Program Boosting: Program Synthesis via Crowd-Sourcing

Robert A. Cochran, Loris D'Antoni, Benjamin Livshits, David Molnar and Margus Veanes

Presented by: Sam Witty, Shehzaad Dhuliawala and Samer Nashed

Outline

Introduction (Research Question, Key Ideas, Contributions)

Background (Genetic Programming and Regular Expressions)

Motivating Example

Evaluation

Discussion

Research Question

Can Crowd-Sourced solutions to programming tasks be combined automatically to boost performance?

Key Idea

Many common programming tasks are

1. Surprisingly complex, such that even expert programmers may struggle

Key Idea

Many common programming tasks are

- 1. Surprisingly complex, such that even expert programmers may struggle
- 2. Easily specified (at least to a good approximation) in English

Key Idea

Many common programming tasks are

- 1. Surprisingly complex, such that even expert programmers may struggle
- 2. Easily specified (at least to a good approximation) in English
- 3. Nuanced enough that different programmers will fail in different ways

These attributes make tasks prime candidates for genetic programming towards program synthesis

Conventional Programming

Mostly working program

Flawed programs

1. Proposal of new technique: Program Boosting

- 1. Proposal of new technique: Program Boosting
- 2. Implementation of genetic programming for regular expressions using custom-designed crossover and mutation operations

- 1. Proposal of new technique: Program Boosting
- 2. Implementation of genetic programming for regular expressions using custom-designed crossover and mutation operations
- 3. Proposal of a new genetic programming paradigm in which the fitness function is evolved along with the candidate programs

- 1. Proposal of new technique: Program Boosting
- 2. Implementation of genetic programming for regular expressions using custom-designed crossover and mutation operations
- 3. Proposal of a new genetic programming paradigm in which the fitness function is evolved along with the candidate programs
- 4. Release of the tool, CROWDBOOST

- 1. Proposal of new technique: Program Boosting
- 2. Implementation of genetic programming for regular expressions using custom-designed crossover and mutation operations
- 3. Proposal of a new genetic programming paradigm in which the fitness function is evolved along with the candidate programs
- 4. Release of the tool, CROWDBOOST
- 5. First use of genetic programming on automata over complex alphabets, in this case UTF-16

- 1. Proposal of new technique: Program Boosting
- 2. Implementation of genetic programming for regular expressions using custom-designed crossover and mutation operations
- 3. Proposal of a new genetic programming paradigm in which the fitness function is evolved along with the candidate programs
- 4. Release of the tool, CROWDBOOST
- 5. First use of genetic programming on automata over complex alphabets, in this case UTF-16
- 6. Evaluation of the proposed method on 465 regular expressions

Outline

Introduction (Research Question, Key Ideas, Contributions)

Background (Genetic Programming and Regular Expressions)

Motivating Example

Evaluation

Discussion

Genetic Programming is a technique wherein a computer program is evolved from some seed using a generic algorithm (often).

Genetic Programming is a technique wherein a computer program is evolved from some seed using a generic algorithm (often).

Three main components

Genetic Programming is a technique wherein a computer program is evolved from some seed using a generic algorithm (often).

Three main components

Crossover - Merge candidate programs

Genetic Programming is a technique wherein a computer program is evolved from some seed using a generic algorithm (often).

Three main components

Crossover - Merge candidate programs

Mutation - Stochastically alter candidate programs

Genetic Programming is a technique wherein a computer program is evolved from some seed using a generic algorithm (often).

Three main components

Crossover - Merge candidate programs

Mutation - Stochastically alter candidate programs

Fitness - Evaluate candidate programs

Animation

Click Me

Background: SFA and Regex

Corresponding regex: [0-9]{3}(-)?[0-9]{7}

Outline

Introduction (Research Question, Key Ideas, Contributions)

Background (Genetic Programming and Regular Expressions)

Motivating Example

Evaluation

Discussion

Motivating Example

Determine whether a string is a valid phone number.

```
Ex: 111-111-1111, 1111111111
```


Identifying *components*

Strongly Connected Components

Stretches

Stretches

Single Entry - Single Exit

Single Entry - Single Exit

Resulting Regex: [0-9]{3}-?[0-9]{2}-?[0-9]{4}

Mutations

- 1. Diminishing
- 2. Augmenting

Example Mutation

Negative example: 012-456-7890 Assume numbers cannot begin with 0

Example Mutation

Negative example: **0**12-456-7890 Assume numbers cannot begin with 0

Fitness Function

• A simple approach to calculate fitness for regular expressions would be to calculate accuracy on the training set, but this doesn't scale well.

