CS 520

Theory and Practice of Software Engineering
Fall 2019

Software architecture and design/UML crash course

September 10, 2019

9/11/19

Recap: Software Engineering

What is Software Engineering?

The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.
Why is it important?

o Software is everywhere and complex.

o Software defects are expensive (and annoying).

Goals

e Decompose a complex engineering problem.
e Organize processes and effort.

e |Improve software reliability.

e Improve developer productivity.

Recap: Software Engineering

What is Software Engineering?

The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.
Why is it important?

e Software is everywhere and complex.

e Software defects are expensive (and annoying).

Goals

e Decompose a complex engineering problem.
e Organize processes and effort.

e Improve software reliability.

e Improve developer productivity.

Today

e Modeling and abstraction

e Software architecture vs. software design
e UML crash course

Software development: the high-level problem

Specification Source code

Software development: the high-level problem

One solution: “Here happens a miracle”

Specification Source code

< \\4
e N ———
c Y
_— ~ M~

9/11/19

Software development: the high-level problem What is modeling?

Another solution: Modeling the architecture and design

Building an abstract representation of reality
Specification

Source code e Ignoring (insignificant) details.
N e Level of abstraction depends on viewpoint and purpose:
A \ o Communication
27?
:&(\«:\]:C o Verification
— ~a_~ o Code generation

e Focusing on the most important aspects/properties.

Is abstraction == simplification?

Different levels of abstraction Different levels of abstraction
Call graph
Source code Source code =
: Layer diagram
Example: Linux Kernel Example: Linux Kernel ([Ceor appicaion))] -
o 16 million Lines of Code! o 16 million Lines of Code!) (G © brary i)
e What does the code do? e What does the code do? ([Systamcallintertace]
e Are there dependencies? e Are there dependencies? [kma]
o Are there different layers? e Are there different layers? [Dovcedives]
Hardware
Architecture vs. design Software architecture vs. design
Specification 4™) Architecture (what components are developed?)
@ e Considers the system as a whole:
a‘ o High-level view of the overall system.
Architecture

o What components exist?

o What type of storage, database, communication, etc?
Level of
abstraction

Design (how are the components developed?)
e Considers individual components:
o Data representation

o Interfaces, Class hierarchies
o ...
' Source code -

Development
process

What's the difference?

9/11/19

A first example 7/.

E:CSSZOIJuan ???

A,CS520,Jon
sl

Goal: group and count CS520 grades.

Architecture or design pattern?

B,CS520,Juan 2A
grep CS520 grades.csv | cut-f1-d ‘" | sort | uniq -c 1B

A,C$520,Jon

-

Software architecture: Pipe and Filter

2A
grep CS520 grades.csv | cut-f1-d ;| sort | uniq -c):9‘ 1B

B,CS520,Juan
B,CS320,Juan
A,CS520,Jane
A,CS520,Jon

e

The architecture doesn’t specify the design or implementation
details of the individual components (filters)!

Software architecture: Client-server / n-tier

< Client >

Presentation

|

‘ Business logic ‘

Data access

Simplifies reusability, exchangeability, and distribution.

Software architecture: Model View Controler

~ Client
sees,

Nes

Controller

Separates data representation (Model),
visualization (View), and client interaction (Controller)

Model View Controler: example

. . 01/01-> 0
Simple weather station 01/02-> - 5
01/03 -> -10

Current 30 day history L-lot04>- 4

25°F ~| .

Reset history
button

4°C min: 20° F K/\JJ
max: 35° F Temp. sensor

9/11/19

Model View Controler: example Model

Simple weather station

Current 30 day history

25°F Ly“-’\/

View

Reset history
button

Controler

Summary: Software architecture vs. design

Glient >
1

Presentation layer

Seﬁ/Q;fLe"ﬁ/ uses

Y

™ View

‘ Controller ‘

Business logic layer

Data access layer

updates

Model

manipulates

4°C min: 20° F f\/\f\J
max: 35° F Temp. sensor

Architecture and design goals

e Lower complexity: separation of concerns, well defined interfaces

e Simplify communication

o Allow effort estimation and progress monitoring

UML crash course

The main questions

e \What is UML?

e |s it useful, why bother?
e \When to (not) use UML?

What is UML?

Unified Modeling Language.

Developed in the mid 90’s, improved since.
Standardized notation for modeling OO systems.
A collection of diagrams for different viewpoints:

Use case diagrams
Component diagrams
Class and Object diagrams
Sequence diagrams
Statechart diagrams

oo oo o0 o

What is UML?

