CS 520

Theory and Practice of Software Engineering
Fall 2019

Software Fairness

September 5, 2019



TOM CRUISE

1 STEVEN SPRELBERG paw

MINORITY
REPORIT




TOM CRUISE

Resilient cities Cities

Predicting crime, LAPD-style

Cutting edge data-driven analysis directs Los Angeles patrol
officers to likely future crime scenes - but critics worry that
decision-making by machine will bring 'tyranny of the
algorithm'

@ Join our live Q&A with Homicide Watch this Friday

Rmu\
?(‘.‘\l’l'l A I I

A PredPol co-developer P Jeffrey Brantingham at the Unified Command Post in Los Angeles. 'This is not Minority

Report,' he said. Photograph: Damian Dovarganes/AP R R -
LW

https://www.theguardian.com/éifiés/201 4/jun/25/predicting-crime-lapd-los-angeles-police-data-analysis-algorithm-minority-report
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On Orbitz, Mac Users Steered to Pricier Hotels
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On Orbitz, Mac Users See Costlier
Hotel Options

IR The Skills Gap Ts No
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& Cloud I'T Infrastructure
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Orbitz has found that Apple users spend as much as 30% more a night on hotels, so the online travel site is starting to show them
different, and sometimes costlier, options than Windows visitors see. Dana Mattioli has details on The News Hub. Photo: Bloomberg.

By Dana Mattioli
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The Algorithm That Beats Your Bank Manager
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Minority homebuyers face widespread statistical lending
discrimination, study finds

By Laura Counts | NOVEMBER 13,2018

Face-to-face meetings between mortgage officers and homebuyers have been rapidly replaced by online
applications and algorithms, but lending discrimination hasn't gone away. b

A new University of California, Berkeley study has found that both online and face toace lenders charge "
hlger interest rates to African American and Latino borrowe nl’g to ’ t |er prt . on
loans. vItoId those hoers pau‘ to half a billion dollars more in interest e ery earvthahlte 1S
borrowers with comparable credit scores do, researchers found.

The findings raise legal questions about the rise of statistical discrimination in the fintech era, and point to
potentially widespread violations of U.S. fair lending laws, the researchers say. While lending discrimination 1
has historically been caused by human prejudice, pricing disparities are increasingly the result of algorithms

that use machine learning to target applicants who might shop around less for higher-priced loans.
l

“The mode of lending discrimination has shifted from human bias to algorithmic bias,” said study co-author
Adair Morse, a finance professor at UC Berkeley’'s Haas School of Business. “Even if the people writing the
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Wisconsin Supreme Court allows
state to continue using computer
program to assist in sentencing

KATELYN FERRAL | The Capital Times | kferral@madison.com | @katelynferral Jul 13,2016
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Machine Bias

There's software used across the country to predict future criminals. And it's
biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23,2016

Software can make bad decisions.
Software can discriminate!

Just as the 18-year-old girls were realizing they were too big for the tiny conveyances —
which belonged to a 6-year-old boy — a woman came running after them saying, “That’s
my kid’s stuff.” Borden and her friend immediately dropped the bike and scooter and
walked away.

But it was too late — a neighbor who witnessed the heist had already called the police.
Borden and her friend were arrested and charged with burglary and petty theft for the
itemns, which were valued at a total of $80.
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how people want to use vision software



how people want to use vision software

SEE A DEMO

The predictive power of a traditional assessment in a video interview.
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» Predictive assessments tied to higher quality hires
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today's goals

Define software discrimination.

Operationalize measuring discrimination
through causal software testing.

Provide provable fairness guarantees.
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Design software to be fair

2011 11th 1EEE International Conference on Data Mining

Discrimination Aware Decision Tree Learning
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Design alone Is not enough
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Fairness is just like
quality and security

Fairness must be part of the
software engineering lifecycle



Call to Action!

Fairness must be part of the
software engineering lifecycle

Requirements

Verification




Let’s talk about requirements.

What does it mean for
software to discriminate?



LOAN program

This talk is not about policy.



Fairness: Disparate Treatment

Hide the data

Zafar et al. Fairness constraints: Mechanisms for fair classification. AISTATS 2017.



Fairness: Disparate Treatment

Hide the data
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Ads by Google

Latanya Sweeney, Arrested?

