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Recap: Software Engineering

What is Software Engineering?

The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.
Why is it important?

o Software is everywhere and complex.

o Software defects are expensive (and annoying).

Goals

e Decompose a complex engineering problem.
e Organize processes and effort.

e |Improve software reliability.

e Improve developer productivity.
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Goals

e Decompose a complex engineering problem.
e Organize processes and effort.

e Improve software reliability.
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Today

e Modeling and abstraction

e Software architecture vs. software design
e UML crash course

Software development: the high-level problem

Specification Source code

Software development: the high-level problem

One solution: “Here happens a miracle”

Specification Source code
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Software development: the high-level problem What is modeling?

Another solution: Modeling the architecture and design

Building an abstract representation of reality
Specification

Source code e Ignoring (insignificant) details.
N e Level of abstraction depends on viewpoint and purpose:
A \ o Communication
27?
:&( \«:\]:C o Verification
— ~a_~ o Code generation

e Focusing on the most important aspects/properties.

Is abstraction == simplification?

Different levels of abstraction Different levels of abstraction
Call graph
Source code Source code =
: Layer diagram
Example: Linux Kernel Example: Linux Kernel ([ Ceor appicaion ) )] -
o 16 million Lines of Code! o 16 million Lines of Code! ) (G © brary i)
e What does the code do? e What does the code do? ([ Systamcallintertace ]
e Are there dependencies? e Are there dependencies? [ kma ]
o Are there different layers? e Are there different layers? [ Dovcedives ]
Hardware
Architecture vs. design Software architecture vs. design
Specification 4™ ) Architecture (what components are developed?)
@ e Considers the system as a whole:
a‘ o High-level view of the overall system.
Architecture

o What components exist?

o What type of storage, database, communication, etc?
Level of
abstraction

Design (how are the components developed?)
e Considers individual components:
o Data representation

o Interfaces, Class hierarchies
o ...
' Source code -

Development
process

What's the difference?
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A first example 7/.

E:CSSZOIJuan ???

A,CS520,Jon
sl

Goal: group and count CS520 grades.

Architecture or design pattern?

B,CS520,Juan 2A
grep CS520 grades.csv | cut-f1-d ‘" | sort | uniq -c 1B

A,C$520,Jon

-

Software architecture: Pipe and Filter

2A
grep CS520 grades.csv | cut-f1-d ;| sort | uniq -c ):9‘ 1B

B,CS520,Juan
B,CS320,Juan
A,CS520,Jane
A,CS520,Jon

e

The architecture doesn’t specify the design or implementation
details of the individual components (filters)!

Software architecture: Client-server / n-tier

< Client >

Presentation

|

‘ Business logic ‘

Data access

Simplifies reusability, exchangeability, and distribution.

Software architecture: Model View Controler

~ Client
sees,

Nes

Controller

Separates data representation (Model),
visualization (View), and client interaction (Controller)

Model View Controler: example

. . 01/01-> 0
Simple weather station 01/02-> - 5
01/03 -> -10

Current 30 day history L-lot04>- 4

25°F ~| .

Reset history
button

4°C min: 20° F K/\JJ
max: 35° F Temp. sensor




9/11/19

Model View Controler: example Model

Simple weather station

Current 30 day history

25°F Ly“-’\/

View

Reset history
button

Controler

Summary: Software architecture vs. design

Glient >
1

Presentation layer

Seﬁ/Q;fLe"ﬁ/ uses

Y

™ View

‘ Controller ‘

Business logic layer

Data access layer

updates

Model

manipulates

4°C min: 20° F f\/\f\J
max: 35° F Temp. sensor

Architecture and design goals

e Lower complexity: separation of concerns, well defined interfaces

e Simplify communication

o Allow effort estimation and progress monitoring

UML crash course

The main questions

e \What is UML?

e |s it useful, why bother?
e \When to (not) use UML?

What is UML?

Unified Modeling Language.

Developed in the mid 90’s, improved since.
Standardized notation for modeling OO systems.
A collection of diagrams for different viewpoints:

Use case diagrams
Component diagrams
Class and Object diagrams
Sequence diagrams
Statechart diagrams
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Are UML diagrams useful?
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Are UML diagrams useful?

