
9/12/19

1

CS 520
Theory and Practice of Software Engineering

Fall 2019

Best and worst programming practices

September 12, 2019

Reminder

Class website:
https://people.cs.umass.edu/~brun/class/2019Fall/CS520/

Reminder

Class website:
https://people.cs.umass.edu/~brun/class/2019Fall/CS520/

Recap: software architecture vs. design

Specification

Architecture

Design

Source code

What’s the difference?

Development
process

Level of
abstraction

Recap: software architecture examples

● Pipe and filter

● N-tier / client-server

● MVC (Model-View-Controller)

grep CS520 grades.csv | cut -f 1 -d ‘,’ | sort | uniq -c
A,CS320,Joe
B,CS520,Jane
...

2 A
1 B
...

Presentation

Business logic

Client

Data access DB

View Controller

Model

Client
sees uses

manipulatesupdates

Recap: software architecture and design goals

Architecture and design goals
● Lower complexity: separation of concerns, well defined interfaces
● Simplify communication
● Allow effort estimation and progress monitoring

View Controller

Model

Client uses

manipulatesupdates

sees
Presentation

Business logic

Data access DB

Client

https://people.cs.umass.edu/~brun/class/2018Fall/CS520/
https://people.cs.umass.edu/~brun/class/2018Fall/CS520/

9/12/19

2

● An in-class discussion on best and worst programming practices.

Today

Specification

Architecture

Design

Source code

Development
process

Level of
abstraction

setup and goals
● 4-person teams
● 6 code snippets
● 4 rounds

○ First round
■ For each of 3 code snippet, decide whether it represents good or bad practice.
■ Goal: discuss and reach consensus on good or bad practice.

○ Second round (known solutions)
■ For each code snippet, try to understand why it is good or bad practice.
■ Goal: come up with one or more explanations or a counter argument.

and then repeat with 3 more code snippets

Round 1: good or bad?
Snippet 1: good or bad?

public File[] getAllLogs(Directory dir) {
if (dir == null || !dir.exists() || dir.isEmpty()) {

return null;
} else {

int numLogs = … // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numLogs; ++i) {

allLogs[i] = … // populate the array
}
return allLogs;

}
}

Snippet 2: good or bad?

public void addStudent(Student student, String course) {
if (course.equals("CS520")) {

cs520Students.add(student);
}
allStudents.add(student)

}

Snippet 3: good or bad?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {

case DEBIT:
… // process debit card
break;

case CREDIT:
… // process credit card
break;

default:
throw new IllegalArgumentException("Unexpected payment type");

}
}

9/12/19

3

Solutions

● Snippet 1: bad

● Snippet 2: bad

● Snippet 3: good

Round 2: why is it good or bad?

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
if (dir == null || !dir.exists() || dir.isEmpty()) {

return null;
} else {

int numLogs = … // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numLogs; ++i) {

allLogs[i] = … // populate the array
}
return allLogs;

}
}

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
if (dir == null || !dir.exists() || dir.isEmpty()) {

return null;
} else {

int numLogs = … // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numLogs; ++i) {

allLogs[i] = … // populate the array
}
return allLogs;

}
}

Don’t return null; return an empty array instead.

File[] files = getAllLogs();
for (File f : files) {

…
}

Snippet 2: short but bad! why?

public void addStudent(Student student, String course) {
if (course.equals("CS520")) {

cs520Students.add(student);
}
allStudents.add(student)

}

Snippet 2: short but bad! why?

public void addStudent(Student student, String course) {
if (course.equals("CS520")) {

cs520Students.add(student);
}
allStudents.add(student)

}

Defensive programming: write the literal first (or add an
explicit assertion).

9/12/19

4

Snippet 3: this is good, but why?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {

case DEBIT:
… // process debit card
break;

case CREDIT:
… // process credit card
break;

default:
throw new IllegalArgumentException("Unexpected payment type");

}
}

Snippet 3: this is good, but why?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {

case DEBIT:
… // process debit card
break;

case CREDIT:
… // process credit card
break;

default:
throw new IllegalArgumentException("Unexpected payment type");

}
}

Type safety using an enum; throws an exception for
unexpected cases (e.g., future extensions of PaymentType).

Round 3: more snippets
Snippet 4: good or bad?

public int getAbsMax(int x, int y) {
if (x<0) {

x = -x;
}
if (y<0) {

y = -y;
}
return Math.max(x, y);

}

Snippet 5: good or bad?

public class ArrayList<E> {
public E remove(int index) {

…
}
public boolean remove(Object o) {

…
}
…

}

Snippet 6: good or bad?

public class Point {
private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() {

return this.x;
}
public int getY() {

return this.y;
}

}

9/12/19

5

Solutions

● Snippet 1: bad

● Snippet 2: bad

● Snippet 3: good

● Snippet 4: bad

● Snippet 5: bad
● Snippet 6: good

Round 4: why is it good or bad?

Snippet 4: also bad! huh?

public int getAbsMax(int x, int y) {
if (x<0) {

x = -x;
}
if (y<0) {

y = -y;
}
return Math.max(x, y);

}

Snippet 4: also bad! huh?

public int getAbsMax(int x, int y) {
if (x<0) {

x = -x;
}
if (y<0) {

y = -y;
}
return Math.max(x, y);

}

Method parameters should be final; use local variables to
sanitize inputs.

Snippet 5: Java API, but still bad! why?

public class ArrayList<E> {
public E remove(int index) {

…
}
public boolean remove(Object o) {

…
}
…

}

Snippet 5: Java API, but still bad! why?

public class ArrayList<E> {
public E remove(int index) {

…
}
public boolean remove(Object o) {

…
}
…

}

Avoid method overloading, which is statically resolved.
Autoboxing/unboxing adds additional confusion.

ArrayList<String> l = new ArrayList<>();
Integer index = new Integer(1);
l.remove(index);

9/12/19

6

Snippet 6: this is good, but why?

public class Point {
private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() {

return this.x;
}
public int getY() {

return this.y;
}

}

Snippet 6: this is good, but why?

public class Point {
private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() {

return this.x;
}
public int getY() {

return this.y;
}

}

Good encapsulation; immutable object.

