
9/16/19

1

CS 520
Theory and Practice of Software Engineering

Fall 2019

Object Oriented (OO) Design Principles

September 17, 2019

Today

● Code review and (re)design of an MVC application
● OO design principles

○ Information hiding (and encapsulation)
○ Polymorphism
○ Open/closed principle
○ Inheritance in Java
○ The diamond of death
○ Liskov substitution principle
○ Composition/aggregation over inheritance

Let’s review the code of the following application

Source code available on the course web site

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

Information hiding

MyClass
+ nElem : int
+ capacity : int
+ top : int
+ elems : int[]
+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

public class MyClass {
public int nElem;
public int capacity;
public int top;
public int[] elems;
public boolean canResize;
...
public void resize(int s){...}
public void push(int e){...}
public int capacityLeft(){...}
public int getNumElem(){...}
public int pop(){...}
public int[] getElems(){...}

}

Information hiding

MyClass
+ nElem : int
+ capacity : int
+ top : int
+ elems : int[]
+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

public class MyClass {
public int nElem;
public int capacity;
public int top;
public int[] elems;
public boolean canResize;
...
public void resize(int s){...}
public void push(int e){...}
public int capacityLeft(){...}
public int getNumElem(){...}
public int pop(){...}
public int[] getElems(){...}

}

What does MyClass do?

9/16/19

2

Information hiding

Stack
+ nElem : int
+ capacity : int
+ top : int
+ elems : int[]
+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

Anything that could be improved in this implementation?

public class Stack {
public int nElem;
public int capacity;
public int top;
public int[] elems;
public boolean canResize;
...
public void resize(int s){...}
public void push(int e){...}
public int capacityLeft(){...}
public int getNumElem(){...}
public int pop(){...}
public int[] getElems(){...}

}

Information hiding

Stack
+ nElem : int
+ capacity : int
+ top : int
+ elems : int[]
+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

Stack

+ push(e:int):void
+ pop():int
...

Information hiding:
● Reveal as little information

about internals as possible.
● Separate public interface

from implementation details.
● Reduce complexity.

- elems : int[]
...

Information hiding vs. visibility

Public

???

Private

Information hiding vs. visibility

Public

???

Private

● Protected, package-private,
or friend-accessible (C++).

● Not part of the public API.
● Implementation detail that a

subclass/friend may rely on.

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

A little refresher: what is Polymorphism?

9/16/19

3

A little refresher: what is Polymorphism?

An object’s ability to provide different behaviors.

Types of polymorphism
● Ad-hoc polymorphism (e.g., operator overloading)

○ a + b ⇒ String vs. int, double, etc.

● Subtype polymorphism (e.g., method overriding)
○ Object obj = ...; ⇒ toString() can be overridden in subclasses

obj.toString(); and therefore provide a different behavior.

● Parametric polymorphism (e.g., Java generics)
○ class LinkedList<E> { ⇒ A LinkedList can store elements

void add(E) {...} regardless of their type but still
E get(int index) {...} provide full type safety.

A little refresher: what is Polymorphism?

An object’s ability to provide different behaviors.

Types of polymorphism

● Subtype polymorphism (e.g., method overriding)
○ Object obj = ...; ⇒ toString() can be overridden in subclasses

obj.toString(); and therefore provide a different behavior.

Subtype polymorphism is essential to many OO design principles.

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

Open/closed principle

Software entities (classes, components, etc.) should be:
● open for extensions
● closed for modifications

public static void draw(Object o) {
if (o instanceof Square) {
drawSquare((Square) o)

} else if (o instanceof Circle) {
drawCircle((Circle) o);

} else {
...

}
}

Good or bad design?

Square
+ drawSquare()

Circle
+ drawCircle()

Open/closed principle

Software entities (classes, components, etc.) should be:
● open for extensions
● closed for modifications

public static void draw(Object o) {
if (o instanceof Square) {
drawSquare((Square) o)

} else if (o instanceof Circle) {
drawCircle((Circle) o);

} else {
...

}
}

Violates the open/closed
principle!