Unified Modeling Language.
Developed in the mid 90’s, improved since.

Standardized notation for modeling OO systems.

A collection of diagrams for different viewpoints:

oo o o o0 0o

Use case diagrams
Component diagrams
Class and Object diagrams
Sequence diagrams
Statechart diagrams

What is UML?

Unified Modeling Language.

Developed in the mid 90’s, improved since.
Standardized notation for modeling OO systems.
A collection of diagrams for different viewpoints:

Use case diagrams
Component diagrams

Class and Object diagrams
Sequence diagrams
Statechart diagrams

o o o o o0 o

Are UML diagrams useful?

9/11/19

Are UML diagrams useful?

Communication

e Forward design (before coding)
o Brainstorm ideas (on whiteboard or paper).
o Draft and iterate over software design.

Documentation
e Backward design (after coding)
o Obtain diagram from source code.
Code generation
e Generating source code from diagrams is challenging.
e Code generation may be useful for skeletons.
In this class, we will use UML class diagrams mainly for
visualization and discussion purposes.

Classes vs. objects

Class

e Grouping of similar objects.
o Student
o Car
e Abstraction of common properties and behavior.

o Student: Name and Student ID
o Car: Make and Model

Object
o Come from the real world.

e Instance of a class
o Student: Juan (4711), Jane (4712), ...
o Car: Audi A6, Honda Civic, Tesla S,...

UML class diagram: basic notation

MyClass

UML class diagram: basic notation

Name
MyClass

Attributes

<visibility> <names> : <types

- attrl : type

Methods

<visibility> <names(<params*) : <return types
<params> := <name> : <type>

+ foo() : ret_type

UML class diagram: basic notation

Name
MyClass

- attrl : type
attr2 : type
+ attr3 : type

Attributes

<visibility> <name> : <types

~ bar(a:type) : ret_type Methods
+ -Foo() : ret_type <visibility> <name>(<param>*) : <return type>
- <param> := <names> : <type>

Visibility

- private

~ package-private
protected

+ public

9/11/19

UML class diagram: basic notation

Name
MyClass
- attrl : type Attributes
attr2 : type <visibility> <name> : <type>
£attrd : Lvpe L syafic attributes or methods are underlined
= : : 4 Methods
+ foo() : ret_type <visibility> <names(<params*) : <return types
- <params := <name> : <type>
Visibility
- private

~ package-private
protected
+ public

UML class diagram: concrete example

public class Person { Person
¥
public class Student Student
extends Person {
private int id; - id : int
public Student(String name, + Student(name:String, id:int)
int id) { + getId() : int
}

public int getId() {
return this.id;

} ¥ when you have code?

So why bother with UML

Classes, abstract classes, and interfaces

MyClass MyAbstractClass <<interface>>
{abstract} MylInterface

Classes, abstract classes, and interfaces

MyClass MyAbstractClass <«<interface>>
{abstract} MylInterface
public class MyClass { public abstract class public interface

MyAbstractClass { MyInterface {

public void op() { public abstract void op(); public void op();

e

public int op2() { public int op2() { public int op2()

, .. , .. }

} }

Level of detail in a given class or interface may vary and
depends on context and purpose.

UML class diagram: Inheritance

SuperClass <<interface>>
Anlnterface
B

.
. . .
is-a relationship, #

.

.
.
,

SubClass

public class SubClass extends SuperClass implements AnInterface

UML class diagram: Aggregation and Composition

Aggregation Composition

has-a relationship has-a relationship

e Existence of Part does not depend
on the existence of Whole.

e Lifetime of Part does not depend
on Whole.

e No single instance of whole is the
unique owner of Part (might be shared
with other instances of Whole).

e Part cannot exist without Whole.

o Lifetime of Part depends on Whole.

e One instance of Whole is the single
owner of Part.

Aggregation or Composition?

Room Customer

Il

2|2
Building Bank

9/11/19

Aggregation or Composition?

Composition Aggregation

Customer

Building

What about class and students or body and body parts?

UML class diagram: multiplicity

[~ F { e]
Each A is associated with exactly one B
Each B is associated with exactly one A

[]

Each A is associated with any number of Bs
Each B is associated with exactly one or two As

UML class diagram: navigability

[2] [®]
Navigability: not specified
A » B
Navigability: unidirectional

“can reach B from A”

[2] [®]
Navigability: bidirectional

UML class diagram: example

Summary: UML

Unified notation for modeling OO systems.

Allows different levels of abstraction.

Suitable for design discussions and documentation.
Generating code from diagrams is challenging.

