CS 520
Theory and Practice of Software Engineering
Fall 2019

Course introduction
September 3, 2019

The CS 520 team

Instructor
- Yuriy Brun
- Office: CS 302
- Office hours: Tuesdays 11:15-12:00
- brun@cs.umass.edu

Teaching assistant
- Joshua Levine
- Office: TBD
- Office hours: TBD
- joshulevine@cs.umass.edu

Today
- What is Software Engineering?
- Why is Software Engineering important?
- Your expectations
- Course overview
- Our expectations
- Logistics

What is Software Engineering?
- Developing in an IDE and software ecosystem?
- Coding and debugging?
- Deploying and running a software system?
- Empirical evaluations?
- Modeling and designing?

All of the above – much more than just writing code!
What is Software Engineering?

More than just writing code
The complete process of specifying, designing, developing, analyzing, deploying, and maintaining a software system.

- Common Software Engineering tasks include:
 - Requirements engineering
 - Specification writing and documentation
 - Software architecture and design
 - Programming
 - Software testing and debugging
 - Refactoring

Why is Software Engineering important?

Software is everywhere...and buggy!

Why is Software Engineering important?

Software is everywhere...and buggy!

Unfortunately, WhatsApp has stopped.
Why is Software Engineering important?

Software is complex!
- Aircraft: ~15 million lines of code

How complex is software?

- Measures of complexity:
 - lines of code
 - number of classes
 - number of modules
 - module interconnections and dependencies
 - time to understand
 - # of authors
 - … many more

How big is 324 MSLoC?

- 50 lines/page → 6.5M pages
- 1K pages/ream → 6.5K reams
- 2 inches/ream → 13K inches
- 13K inches = four times the height of the CS building
- 5 words/LoC @ 50 wpm → 32M min = 61 years

And we don’t just want random words, we want compiling code!

Why is Software Engineering important?

Infrastructure is software, too!

Example: Design space exploration

1 0.34 0.81
2 0.52 0.32
3 0.21 0.53
4 0.81 0.22
...
...
...

Why is Software Engineering important?

Infrastructure is software, too!

Example: Design space exploration

1 0.34 0.81
2 0.52 0.32
3 0.21 0.53
4 0.81 0.22
...
...
...

- 150 configurations, 1000+ benchmarks
- 1-85 hours per execution
- 200,000+ CPU hours (~23 CPU years)
Summary: Software Engineering

What is Software Engineering?
The complete process of specifying, designing, developing, analyzing, deploying, and maintaining a software system.

Why is it important?
- Software is everywhere and complex.
- Software defects are expensive (and annoying).

Goals
- Decompose a complex engineering problem.
- Organize processes and effort.
- Improve software reliability.
- Improve developer productivity.

Your expectations

Introduction and a brief (5 minute) survey
- Why are you taking this course?
- What do you expect from this course?
- What are your learning goals (theory and practice)?

Course overview: the big picture

- Software architecture and design
 - Software modelling and UML crash course.
 - Best practices and OO design principles.
 - Architecture and Design patterns.
 - Very brief intro to functional programming.

- Empirical Software Engineering
 - Reasoning about experimental designs and studies.
 - Understanding and reasoning about threats to validity.

Goal: no more spaghetti code!

Course overview: rough timeline

September
- Software architecture and design

October
- Empirical Software Engineering
- Software testing
- Class project

November
- Software debugging and repair
- Collaboration and teamwork
- Class project

December
- Reasoning about programs
- Class project
Exposure to cutting-edge research

- We will have 4 guest lectures on research
 - These will be held out of class, most likely at 4PM. Videos will be available.
- We might have 1 guest lecture on what it’s like to work in industry.

Course overview: grading

Grading
- 30% Class project
- 40% In-class exercises
- 20% Homework and paper reviews
- 10% Participation

Our expectations

- Programming experience.
- Familiarity with an OO programming language (e.g., Java, C++, etc.)
- Reading and reviewing 2 research papers.
- Active participation in discussions and group work.

Logistics

- Marston Hall 132, Tuesday and Thursday, 10 AM – 11:15 AM
- Lectures, tutorials, and in-class exercises.
- Course material, policies, and schedule on web site: http://people.cs.umass.edu/~brun/class/CS520/
- Submission of assignments via Moodle: https://moodle.umass.edu