Program Boosting: Program
Synthesis via Crowd-Sourcing

Robert A. Cochran, Loris D’Antoni, Benjamin Livshits,
David Molnar and Margus Veanes

Presented by: Sam Witty, Shehzaad Dhuliawala and Samer Nashed



Outline

Introduction (Research Question, Key Ideas, Contributions)
Background (Genetic Programming and Regular Expressions)
Motivating Example

Evaluation

Discussion



Research Question

Can Crowd-Sourced solutions to programming tasks be combined automatically to
boost performance?



Key ldea

Many common programming tasks are

1. Surprisingly complex, such that even expert programmers may struggle



Key ldea

Many common programming tasks are

1. Surprisingly complex, such that even expert programmers may struggle
2. Easily specified (at least to a good approximation) in English



Key ldea

Many common programming tasks are

1. Surprisingly complex, such that even expert programmers may struggle
2. Easily specified (at least to a good approximation) in English
3. Nuanced enough that different programmers will fail in different ways

These attributes make tasks prime candidates for genetic programming towards
program synthesis



Conventional Programming

il people.data.users:
response = client.api.statuses.user_timeline.get(screen_name=i.scre
'Got', len(response.data), 'tweets from', i.screen_name
len(response.data) 0:
ltdate = response.datal[0] ['created_at']
Blood Sweat and tea rS ltdate2 - datetime.strptime(ltdate,'%a %b %d %H:%M:%S +0000 %Y'
) ’ today = datetime.now()
howlong = (today-ltdate2).days
howlong < daywindow:
i.screen_name, 'has tweeted in the past' , daywindow,
totaltweets len(response.data)
j response.data:
j.entities.urls:
k j.entities.urls:
newurl = k['expanded_url']
urlset.add((newurl, j.user.screen_name))

i.screen_name, 'has not tweeted in the past', daywind

Mostly working program

Image sources - 4H, The Economist



Program Boosting

1 in people.data.user:
response - client.api.statuses.user_tineline.get i.scref
'Got', len(response.data), 'tweets fron', i.screen_name
len( response. data)
u response.datal0] ['created_at']
datetine. strptine(Ltdate, "% %b % %H:%1:%S
datetine.n
(today-1tdate2) .days
daywind
i.screen_name, 'has tweeted in the past' , daywindow,
totaltweets - len(response.data)
response. data:
j.entities.urls:
k in j.entities.urls:
newurl = k['expanded_url']
urlset.add( (newurl, j.user.screen_nane))

i.screen_name, 'has not tweeted in the past', daywind|

1 in people.data.user: i in people.data. user:
response - client.api.statuses. user_tineline.get( nane-1.scre response - client.api.statuses.user_tineline.get(screen_s
‘Got', len(response.data), 'tweets from', i.screen_name ‘Got', len(response.data), ‘tweets fron', i.screen_name
len(response.data) - 0: len(response.data) - 0:
response. data[0] [ created_ response. data[0] [created_at']
datetine. strptine(ltdate, datetine. strptine(ltdate, '%a %b % +0000
datetine.n

ow() H datetine.now()
(today-ltdate2).days e n e I C (today-ltdate2) .days
howlong < daywind

howlong < daywindow:
1.screen_name, 'has tweeted in the past' , daywindow, i.screen_name, 'has tweeted in the past' , daywindow,
totaltweets -~ Len(response.data)
i

P 3 totaltweets - len(response.data)

response. data ro ra' ' I r r l | n § in response.data:

il ennues urls: e urls:
j.entities.url j.entities.urls:
ewurl = k['expanded_url']

nmr\ K[ 'expanded_ur1
urlset.add((newurl, j.user.screen_name)) urlset.add((newurl, j.user.screen_name))

i.screen_name, 'has not tweeted in the past', daywind| i.screen_name, 'has not tweeted in the past’, daywind|

ople. data. user:
respnnsz client. api. statuses. user_tineline.get
len(response. data), 'tweets fron', e .
v:—ntresnnnse data)
L I u utl
datetine. svpxmeumate,‘ a s
datetine.now()
howlong = (today-ltdate2).days
howlong < daywindow:
—” i.screen_name, 'has tweeted in the past' , daywindow,
totaltweets +- len(response.data)
j in response.data:
j.entities.urls:
j.entities.url
newurl - k[ 'expanded_url']
urlset.add( (newurl, j.user.screen_nane))

i.screen_name, 'has not tweeted in the past’, daywind|

awed programs

Image sources - 4H, The Economist



Contributions

1. Proposal of new technique: Program Boosting



Contributions

1. Proposal of new technique: Program Boosting
2. Implementation of genetic programming for regular expressions using
custom-designed crossover and mutation operations