Communication

e Forward design (before coding)
o Brainstorm ideas (on whiteboard or paper).
o Draft and iterate over software design.

Documentation
e Backward design (after coding)
o Obtain diagram from source code.
Code generation
e Generating source code from diagrams is challenging.
e Code generation may be useful for skeletons.
In this class, we will use UML class diagrams mainly for
visualization and discussion purposes.

Classes vs. objects

Class

e Grouping of similar objects.
o Student
o Car
e Abstraction of common properties and behavior.

o Student: Name and Student ID
o Car: Make and Model

Object
o Come from the real world.

e Instance of a class
o Student: Juan (4711), Jane (4712), ...
o Car: Audi A6, Honda Civic, Tesla S,...

UML class diagram: basic notation

MyClass

UML class diagram: basic notation

Name
MyClass

Attributes

<visibility> <names> : <types

- attrl : type

Methods

<visibility> <names(<params*) : <return types
<params> := <name> : <type>

+ foo() : ret_type

UML class diagram: basic notation

Name
MyClass

- attrl : type
# attr2 : type
+ attr3 : type

Attributes

<visibility> <name> : <types

~ bar(a:type) : ret_type Methods
+ -Foo() : ret_type <visibility> <name>(<param>*) : <return type>
- <param> := <names> : <type>

Visibility

- private

~ package-private
# protected

+ public
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UML class diagram: basic notation

Name
MyClass
- attrl : type Attributes
# attr2 : type <visibility> <name> : <type>
£attrd : Lvpe L syafic attributes or methods are underlined
= : : 4 Methods
+ foo() : ret_type <visibility> <names(<params*) : <return types
- <params := <name> : <type>
Visibility
- private

~ package-private
# protected
+ public

UML class diagram: concrete example

public class Person { Person
¥
public class Student Student
extends Person {
private int id; - id : int
public Student(String name, + Student(name:String, id:int)
int id) { + getId() : int
}

public int getId() {
return this.id;

} ¥ when you have code?

So why bother with UML

Classes, abstract classes, and interfaces

MyClass MyAbstractClass <<interface>>
{abstract} MylInterface

Classes, abstract classes, and interfaces

MyClass MyAbstractClass <«<interface>>
{abstract} MylInterface
public class MyClass { public abstract class public interface

MyAbstractClass { MyInterface {

public void op() { public abstract void op(); public void op();

e

public int op2() { public int op2() { public int op2()

, .. , .. }

} }

Level of detail in a given class or interface may vary and
depends on context and purpose.

UML class diagram: Inheritance

SuperClass <<interface>>
Anlnterface
B

.
. . .
is-a relationship, #

.

.
.
,

SubClass

public class SubClass extends SuperClass implements AnInterface

UML class diagram: Aggregation and Composition

Aggregation Composition

has-a relationship has-a relationship

e Existence of Part does not depend
on the existence of Whole.

e Lifetime of Part does not depend
on Whole.

e No single instance of whole is the
unique owner of Part (might be shared
with other instances of Whole).

e Part cannot exist without Whole.

o Lifetime of Part depends on Whole.

e One instance of Whole is the single
owner of Part.




Aggregation or Composition?

Room Customer

Il

2|2
Building Bank
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Aggregation or Composition?

Composition Aggregation

Customer

Building

What about class and students or body and body parts?

UML class diagram: multiplicity

[~ F { e ]
Each A is associated with exactly one B
Each B is associated with exactly one A

[ ]

Each A is associated with any number of Bs
Each B is associated with exactly one or two As

UML class diagram: navigability

[ 2] [ ® ]
Navigability: not specified
A » B
Navigability: unidirectional

“can reach B from A”

[ 2] [ ® ]
Navigability: bidirectional

UML class diagram: example

Summary: UML

Unified notation for modeling OO systems.

Allows different levels of abstraction.

Suitable for design discussions and documentation.
Generating code from diagrams is challenging.




