testing: run tests as often as possible when
changing code. If there is a failure, chances are there's a
mistake in the code you just changed

* When localized to a single method or small module,
bugs can be found simply by studying the program text

Benefits of immediate visibility

* Key difficulty of debugging is to find the code fragment
responsible for an observed problem

— A method may return an erroneous result, but be itself
error free, if there is prior corruption of representation

* The earlier a problem is observed, the easier it is to fix

— For example, frequently checking the rep invariant helps
the above problem

¢ General approach: fail-fast
— Check invariants, don't just assume them
— Don't try to recover from bugs — this just obscures them

How to debug a compiler

Program

* Multiple passes
— Each operate on a complex IR
— Lot of information passing
— Very complex Rep Invariant
— Code generation at the end

* Bug types:
— Compiler crashes @
— Generated programis buggy @

Intermediate
Representation

Don't hide bugs

// k is guaranteed to be present in array a
inti=0;
while (true) {

if (a[i]==k) break;

i++;

}
* This code fragment searches an array a for a value k.

¢ Value is guaranteed to be in the array

« If that guarantee is broken (by a bug),
the code throws an exception and dies.

¢ Temptation: make code more “robust” by not failing

Don't hide bugs

// k is guaranteed to be present in a
inti=0;
while (i<a.length) {

if (a[i]==k) break;

i++;

}

* Now at least the loop will always terminate
— But no longer guarantees that a[i]==k
— If rest of code relies on this, then problems arise later

— All we've done is obscure the link between the bug's
origin and the eventual erroneous behavior it causes.

Don't hide bugs

// k is guaranteed to be present in a
inti=0;
while (i<a.length) {
if (a[i]==k) break;
i++;
}
assert(i<alength) o -

* Assertions let us document and check
invariants
Abort program as soon as problem is detected

10/3/19

Inserting Checks

* Insert checks galore with an intelligent
checking strategy
— Precondition checks
— Consistency checks
— Bug-specific checks

* Goal: stop the program as close to bug as
possible

Use debugger to see where you are, explore
program a bit

Checking For Preconditions

// k is guaranteed to be present in a
inti=0;
while (i<a.length) {
if (a[i]==k) break;
i++;
}

assert (i<a.length) : ;

Precondition violated? Get an assertion!

Downside of Assertions

static int sum(Integer a[], List<Integer> index) {
ints=0;
for (e:index) {
assert(e < a.length, “Precondition violated”);
s=s+ale];
}
return s;
}
Assertion not checked until we use the data
Fault occurs when bad index inserted into list

May be a long distance between fault activation and error detection

checkRep: Data Structure Consistency Checks

static void checkRep(Integer a[], List<Integer> index) {
for (e:index) {
assert(e < a.length, “Inconsistent Data Structure”);
}
}
. Perform check after all updates to minimize
distance between bug occurrence and bug
detection

. Can also write a single procedure to check ALL

data structures, then scatter calls to this
procedure throughout code

Bug-Specific Checks

static void check(Integer a[], List<Integer> index) {
for (e:index) {
assert(e |= 1234, “Inconsistent Data Structure”);
}
}

Bug shows up as 1234 in list
Check for that specific condition

10/3/19

_ Ariane 5 rocket (1996)
Checks In Production Code v —

———

* Should you include assertions and checks in production code?
— Yes: stop program if check fails — don’t want to
take chance program will do something wrong
— No: may need program to keep going, maybe bug
does not have such bad consequences
— Correct answer depends on context!

* Ariane 5 — program halted because of overflow in unused value,
exception thrown but not handled until top level, rocket crashes...

