
A Guided Genetic Algorithm for Automated
Crash Reproduction

Soltani, Panichella, & van Deursen
2017 International Conference on Software Engineering

Presented by: Katie Keith, Emily First, Pradeep Ambati

A Guided Genetic Algorithm for Automated
Crash Reproduction

A Guided Genetic Algorithm for Automated
Crash Reproduction

(1)Problem

(2) Approach / Key idea

Motivation of Automated Crash Reproduction
Reduce developers' effort for crash debugging

(Source: Google Images)

Overview of Automated Crash Reproduction
● Focus on "post-failure" approach = use data available after failure
● Narrow down to only using crash stack traces
● Generate tests that trigger the target failure

Limitations of other methods
1. Can't deal with external
environmental dependencies
(network inputs and files)

2. Finding test cases that trigger the
crash is computationally expensive
(usually large number of unnecessary
mutated test cases)

EvoSuite

EvoCrash

(automatic test
suite generation
tool for Java)

(built with stack-trace
guided genetic
algorithm)

EvoCrash built on EvoSuite

Genetic algorithms refresher

(Source: Liao and Sun
https://www.ewh.ieee.org/soc/es/May2001/14/Begi
n.htm)

https://www.ewh.ieee.org/soc/es/May2001/14/Begin.htm

Research questions

1. Under what circumstances does EvoCrash successfully/unsuccessfully
reproduce target crashes?

1. How does EvoCrash compare to state-of-the-art automated reproduction
approaches (that also only exclusively use stack traces)?

Guided Genetic Algorithm
Overview:

● Initial Population
● Fitness
● Operators: Crossover & Mutation
● Post Processing

Example
Stack Trace

Initial Populaton
Stack Trace

class under test

Guided Initial Population
Stack Trace

call to this method is target call

Fitness

Single-point Crossover

test1()
Parent Test 0 Parent Test 1

Offspring Test 1Offspring Test 0
test1()

Guided Single-point Crossover

test1()
Parent Test 0 Parent Test 1

Offspring Test 1Offspring Test 0
test1()

copy of parent

Mutation

Add Change Remove

Guided Mutation
While target call is not in test case,

Continue mutation until re-inserted

Post Processing

● May add irrelevant statements

● Test minimization
○ Greedy Algorithm

Evaluation : Definition and Context

● Test setup consists of 50 bugs from 3 real-world open source projects
○ Apache Commons Collections (ACC) 12 bugs
○ Apache Ant (ANT) 20 bugs
○ Apache Log4j (LOG) 18 bugs

● Severity of these real-world bugs varies between
○ Medium (50%)
○ Major (36%)
○ Critical (6%)

Evaluation: Experimental Procedure
● To evaluate the successful crash reproduction rate

○ Crash Coverage
○ Test usefulness

● Compare the EvoCrash to
○ STAR (covers all 50 crashes)
○ MuCrash (covers 12 crashes)
○ JCHARMING (covers 8 crashes)

● Comparison is made relying on the published data in the respective work.

Evaluation: Successful crash reproduction
● Crash Coverage: Total of 41 crashes were reproduced out of 50 (82%).

ACC ANT LOG

Evocrash 10/12 (83%) 14/20 (70%) 17/18 (94%)

● Test Usefulness

Evaluation : Comparison to the state-of-art

EvoCrash outperformed the state-of-art

Contributions

1. Guided genetic algorithm (GGA) for crash reproduction

○ Only generates/evolves tests that have at least one method involved in

the failure (stack trace)

2. EvoCrash, Java tool that implements GGA

3. Empirical study on 50 real-world software crashes

○ EvoCrash replicates 82% of cases (82.9% of those useful for debugging)

4. Compared EvoCrash to three other state-of-the-art approaches

Discussion Questions
Consider the following fitness function:

We suggest the the coefficients could be learned or the authors could do
empirical studies to determine the robustness of results to changes in the
coefficients.

1. How did the authors come up with the coefficients in the fitness function?
How could this heuristic be improved?

Discussion Questions
2. What are limitations of genetic algorithms? Are there better search alternatives
to genetic algorithms?

Genetic algorithms are limited by the amount of computation time one has.

Discussion Questions
3. The methodology in this paper centers on guiding test cases via the stack trace.
How reliable are stack traces? What could be limitations of this reliance?

Connecting this to Homework 1 where we were provided traces to help
us debug, stack traces are not always the most useful for debugging
and could distract focus from finding the true bug.

Discussion Questions
4. The guided genetic algorithm has a “max time” parameter; however, the authors
do not describe how they select it. Clearly this threshold will give a time vs. recall
tradeoff, but how should one select values for the parameter?

Vary the threshold and see how this affects accuracy on the test set.

Discussion Questions
5. The authors mention that for some cases with dependencies on external files
they can generate successful test cases by increasing the population size.
However, the authors concede they do not handle ALL crash cases with
environmental dependencies. What are other ways that one could handle this?

External files can be provided with bug reports. However, this requirement is
unlikely and has privacy concerns.