Contributions

1. Proposal of new technique: Program Boosting

2. Implementation of genetic programming for regular expressions using
custom-designed crossover and mutation operations

3. Proposal of a new genetic programming paradigm in which the fitness
function is evolved along with the candidate programs



Contributions

1. Proposal of new technique: Program Boosting

2. Implementation of genetic programming for regular expressions using
custom-designed crossover and mutation operations

3. Proposal of a new genetic programming paradigm in which the fitness
function is evolved along with the candidate programs

4. Release of the tool, CROWDBOOST



Contributions

1. Proposal of new technique: Program Boosting

2. Implementation of genetic programming for regular expressions using
custom-designed crossover and mutation operations

3. Proposal of a new genetic programming paradigm in which the fithess
function is evolved along with the candidate programs

4. Release of the tool, CROWDBOOST

5. First use of genetic programming on automata over complex alphabets, in this
case UTF-16



Contributions

1. Proposal of new technique: Program Boosting

2. Implementation of genetic programming for regular expressions using
custom-designed crossover and mutation operations

3. Proposal of a new genetic programming paradigm in which the fithess
function is evolved along with the candidate programs

4. Release of the tool, CROWDBOOST

5. First use of genetic programming on automata over complex alphabets, in this
case UTF-16

6. Evaluation of the proposed method on 465 regular expressions



Outline

Introduction (Research Question, Key Ideas, Contributions)
Background (Genetic Programming and Regular Expressions)
Motivating Example

Evaluation

Discussion



Background: Genetic Programming

Genetic Programming is a technique wherein a computer program is evolved from
some seed using a generic algorithm (often).



Background: Genetic Programming

Genetic Programming is a technique wherein a computer program is evolved from
some seed using a generic algorithm (often).

Three main components



Background: Genetic Programming

Genetic Programming is a technique wherein a computer program is evolved from
some seed using a generic algorithm (often).

Three main components

Crossover - Merge candidate programs



Background: Genetic Programming

Genetic Programming is a technique wherein a computer program is evolved from
some seed using a generic algorithm (often).

Three main components
Crossover - Merge candidate programs

Mutation - Stochastically alter candidate programs



Background: Genetic Programming

Genetic Programming is a technique wherein a computer program is evolved from
some seed using a generic algorithm (often).

Three main components
Crossover - Merge candidate programs
Mutation - Stochastically alter candidate programs

Fitness - Evaluate candidate programs



Animation

Click Me

Source: Rafael Matsunaga


http://rednuht.org/genetic_cars_2/

Background: SFA and Regex

Corresponding regex: [0-9]{3}(-)?[0-9]{7}



Outline

Introduction (Research Question, Key Ideas, Contributions)
Background (Genetic Programming and Regular Expressions)
Motivating Example

Evaluation

Discussion



Motivating Example

Determine whether a string is a valid phone number.

Ex:111-111-1111, 1111111111



—
.

Method Overview

Crossover

Mutation

Crowdsource the fithess
Evaluate New Gen

o
—

QAN EOR—OPRIDNREL D

DD et
o 20D

22
23:
24

: Input: Programs o, examples ¢, crossover function 3, mutation function g,

example generator 9, fitness function 7, budget 6
Output: Boosted program

function Boost({o, ¢), B, i, d,m,0)
while (P < 1.0 A 6 > 0) do > Until perfect or no money
=20 > New examples for this generation
forall (o;,0;) € FindCrossoverCandidates(o) do
forall o’ € 3((0i,0;)) do > Crossover o; and o
e =pUd(d, ) > Generate new examples
oc=ocU{o'} > Add this candidate to o
end for
end for
for all (o;) € FindMutationCandidates(o) do
forall 0’ = pu(o;) do
p=¢pUd(d’,¢)
oc=ocU{o'}
end for
end for