1) Enter Name and State. 2) Access Full Background
Checks Instantly.

www.instantcheckmate.com/

v
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Ineffective because of data correlation.

[Latanya Sweeney. Discrimination in online ad delivery. CACM 201 3]




businessinsider.com

— BUSINESS INSIDER TECH NEWS

Amazon just showed us that 'unbiased' Recommended For You
algorithms can be inadvertently racist None of it makes much sense:

Experts are baffled by Comey's
use of a fake Russian document
Rafi Letzter w to skirt the DOJ
®© Apr. 21,2016, 4:50PM A 1,259
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Average internet connection speed in Q3 2016 (in Mbps!

A Bloomberg report
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Amazon built an Al tool to hire people but had to shut it down
because it was discriminating against women

Isobel Asher Hamilton 4h

Amazon tried building an artificial-intelligence tool to help with
recruiting, but it showed a bias against women, Reuters reports.

Engineers reportedly found the Al was unfavorable toward
female candidates because it had combed through male-
dominated résumés to accrue its data.

Amazon reportedly abandoned the project at the beginning of
2017.

disparate treatment: still not fair

Amazon w

uwrith hirino

https://www.businessinsider.com/amazon-built-ai-to-hire-people-discriminated-against-women-2018-10



Fairness: Demographic Parity

Compare subpopulation proportions

APPROVED

L)

(W) Bg, (N
}-.\_ s o'’ -“

often called group discrimination

Fails to identify discrimination against individuals.

Dwork et al. Fairness through awareness. ITCS 2012.
Calders and Verwer. Three naive Bayes approaches for discrimination-free classification. DMKD 2010.



How group discrimination can falil

Asia

approve loans to all deny approve loans to all deny
loans to all applicants loans to all applicants

European and Asian discriminations cancel each other out,
and the group discrimination measure can be 0.



Fairness: Disparate Impact

Prohibits using a facially neutral practice

that has an unjustified adverse impact on
members of a protected class.

80% rule: Employer’s hiring rates for protected
groups may not differ by more than 80%.

Zafar et al. Fairness constraints: Mechanisms for fair classification. AISTATS 2017.



Fairness: Delayed Impact

Making seemingly fair decisions can

(but shouldn’t), in the long term,
produce unfair conseguences

Liu et al., Delayed impact of fair machine learning. ICML 2018



Fairness: Predictive Equalit

False positive rates should not differ

Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. FATML 2016
Corbett-Davies. Algorithmic decision making and the cost of fairness. KDD 2017

Fairness: Equal Opportunity

False negative rates should not differ

Hardt et al. Equality of Opportunity in Supervised Learning. NIPS 2016
Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments FATML 2016
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Fairness: Correlation

correlation(race,l APPROVED ) =0.8

mutual information(race,| APPROVED |) = 0.6

Correlation does not measure causation

Atlidakis et al. FairTest: Discovering unwarranted associations in data-driven applications. EuroS&P 2017



What is fairness?

Sensitive inputs should not affect
software behavior.

We want to measure causality!

Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys 2009



causal testing

Sensitive inputs should not affect g

software behavior.

Galhotra, Brun, and Meliou, Fairness Testing: Testing Software for Discrimination. ESEC/FSE 2017



causal testing




ing

causal test
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Themis

How much does my software
discriminate with respect to ...?

Does my software discriminate more
than 10% of the time, and against what?

Themis generates a test suite or can use a manually written one

http://fairness.cs.umass.edu

Angell, Johnson, Brun, and Meliou, Themis: Automatically Testing Software for Discrimination. ESEC/FSE 2018 Demo


http://fairness.cs.umass.edu
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How does Themis work?

adaptive, confidence-driven sampling

iInput schema
T

confidence— it Sl o A Mﬂ;p)

eworbound////, =

sound pruning

race race race race
age age age

gender gender

location



Evaluation

Eight open-source decision systems trained on two public data sets

discrimination-aware logistic regression [88]
discrimination-aware decision tree [40] e Census income dataset:
L _ financial data
discrimination-aware naive Bayes [18] 45K people
' ?
discrimination-aware decision tree [91] income > $50K"
naive Bayes e Statlog German credit dataset:
credit data
decision t
ecision tree <cikit- 1K people
. | learn “good” or “bad” credit?
logistic regression
SVM




findings
Group discrimination is not enough.