Square
+ drawSquare()

Circle
+ drawCircle()

Open/closed principle

Software entities (classes, components, etc.) should be:
● open for extensions
● closed for modifications

public static void draw(Object s) {
if (s instanceof Shape) {

s.draw();
} else {

…
}

}

Square Circle

<<interface>>
Shape

+ draw()

...public static void draw(Shape s) {
s.draw();

}

9/16/19

4

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

Inheritance: (abstract) classes and interfaces

LinkedList

SequentialList
{abstract}

Inheritance: (abstract) classes and interfaces

LinkedList

SequentialList
{abstract}

extends

LinkedList extends SequentialList

Inheritance: (abstract) classes and interfaces

LinkedList

<<interface>>
List

SequentialList
{abstract}

extends

<<interface>>
Deque

LinkedList extends SequentialList

Inheritance: (abstract) classes and interfaces

LinkedList

<<interface>>
List

SequentialList
{abstract}

extends
implements

<<interface>>
Deque

implements

LinkedList extends SequentialList implements List, Deque

Inheritance: (abstract) classes and interfaces

<<interface>>
List

<<interface>>
Collection

<<interface>>
Iterable

9/16/19

5

Inheritance: (abstract) classes and interfaces

<<interface>>
List

<<interface>>
Collection

extends

<<interface>>
Iterable

List extends Iterable, Collection

Inheritance: (abstract) classes and interfaces

LinkedList

<<interface>>
List

SequentialList
{abstract}

<<interface>>
Deque

<<interface>>
Collection

extends

extends extends

implements implements

<<interface>>
Iterable

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

The “diamond of death”: the problem

A
+ getNum():int

D

C
+ getNum():int

...
A a = new D();
int num = a.getNum();
...

The “diamond of death”: the problem

A
+ getNum():int

D

C
+ getNum():int

B
+ getNum():int

...
A a = new D();
int num = a.getNum();
...

Which getNum() method
should be called?

The “diamond of death”: concrete example

Animal
+ canFly():bool

Pegasus

Horse
+ canFly():bool

Bird
+ canFly():bool

Can this happen in Java? Yes, with default methods in Java 8.

9/16/19

6

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

Design principles: Liskov substitution principle

Motivating example
We know that a square is a special kind of a rectangle. So,
which of the following OO designs makes sense?

Rectangle

Square

Square

Rectangle

Design principles: Liskov substitution principle

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Is the subtype requirement fulfilled?

Rectangle
+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Design principles: Liskov substitution principle

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Rectangle
+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Rectangle r =
new Rectangle(2,2);

int A = r.getArea();
int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution principle

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Rectangle
+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Rectangle r =
new Rectangle(2,2);
new Square(2);

int A = r.getArea();
int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution principle

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Violates the Liskov substitution principle!

Rectangle
+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Rectangle r =
new Rectangle(2,2);
new Square(2);

int A = r.getArea();
int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

9/16/19

7

Design principles: Liskov substitution principle

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Rectangle
+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int Rectangle Square

<<interface>>
Shape

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

Inheritance vs. (Aggregation vs. Composition)

Person

Student

public class Student
extends Person{

public Student(){
}

...
}

public class Bank {
Customer c;

public Bank(Customer c){
this.c = c;

}
...

}

Customer

Bank

is-a relationship has-a relationship

Room

Building

public class Building {
Room r;

public Building(){
this.r = new Room();

}
...

}

Design choice: inheritance or composition?

LinkedList

Stack

Hmm, both designs seem valid -- what are pros and cons?

LinkedList

public class Stack<E> implements List<E> {
private List<E> l = new LinkedList<>();
...

}

public class Stack<E>
extends LinkedList<E> {

...
}

Stack

List
<<interface>>

List
<<interface>>

Design choice: inheritance or composition?

Pros
● No delegation methods required.
● Reuse of common state and behavior.

Cons
● Exposure of all inherited methods

(a client might rely on this particular
superclass -> can’t change it later).

● Changes in superclass are likely to break
subclasses.

Composition/aggregation over inheritance allows more flexibility.

Pros
● Highly flexible and configurable:

no additional subclasses required for
different compositions.

Cons
● All interface methods need to be

implemented -> delegation methods
required, even for code reuse.

LinkedList

Stack

LinkedList

Stack

List
<<interface>>

List
<<interface>>

OO design principles: summary

● Information hiding (and encapsulation)
● Open/closed principle
● Liskov substitution principle
● Composition/aggregation over inheritance

