
Document Assisted Symbolic
Execution (DASE)

- Sandeep Jala,
Fathima Shajahan,
Pegah Taheri

Paper: Document- Assisted Symbolic
Execution for Improving Automated
Software Testing

Author: Edmund Wong, Lei Zhang, Song
Wang, Taiyue Liu, and Lin Tan
Electrical and Computer Engineering,
University of Waterloo, Canada

INTRODUCTION:
● Symbolic execution has been leveraged to automatically

generate high code coverage test suites to detect bugs. The
input is symbolic values

● Once the execution of path terminates, the constraints are
used to generate concrete inputs to exercise the path.

PROS CONS

Generates high code coverage test suites to
detect bugs.

SE suffers from the fundamental problem of
path explosion

Improves testing effectiveness Does not analyze documents automatically
and requires constraints to be given

Table 1.
Pros and
Cons of
SE

KLEE BACKGROUND:
● KLEE is SE engine based on LLVM

i) LLVM bytecode to be interpreted by KLEE
ii) KLEE checks for dangerous operations that cause failure
iii) 2 default search strategies:

○ Coverage-Optimized Search-
- Uses heuristics to choose a state that is most likely to cover a new
code in the immediate future

○ Random Path Selection
- Randomly choose a branch to follow at a branch point

● DASE automatically extracts input constraints from document: Uses constraint
as a filter to favor execution paths that text the core functionalities

● As a path pruning strategy, it can be used to improve SE
● 2 Categories of DASE-

i) Format of input file
ii) Valid values of command prompt

● DASE was used on 88 programs from 5 widely-used software suites
● DASE detected 12 previously unknown bugs that KLEE failed to detect

○ 6 of which have already been confirmed by the developers
● Compared to KLEE, DASE increases line coverage, branch coverage

Design and implementation
● Automatically extracting input constraints from code comments, man page

and header files using NLP and regex
○ Dase uses 4 grammar rules to find relevant comments and notes as

the main rule.

● Adding file layout constraints for ELF files.
○ ELF files’ specific layout: kept incomplete -> DASE has a chance to

explore close-to-valid inputs and all of the boundary case inputs

Figure 1.

Design and implementation

Figure 2. DASE’s ELF layout. SH is Section Header, and PH is Program
Header. Numbers in brackets are array indices.

Design and implementation cont’d.
● Automatically extracting valid options from man pages: parsing the

standard list of valid options
○ Simple regular expression matching.
○ Input: man page, Output: command line options

■ Two kind of regular expressions: “short” and “long”
■ Example: Short: -s, Long: --this is a long one

● Flattening Symbolic Execution using those options.
○ Options are used to trim and reorganize the tree
○ n branches are created for n valid options
○ Branches are prioritized
○ Goal: to balance the testing effort on each option

Why can input constraints help SE find
more bugs and test more code?
• There can be a large number of

branches within the entire program

• DASE focuses on constraints to test
the path and focus on certain
branches

• DASE found bugs in 0.1s but
KLEE did not find them even after
10 hours

Constraints vs. Runtime
Figure 3.

How to flatten symbolic execution to find
more bugs and test more code?

● DASE extracts valid options by analyzing programs’
documentation and use them as input constraints

i) DASE found 11 valid values out of 256m options for rm in cmd
prompt
ii) All possibilities are treated evenly for improved test coverage
iii)Some bug might take more time to be found

- finding more bugs is more important than small time loss

Example:

Figure 4. Coding
example

DASE: PROS AND CONS DASE vs KLEE
PROS CONS

Saves manual work for
practitioners

Drawing constraints from
documents is challenging

Allows for easier use of SE
techniques

Uses SE to identify the
semantic importance of
different execution paths to
focus on core functionalities

Find more bugs on KLEE

DASE KLEE

Uses input
constraints from
documents.

Does not use input
constraints.

Covers more
functionalities

Finds higher number
of bugs

Explores deeper

Table 2. Table 3.

Figure 5. Abstract view of execution trees for command-line options.
Clouds are execution subtrees related to valid command-line options. Ovals
are other execution subtrees. Deep options such as -o are more likely to be

tested with DASE.

NOTE: 3b is very different
from BFS

Figure 6. Branch Coverage on
readelf(b) over time

Results:

● DASE found 5 previously unknown bugs in COREUTILS and BINUTILS that were already processed by other
SE tools

● 2 bugs were found by KLEE but not DASE

● DASE generated test cases with more instructions executed = explored deeper in instruction tree

● In the diff program, KLEE only covers 27 of the 55 distinct options while DASE explores 46 of the options

● KLEE’s and DASE’s search strategy were changed to BFS and DASE still performed better

● DASE found 13 bugs that developer written tests did not find

● DASE extracted input constraints from manual pages and code comments with 97.8-100%

● All this was compared to an updated KLEE model, which was still outperformed by DASE

Results:

Discussion
Question 1:

What kind of documentation can
be the best sources of information
regarding input constraints? What
are easier to read?

Discussion
Question 2:

Can we use DASE to extract
information and constraints from
use-case and other diagrams?

Discussion
Question 3:

What are your thoughts on the
use of regex for manual pages
and NLP for comments? Can this
be reversed?

Discussion
Question 4: Will adding API documentation

improve constraint extraction?

Discussion
Question 5:

What about cases where the
input is not specific enough?
Such as methods that work with
any length of string? How can
DASE still be a good choice
there?