More than 11% of the individuals had the output
flipped just by altering the individual’s gender.

Decision tree trained not to group discriminate against
gender causal discriminated against gender: 0.11.



findings

Trying to avoid group discrimination
may introduce other discrimination.

Training a decision tree not to discriminate against gender
made it discriminate against race 38.4% of the time.



findings

Pruning is highly effective.

® The more a system discriminates, the more efficient
Themis is.

® On average, pruning reduced test suites by for
causal and for group discrimination. Best
Improvement was



What are we doing now?
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Amazon’s Face Recognition Falsely Matched 28
Members of Congress With Mugshots

A / By Jacob Snow, Technology & Civil Liberties Attorney, ACLU of Northern California
JULY 26, 2018 | 8:00 AM

TAGS: Face Recognition Technology, Surveillance Technologies, Privacy & Technology

0066

“The false matches were disproportionately of people of color, including six members of the
Congressional Black Caucus, among them civil rights legend Rep. John Lewis (D-Ga.).”

nationwide, and today, there are 28
more causes for concern. In a test the
ACLU recently conducted of the facial
recognition tool, called “Rekognition,”
the software incorrectly matched 28
members of Congress, identifying
them as other people who have been

arrested for a crime.

The members of Congress who were




What are we doing now?
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Amazon’s Face Recoghnition Falsely Matched 28

Members of Congress With Mugshots Fai F O p Ute r Vi S i on

¢ By Jacob Snow, Technology & Civil Liberties Attorney, ACLU of Northern California

A |
ﬁ'&; JULY 26,2018 | 8:00 AM
9

TAGS: Face Recognition Technology, Surveillance Technologies, Privacy & Technology

00660

Amazon’s face surveillance technology
is the target of growing opposition
nationwide, and today, there are 28
more causes for concern. In a test the
ACLU recently conducted of the facial

recognition tool, called “Rekognition.”

ps://thiSpersondoesnot:



https://thispersondoesnotexist.com/

What are we doing now?
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A ¢4 By Jacob Snow, Technology & Civil Liberties Attorney, ACLU of Northern California
JULY 26, 2018 | 8:00 AM

TAGS: Face Recognition Technology, Surveillance Technologies, Privacy & Technology

00660

Amazon’s face surveillance technology
is the target of growing opposition
nationwide, and today, there are 28
more causes for concern. In a test the
ACLU recently conducted of the facial
recognition tool, called “Rekognition,”
the software incorrectly matched 28

members of Congress, identifying
them as other people who have been

arrested for a crime.

The members of Congress who were
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But what’s the holy grail?

Provably fair machine learning:

Provide (high-probability)
guarantees that the classifier
Is fair on unseen data.
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Fairlearn: Agarwal et al. A reductions approach to fair classification. ICML 2018.
Fairness Constraints: Zafar et al., Fairness Constraints: A Mechanism for Fair Classification. FATML 2015.
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Equalized Odds
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Contributions

http://fairness.cs.umass.edu

e Causality-based definition and method for measuring
software fairness

e Themis, an automated test-suite generator for
fairness testing

Evaluation on real-world software, demonstrating software
IS biased and our methods can catch it

Provable guarantees on fairness in machine learning


http://fairness.cs.umass.edu

Rico Angell Brittany Johnson  Stephen Giguere = Sarah Brockman

ST

Alexandra Meliou Andy Barto Bruno Castro Emma Brunskill Philip Thomas Yuriy Brun
da Silva

http://fairness.cs.umass.edu

\

https://tinyurl.com/FairnessPaper

UMassAmbherst
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Contributions

http://fairness.cs.umass.edu

e Causality-based definition and method for measuring
software fairness

e Themis, an automated test-suite generator for
fairness testing

Evaluation on real-world software, demonstrating software
IS biased and our methods can catch it

Provable guarantees on fairness in machine learning


http://fairness.cs.umass.edu

Homework 1

Due September 17, 9AM
Will be posted shortly (you’ll get an email)

Learn some machine learning! Learn to use tools that
help evaluate and mitigate bias in machine learning.

Requires downloading a 5GB file, so do that early.



