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(1)Problem 

(2) Approach / Key idea  



Motivation of Automated Crash Reproduction
Reduce developers' effort for crash debugging 

(Source: Google Images)



Overview of Automated Crash Reproduction  
● Focus on "post-failure" approach = use data available after failure 
● Narrow down to only using crash stack traces
● Generate tests that trigger the target failure 



Limitations of other methods 
1. Can't deal with external 
environmental dependencies 
(network inputs and files)

2. Finding test cases that trigger the 
crash is computationally expensive
(usually large number of unnecessary 
mutated test cases)



EvoSuite 

EvoCrash  

(automatic test 
suite generation 
tool for Java)

(built with stack-trace 
guided genetic 
algorithm) 

EvoCrash built on EvoSuite



Genetic algorithms refresher 

(Source: Liao and Sun  
https://www.ewh.ieee.org/soc/es/May2001/14/Begi
n.htm)

https://www.ewh.ieee.org/soc/es/May2001/14/Begin.htm


Research questions

1. Under what circumstances does EvoCrash successfully/unsuccessfully 
reproduce target crashes? 

1. How does EvoCrash compare to state-of-the-art automated reproduction 
approaches (that also only exclusively use stack traces)?  



Guided Genetic Algorithm
Overview:

● Initial Population
● Fitness
● Operators: Crossover & Mutation
● Post Processing



Example
Stack Trace



Initial Populaton
Stack Trace

class under test



Guided Initial Population
Stack Trace

call to this method is target call



Fitness



Single-point Crossover

test1()
Parent Test 0 Parent Test 1

Offspring Test 1Offspring Test 0
test1()



Guided Single-point Crossover

test1()
Parent Test 0 Parent Test 1

Offspring Test 1Offspring Test 0
test1()

copy of parent



Mutation

Add Change Remove



Guided Mutation
While target call is not in test case,

Continue mutation until re-inserted



Post Processing

● May add irrelevant statements

● Test minimization
○ Greedy Algorithm 



Evaluation : Definition and Context

● Test setup consists of 50 bugs from 3 real-world open source projects
○ Apache Commons Collections (ACC) 12 bugs
○ Apache Ant (ANT) 20 bugs
○ Apache Log4j (LOG) 18 bugs

● Severity of these real-world bugs varies between
○ Medium (50%)
○ Major (36%) 
○ Critical (6%)



Evaluation: Experimental Procedure
● To evaluate the successful crash reproduction rate

○ Crash Coverage
○ Test usefulness

● Compare the EvoCrash to
○ STAR (covers all 50 crashes)
○ MuCrash (covers 12 crashes)
○ JCHARMING (covers 8 crashes)

● Comparison is made relying on the published data in the respective work.



Evaluation: Successful crash reproduction
● Crash Coverage: Total of 41 crashes were reproduced out of 50 (82%).

ACC ANT LOG

Evocrash 10/12 (83%) 14/20 (70%) 17/18 (94%)

● Test Usefulness



Evaluation : Comparison to the state-of-art

EvoCrash outperformed the state-of-art



Contributions

1. Guided genetic algorithm (GGA) for crash reproduction 

○ Only generates/evolves tests that have at least one method involved in 

the failure (stack trace)

2. EvoCrash, Java tool that implements GGA

3. Empirical study on 50 real-world software crashes

○ EvoCrash replicates 82% of cases (82.9% of those useful for debugging) 

4. Compared EvoCrash to three other state-of-the-art approaches



Discussion Questions
Consider the following fitness function:

We suggest the the coefficients could be learned or the authors could do 
empirical studies to determine the robustness of results to changes in the 
coefficients.    

1. How did the authors come up with the coefficients in the fitness function? 
How could this heuristic be improved? 



Discussion Questions
2. What are limitations of genetic algorithms? Are there better search alternatives 
to genetic algorithms? 

Genetic algorithms are limited by the amount of computation time one has. 



Discussion Questions
3. The methodology in this paper centers on guiding test cases via the stack trace. 
How reliable are stack traces? What could be limitations of this reliance?

Connecting this to Homework 1 where we were provided traces to help 
us debug, stack traces are not always the most useful for debugging 
and could distract focus from finding the true bug. 



Discussion Questions
4. The guided genetic algorithm has a “max time” parameter; however, the authors 
do not describe how they select it.  Clearly this threshold will give a time vs. recall 
tradeoff, but how should one select values for the parameter?

Vary the threshold and see how this affects accuracy on the test set. 



Discussion Questions
5. The authors mention that for some cases with dependencies on external files 
they can generate successful test cases by increasing the population size. 
However, the authors concede they do not handle ALL crash cases with 
environmental dependencies.  What are other ways that one could handle this?

External files can be provided with bug reports. However, this requirement is 
unlikely and has privacy concerns.  


