CS 520

Theory and Practice of Software Engineering
Fall 2019

Best and worst programming practices

September 12, 2019

9/12/19

Reminder

Class website:
https://people.cs.umass.edu/~brun/class/2019Fall/CS520/

Schedule:

subject to change; check regularly)

week | date |day topic homework project
Sep3 | Tu | Course introduction
Week 1
Sep5 | Th [Software faimess
Week 2 | 5210 | Tu | Software architecture and desien il
Sep 12 | Th | Best and worst practices | Due: Tu September 17,2019, 9:00AM EDT
Sep 17 | Tu | Object oriented design principles
Week 3 [5P i ign principl
Sep 19 | Th | Object oriented design patterns

Sep 24 | Tu | Version control systems
Week 4

Sep 26 | Th | Advanced uses of git

topic selecti
due: Tu Oct 8,2019, 9:00AM EDT

Oct 1| Tu [Callaharation and nair nraorammino

Reminder

Class website:
https://people.cs.umass.edu/~brun/class/2019Fall/CS520/

Instructor: Yuriy Brun
office: 302 computer science building
office hours: Tuesday 11:15PM-12:00PM
email: brun@cs.umass.edu

TA: Joshua Levine
office: CS 207 (cube 1)
office hours: Wednesday 1:00PM—2:00PM
email: joshualevine@cs.umass

Recap: software architecture vs. design

Specification 4™

Architecture

Development Level of
process abstraction

" Source code

What's the difference?

Recap: software architecture examples

e Pipe and filter

A.C3320.400 24
5.c5520.Jane[~] @rep CS520 grades.csv | cutf1-d) | sort | uniq-c [15

< Clent >y

Presentation

Business logic

e N-tier / client-server

Client
e MVC (Model-View-Controller) ___*”~ ¥

N
‘ Controller ‘

PEEN vose [TR

Recap: software architecture and design goals

ciient_> S
~

Presentation

[view | | controller |
ate ipulates
Data access updatcs Model manpd

Architecture and design goals

e Lower complexity: separation of concerns, well defined interfaces
e Simplify communication

e Allow effort estimation and progress monitoring

https://people.cs.umass.edu/~brun/class/2018Fall/CS520/
https://people.cs.umass.edu/~brun/class/2018Fall/CS520/

Today

e An in-class discussion on best and worst programming practices.

Specification

Development Architecture Level of
process abstraction

9/12/19

setup and goals

e 4-person teams
e 6 code snippets
e 4 rounds
o First round
m For each of 3 code snippet, decide whether it represents good or bad practice.
m Goal: discuss and reach consensus on good or bad practice.
o Second round (known solutions)

m For each code snippet, try to understand why it is good or bad practice.
m Goal: come up with one or more explanations or a counter argument.
and then repeat with 3 more code snippets

Round 1: good or bad?

Snippet 2: good or bad?

public void addStudent(Student student,
if (course.equals("CS520")) {
cs520Students.add(student);

String course) {

allStudents.add(student)

Snippet 1: good or bad?

public File[] getAllLogs(Directory dir) {
if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;
} else {
int numLogs =

.. // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numLogs; ++i) {

allLogs[i] = .. // populate the array

return alllogs;

Snippet 3: good or bad?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {

default:

case DEBIT:
.. // process debit card
break;

case CREDIT:

.. // process credit card
break;

throw new IllegalArgumentException(“"Unexpected payment type");

9/12/19

Solutions

Round 2: why is it good or bad?
@ e Snippet 1: bad

e Shippet 2: bad
e Snippet 3: good

?
3

Snippet 1: this is bad! why? f‘v; Snippet 1: this is bad! why? f);
3 3
public File[] getAllLogs(Directory dir) { public File[] getAllLogs(Directory dir) {
if (dir == null || !dir.exists() || dir.isEmpty()) { if (dir == n Idir.exists() || dir.isEmpty()) {
return null; m
} else { } else {
int numLogs = .. // determine number of log files int numLogs = .. // determine number of log files
File[] allLogs = new File[numLogs]; File[] allLogs = new File[numLogs];
for (int i=0; i<numLogs; ++i) { for (int i=0; i<numLogs; ++i) {
allLogs[i] = .. // populate the array allLogs[i] = .. // populate the array
} }
return alllogs; return alllogs;
} } X
} }

File[] files = getAlllLogs();
for (File f : files) {

}
Don’t return null; return an empty array instead.
Snippet 2: short but bad! why? ’%. Snippet 2: short but bad! why? 'i.
public void addStudent(Student student, String course) { public void add udent student, String course) {
if (course.equals("CS520")) { if

i course.equals("CS520" {
cs520Students.add(student); cs520 ents—a udent);

} }
allStudents.add(student) allStudents.add(student)
)) X

Defensive programming: write the literal first (or add an
explicit assertion).

9/12/19

Snippet 3: this is good, but why? f.: Snippet 3: this is good, but why? 7);
S 5
public enum PaymentType {DEBIT, CREDIT} public &num PaymentType {DEBIT, CREDIT
public void doTransaction(double amount, PaymentType payType) { public void doTransaction(double amount,(PaymentType payType) {
switch (payType) { switch (payType) {
case DEBIT: case DEBIT:
.. // process debit card .. // process debit card
break; break;
case CREDIT: case CREDIT:
.. // process credit card .. // process credit card
break; break;
default: defa :
throw new IllegalArgumentException(“"Unexpected payment tyne"); w_IllegalArgumentException(“Unexpected payment)

} }

} “" } “"
Type safety using an enum; throws an exception for

unexpected cases (e.g., future extensions of PaymentType).

Snippet 4: good or bad?

Round 3: more snippets

public int getAbsMax(int x, int y) {
if (x<0) {
X = -X;

}
if (y<0) {
Y= -y

return Math.max(x, y);

Snippet 5: good or bad? Snippet 6: good or bad?

public class Point {
private final int x;
private final int y;

public class ArraylList<E> {
public E remove(int index) {

.) public Point(int x, int y) {
public boolean remove(Object o) { this.x = x

this.y = y;

! }
public int getX() {
} return this.x;

public int getY() {
return this.y;

}

}

9/12/19

Solutions

Round 4: why is it good or bad?
@ e Snippet 1: bad

e Shippet 2: bad
@ e Snippet 3: good

@ e Snippet 4: bad 7
Z e Snippet 5: bad ﬂ.
“ 3

e Snippet 6: good

Snippet 4: also bad! huh? f‘v? Snippet 4: also bad! huh? f)?
B

public int getAbsMax(int x, int y) { public int getAbsMa{
if (x<0) { if e
} }
if (y<@) { if <0) {
y = -y;
} }
return Math.max(x, y); return Math.max(x, y);
¥ X

Method parameters should be final; use local variables to
sanitize inputs.

Snippet 5: Java API, but still bad! why? ’%. Snippet 5: Java API, but still bad! why? f).
public class ArraylList<E> { public class ArraylList<E> {

public E remove(int index) { public E{

} }

public boolean remove(Object o) { public boolea

}3 @)f E

ArrayList<String> 1 = new ArraylList<>();
Integer index = new Integer(1);
1.remove(index);

Avoid method overloading, which is statically resolved.
Autoboxing/unboxing adds additional confusion.

Snippet 6: this is good, but why?

Snippet 6: this is good, but why?

public class Point {
private final int x;
private final int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

gublic int getX() {
return this.x;

}

public int getY() {
return this.y;

y V7

public class Point
private final int x;
rivate final int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() {
return this.x;

public int getY() {
return this.y;

}

3

Good encapsulation; immutable object.

