CS 520

Theory and Practice of Software Engineering
Fall 2019

Software testing

October 1, 2019

9/30/19

Final project

https://people.cs.umass.edu/~brun/class/2019Fall/CS520/finalProject.pdf

e Four choices:

o MSR 2020 Mining Challenge

o Replication study

o Mechanical-Turk-based user study of bias in ad recommendation systems

o EleNa: Elevation-based Navigation

Group and Project selection due Thur, Oct 17

Today

Introduction to software testing

e Blackbox vs. whitebox testing
e Unit testing (vs. integration vs. system testing)
e Test adequacy

o Structural code coverage

m Statement coverage
m Decision coverage
m Condition coverage

o Mutation analysis

Software testing

What can testing do, and what can'’t it do”?

Software testing can show the presence of defects,
but never show their absence! (Edsger W. Dijkstra)

e A good test is one that fails because of a defect.

How do we come up with good tests?

Two strategies: black box vs. white box

Black box testing
e The system is a black box (can’t see inside).
o No knowledge about the internals of a system.
o Create tests solely based on the specification (e.g.,
input/output behavior).
White box testing
o Knowledge about the internals of a system.
o Create tests based on these internals (e.g., exercise a
particular part or path of the system).

Unit testing, integration testing, system testing

Unit testing
e Does each unit work as specified?

Integration testing
e Do the units work when put together?

System testing
e Does the system work as a whole?

Our focus: unit testing

https://people.cs.umass.edu/~brun/class/2019Fall/CS520/finalProject.pdf

Unit testing

e A unit is the smallest testable part of the software system.
e Goal: Verify that each software unit performs as specified.

e Focus:
o Individual units (not the interactions between units).

o Usually input/output relationships.

9/30/19

Software testing

Software testing can show the presence of defects,
but never show their absence! (Edsger W. Dijkstra)

e A good test is one that fails because of a defect.

When should we stop testing if no (new) test fails?

Test effectiveness

Ratio of detected defects is the best effectiveness metric!

Problem
e The set of defects is unknowable

Solution
e Use a proxy metric, for example code coverage

Structural code coverage: live example

Average of the absolute values of an array of doubles

public double avgAbs(double ... numbers) {
// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == @) {

throw new IllegalArgumentException(“Array numbers must not be null or
empty!");

double sum = 8;
for (int i=e; i<numbers.length; ++i) {
double d = numbers[i];

if (d < o) {
sum -= d;
} else {

}

return sum/numbers.length;

Control Flow Graph (CFG)

throw new
“Array @ must not be null or empty!”)

return sum/a.length
num = a[i]
sum += num

Statement coverage

e Every statement in the program must be
executed at least once

e Given the control-flow graph (CFG), this is
equivalent to node coverage

Statement coverage

a==null || throw ne

9/30/19

ew llleg
alength==0 “Array a must not be nuil or empty!")

Condition coverage vs. decision coverage

Terminology
e Condition: a boolean expression that cannot be decomposed into
simpler boolean expressions.

e Decision: a boolean expression that is composed of conditions, using
0 or more logical connectors (a decision with 0 logical connectors is a
condition).

e Example: if (x<5) && (y>7)){ ... }

m (x<5) and (y>7) are conditions.
m The boolean expression ((x<5) && (y>7)) is a decision.

Decision coverage (a.k.a. branch coverage)

e Every decision in the program must take on
all possible outcomes (true/false) at least once
e Given the CFG, this is equivalent to edge coverage
e Example: if (a>0 && b>0)
o a=1,b=1
o a=0,b=0

decision coverage

a==null || throw new llleg " m
“Aray a st ot be rutor empty) |G

return sum/a.length

sum += num

Condition coverage

e Every condition in the program must take on
all possible outcomes (true/false) at least once
e Example: (a>0 && b>0)
o a=1,b=0
o a=0, b=1

condition coverage

true_["throw new llleg:

“Array a must not be null or empty!”) W

return sum/a.length
num = a[i]
sum += num

9/30/19

subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

e Subsumption relationships:
o Does decision coverage subsume statement coverage?
o Does decision coverage subsume condition coverage?

o Does condition coverage subsume decision coverage?

Decision coverage vs. condition coverage

4 possible tests for the decision a || b:

1.a=0,b=0 a bl allb a bl allb

2.a=0,b=1 oo o 5o .

3. a=1,b=0

4. a=1,b=1 o1 1 o1 1
1.0 1 10 1

11 1 11 1

Satisfies decision coverage
but not condition coverage

Satisfies condition coverage
but not decision coverage

Neither coverage criterion subsumes the other!

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

e Subsumption relationships:
o Decision coverage subsumes statement coverage
o Decision coverage does not subsume condition coverage

o Condition coverage does not subsume decision coverage

Code coverage: advantages

Classes in this File Line Coverage Branch Coverage Complexity
Ava oo% |G Lo
1 package avg;
2
314 public class Avg {
4
5
6
7
8
9
10 4
112
12
13
14 2
158
16 6
17 6
182
o

e Code coverage is easy to compute.
e Code coverage has an intuitive interpretation.

But, does coverage ensure effective testing?

Code coverage: drawbacks

Classes in this File Line Coverage. Branch Coverage. Complexity
Lo

100 INGHONI

E

package avg;

4 public class Avs {

EScmvonsuwnn

e Code coverage does not require test assertions.
o Not all statements etc. are equally important.
e Coverage is not the same as behavior.

Are there any alternatives?

Mutation analysis: overview

Mutation analysis: overview

suite
Generate
mutants
Mutants II

Mutation analysis: overview

2 LN
i > , {

£Loat (Sim = 07)

Program |------ for oat :
return am data.length;

Generate

mutants - T ™
public float avg(float[] data) {

: data) {

return sum data.length;

[Each mutant contains one small syntactic change]

Mutation analysis: overview

Program f------ f t
sum += num;

3. length;

Generate
mutants

Mutation analysis: overview

------ ‘.

loat avg(float[] data) {
num : data) {
Generate
mutants
Toat avg)

at [] data)

(
2t [] date bl

1 1) {
(float[] data) {

sum = 0;
bat num : data)

um += num;

return (sum * data.length;

Mutation analysis: overview

Test
Program §
i
Generate
mutants

Execute
test suite

Mutant

detection
rate

Mutation analysis: overview

Test
Program §
e
Generate
mutants

Mutant
detection
rate

Execute
test suite

Assumption: Mutant detection rate is a good proxy for fault detection rate.

What does it mean for a test to fail on a mutant program?

9/30/19

Mutation analysis: example Mutation analysis: another example

Find a test case that detects the following mutant Find a test case that detects the following mutant (i.e.,
(i.e., passes on the original program but fails on the mutant) passes on the original program but fails on the mutant)
Original program: Original program:

publri‘:tlij:ﬁ :i:<in: :’ :i:; P} { a b Original| Mutant pUblizti:ﬁ r:i:(ti)n;: Z’ :iz‘;c b) { There is no such test that

can detect the mutant...

} 1.2 1 1 }
11 1 1 The mutant is undetectable
Mutant: 21 1 2 Mutant: because it is equivalent to
public int min(int a, int b) { public int min(int a, int b) { the original program!
return a; return a <= b ? a : b;
} }
Summary

e Testing is an important way to measure code quality
e Black-box testing
o White-box testing
e Coverage metrics

o Statement
o Condition

o Decision

e Mutation-based metric

For more, read:
“Are mutants a valid substitute for real faults in software testing?” in FSE 2014