Fitness Function

- A simple approach to calculate fitness for regular expressions would be to calculate accuracy on the training set, but this doesn't scale well.
- Instead, evaluate cardinality of sets.

Fitness Function

- A simple approach to calculate fitness for regular expressions would be to calculate accuracy on the training set, but this doesn't scale well.
- Instead, evaluate cardinality of sets.

 $Fitness(A) = (L(A \cap P) + L(N - A)) / L(P \cup N)$

Outline

Introduction (Research Question, Key Ideas, Contributions)

Background (Genetic Programming and Regular Expressions)

Motivating Example

Evaluation

Discussion

Regular expressions were pulled from Regexlib.com, blogs, Stack Overflow, and a Bountify task set by the authors

Regular expressions were pulled from Regexlib.com, blogs, Stack Overflow, and a Bountify task set by the authors

In total, 465 program pairs were used for a variety of tasks (phone numbers, dates, email addresses, URLs)

Regular expressions were pulled from Regexlib.com, blogs, Stack Overflow, and a Bountify task set by the authors

In total, 465 program pairs were used for a variety of tasks (phone numbers, dates, email addresses, URLs)

Mechanical turk was used to generate new examples, thus evolving the fitness function. Examples were accepted of 60% of turkers reached consensus

	Golden set		Candidate	Candidate regex source:			
	+	-	regexes	Bountify	Regexlib	Other	
Phone numbers	20	29	8	3	0	5	
Dates	31	36	6	3	1	2	
Emails	7	7	10	4	3	3	
URLs	36	39	9	4	0	5	

Results - Accuracy

EVALUATED ON	(GOLDEN SE	Т	EVOLVED SET		
	Boosted				Boosted	
Task	initial	no crowd	crowd	initial	no crowd	crowd
Phone numbers	0.80	0.90	0.90	0.79	0.88	0.91
Dates	0.85	0.99	0.97	0.78	0.78	0.95
Emails	0.71	0.86	0.86	0.79	0.72	0.90
URLs	0.67	0.91	0.88	0.64	0.75	0.89

Results - Accuracy

Crowd Boosting does not help with the Golden Set

EVALUATED ON	(GOLDEN SE	T	EVOLVED SET		
	Boosted				Boosted	
Task	initial	no crowd	crowd	initial	no crowd	crowd
Phone numbers	0.80	0.90	0.90	0.79	0.88	0.91
Dates	0.85	0.99	0.97	0.78	0.78	0.95
Emails	0.71	0.86	0.86	0.79	0.72	0.90
URLs	0.67	0.91	0.88	0.64	0.75	0.89

Results - Accuracy

Crowd Boosting does not help with the Golden Set

EVALUATED ON	(GOLDEN SE	Т	EVOLVED SET		
	Boosted			Boosted		ted
Task	initial	no crowd	crowd	initia	l no crowd	crowd
Phone numbers	0.80	0.90	0.90	0.7	9 0.88	0.91
Dates	0.85	0.99	0.97	0.7	8 0.78	0.95
Emails	0.71	0.86	0.86	0.7	9 0.72	0.90
URLs	0.67	0.91	0.88	0.6	4 0.75	0.89

Results - Runtime

Runtimes are reasonable, especially for synthesizing a program

Results - Runtime

Runtimes are reasonable, especially for synthesizing a program

This does **not** include the time required to source the RegExs

Results - Runtime

Runtimes are reasonable, especially for synthesizing a program

This does **not** include the time required to source the RegExs

It is not clear from the paper whether this result includes time required for mechanical turkers

Results - Cost

Overall, costs are reasonable

Results - Cost

Overall, costs are reasonable

Phone and email are cheap. Why?

Outline

Introduction (Research Question, Key Ideas, Contributions)

Background (Genetic Programming and Regular Expressions)

Motivating Example

Evaluation

Discussion

1. What kind of ethical issues might arise by involving crowd sourcing in development?

2. What are some practical limitations of using large numbers of untrained workers such as mechanical turkers?

3. What are some new research questions posed by this new paradigm wherein the fitness function is evolves along with the population?

4. What are some weaknesses of genetic programming that persist even through crowd-sourcing?

5. What other open problems might you imagine applying a similar (crowdsourcing followed by some form of program synthesis) approach to?