
10/3/19

1

CS 520
Theory and Practice of Software Engineering

Fall 2019

Debugging

October 3, 2018

Ways to get your code right
• Validation

– Purpose is to uncover problems and increase confidence
– Combination of reasoning and test

• Debugging
– Finding out why a program is not functioning as intended

• Defensive programming
– Programming with validation and debugging in mind

• Testing ≠ debugging
– test: reveals existence of problem
– debug: pinpoint location + cause of problem

A bug – September 9, 1947
US Navy Admiral Grace Murray Hopper, working on Mark I at Harvard A Bug’s Life

• Defect – mistake committed by a human
• Error – incorrect computation
• Failure – visible error: program violates its

specification
• Debugging starts when a failure is observed

– Unit testing
– Integration testing
– In the field

Defense in depth
1. Make errors impossible

– Java makes memory overwrite bugs impossible
2. Don’t introduce defects

– Correctness: get things right the first time
3. Make errors immediately visible

– Local visibility of errors: best to fail immediately
– Example: checkRep() routine to check representation invariants

4. Last resort is debugging
– Needed when effect of bug is distant from cause
– Design experiments to gain information about bug

• Fairly easy in a program with good modularity, representation hiding,
specs, unit tests etc.

• Much harder and more painstaking with a poor design, e.g., with rampant
rep exposure

First defense: Impossible by design

• In the language
– Java makes memory overwrite bugs impossible

• In the protocols/libraries/modules
– TCP/IP will guarantee that data is not reordered
– BigInteger will guarantee that there will be no overflow

• In self-imposed conventions
– Hierarchical locking makes deadlock bugs impossible
– Banning the use of recursion will make infinite recursion/insufficient

stack bugs go away
– Immutable data structures will guarantee behavioral equality
– Caution: You must maintain the discipline

10/3/19

2

Second defense: correctness
• Get things right the first time

– Don’t code before you think! Think before you code.
– If you're making lots of easy-to-find bugs,

you're also making hard-to-find bugs
– don't use compiler as crutch

• Especially true, when debugging is going to be hard
– Concurrency
– Difficult test and instrument environments
– Program must meet timing deadlines

• Simplicity is key
– Modularity

• Divide program into chunks that are easy to understand
• Use abstract data types with well-defined interfaces
• Use defensive programming; avoid rep exposure

– Specification
• Write specs for all modules, so that an explicit, well-defined contract

exists between each module and its clients

Third defense: immediate visibility
• If we can't prevent bugs, we can try to localize them to

a small part of the program
– Assertions: catch bugs early, before failure has a chance to

contaminate (and be obscured by) further computation
– Unit testing: when you test a module in isolation, you can

be confident that any bug you find is in that unit (unless
it's in the test driver)

– Regression testing: run tests as often as possible when
changing code. If there is a failure, chances are there's a
mistake in the code you just changed

• When localized to a single method or small module,
bugs can be found simply by studying the program text

Benefits of immediate visibility
• Key difficulty of debugging is to find the code fragment

responsible for an observed problem
– A method may return an erroneous result, but be itself

error free, if there is prior corruption of representation
• The earlier a problem is observed, the easier it is to fix

– For example, frequently checking the rep invariant helps
the above problem

• General approach: fail-fast
– Check invariants, don't just assume them
– Don't try to recover from bugs – this just obscures them

How to debug a compiler

• Multiple passes
– Each operate on a complex IR
– Lot of information passing
– Very complex Rep Invariant
– Code generation at the end

• Bug types:
– Compiler crashes
– Generated program is buggy

Program

Front End

Intermediate

Representation

Optimization

Intermediate

Representation

Optimization

Intermediate

Representation

Code GenerationExecutableRUN

J
L

Don't hide bugs
// k is guaranteed to be present in array a
int i = 0;
while (true) {

if (a[i]==k) break;
i++;

}

• This code fragment searches an array a for a value k.
• Value is guaranteed to be in the array
• If that guarantee is broken (by a bug),

the code throws an exception and dies.
• Temptation: make code more “robust” by not failing

Don't hide bugs
// k is guaranteed to be present in a
int i = 0;
while (i<a.length) {

if (a[i]==k) break;
i++;

}

• Now at least the loop will always terminate
– But no longer guarantees that a[i]==k
– If rest of code relies on this, then problems arise later
– All we've done is obscure the link between the bug's

origin and the eventual erroneous behavior it causes.

10/3/19

3

Don't hide bugs
// k is guaranteed to be present in a
int i = 0;
while (i<a.length) {

if (a[i]==k) break;
i++;

}
assert (i<a.length) : "key not found";

• Assertions let us document and check
invariants
Abort program as soon as problem is detected

Inserting Checks

• Insert checks galore with an intelligent
checking strategy
– Precondition checks
– Consistency checks
– Bug-specific checks

• Goal: stop the program as close to bug as
possible
Use debugger to see where you are, explore
program a bit

Checking For Preconditions

// k is guaranteed to be present in a
int i = 0;
while (i<a.length) {

if (a[i]==k) break;
i++;

}
assert (i<a.length) : "key not found";

Precondition violated? Get an assertion!

Downside of Assertions
static int sum(Integer a[], List<Integer> index) {

int s = 0;
for (e:index) {

assert(e < a.length, “Precondition violated”);
s = s + a[e];

}
return s;

}
Assertion not checked until we use the data
Fault occurs when bad index inserted into list
May be a long distance between fault activation and error detection

checkRep: Data Structure Consistency Checks

static void checkRep(Integer a[], List<Integer> index) {
for (e:index) {

assert(e < a.length, “Inconsistent Data Structure”);
}

}

• Perform check after all updates to minimize
distance between bug occurrence and bug
detection

• Can also write a single procedure to check ALL
data structures, then scatter calls to this
procedure throughout code

Bug-Specific Checks
static void check(Integer a[], List<Integer> index) {

for (e:index) {
assert(e != 1234, “Inconsistent Data Structure”);

}
}

Bug shows up as 1234 in list
Check for that specific condition

10/3/19

4

Checks In Production Code
• Should you include assertions and checks in production code?

– Yes: stop program if check fails – don’t want to
take chance program will do something wrong

– No: may need program to keep going, maybe bug
does not have such bad consequences

– Correct answer depends on context!
• Ariane 5 – program halted because of overflow in unused value,

exception thrown but not handled until top level, rocket crashes…

Ariane 5 rocket (1996)