> Mutate o;
> Generate new examples
> Add this candidate to o

> Get consensus on these new examples via mturk
(pp,0) = GetConsensus(yp, 0) > and update budget
¢=0¢Ud, > Add the newly acquired examples
o = Filter(o) > Update candidates
(6,Mm) = GetBestFitness(o,n)
end while
return &
end function

> Return program with best fitness



U i












|dentifying components




Strongly Connected Components




Stretches




Stretches




Single Entry - Single Exit




Single Entry - Single Exit







"@ M Ols

Resulting Regex: [0-9]{3}-?[0-9]{2}-?[0-9]{4}



Mutations

1.  Diminishing
2. Augmenting



Example Mutation

Negative example: 012-456-7890
Assume numbers cannot begin with 0



Example Mutation

Negative example: 012-456-7890
Assume numbers cannot begin with 0



Fithess Function

e A simple approach to calculate fithess for regular expressions would be to
calculate accuracy on the training set, but this doesn’t scale well.



Fithess Function

e A simple approach to calculate fithess for regular expressions would be to
calculate accuracy on the training set, but this doesn’t scale well.
e Instead, evaluate cardinality of sets.



Fithess Function

e A simple approach to calculate fithess for regular expressions would be to
calculate accuracy on the training set, but this doesn’t scale well.
e Instead, evaluate cardinality of sets.

Fitness(A) = (LLANP) + L(N - A) }/ L( P U N)




Outline

Introduction (Research Question, Key Ideas, Contributions)
Background (Genetic Programming and Regular Expressions)
Motivating Example

Evaluation

Discussion



Evaluation

Regular expressions were pulled from Regexlib.com, blogs, Stack Overflow, and a
Bountify task set by the authors



Evaluation

Regular expressions were pulled from Regexlib.com, blogs, Stack Overflow, and a
Bountify task set by the authors

In total, 465 program pairs were used for a variety of tasks (phone numbers,
dates, email addresses, URLS)



Evaluation

Regular expressions were pulled from Regexlib.com, blogs, Stack Overflow, and a
Bountify task set by the authors

In total, 465 program pairs were used for a variety of tasks (phone numbers,
dates, email addresses, URLS)

Mechanical turk was used to generate new examples, thus evolving the fitness
function. Examples were accepted of 60% of turkers reached consensus



Evaluation

Golden set | Candidate Candidate regex source:
+ - regexes | Bountify Regexlib Other
Phone numbers | 20 29 3 3 0 5
Dates 31 36 6 3 1 2
Emails 7 7 10 -+ 3 3
URLs 36 39 9 - 0 D




Results - Accuracy

EVALUATED ON... GOLDEN SET EVOLVED SET
Boosted Boosted
Task initial | no crowd | crowd || initial | no crowd | crowd
Phone numbers 0.80 0.90| 0.90 0.79 0.88| 0.91
Dates 0.85 0.99| 0.97]| 0.78 0.78 0.95
Emails 0.71 0.86| 0.86|| 0.79 0.721 0.90
URLs 0.67 091 0.88]|] 0.64 0.75 0.89




Results - Accuracy

Crowd Boosting does not help with the Golden Set

EVALUATED ON... GOLDEN SET EVOLVED SET
Boosted Boosted
Task initial | no crowd | crowd || initial | no crowd | crowd
Phone numbers 0.80 0.90| 0.90 0.79 0.88| 0.91
Dates 0.85 0.99| 0.971 0.78 0.78 0.95
Emails 0.71 0.86| 0.861| 0.79 0.721 0.90
URLs 0.67 0911 0.88)] 0.64 0.75 0.89




Results - Accuracy

Crowd Boosting does not help with the Golden Set

EVALUATED ON... GOLDEN SET EVOLVED SET
Boosted Boosted
Task initial | no crowd | crowd || initial | no crowd | crowd
Phone numbers 0.80 0.90| 0.90 0.79 0.88| 0.91
Dates 0.85 0.99| 0.97]| 10.78 0.78 0.95
Emails 0.71 0.86| 0.86]| 10.79 0.721 0.90
URLs 0.67 091 0.88] [0.64 0.75 0.89




Results - Runtime

Runtimes are reasonable, especially
for synthesizing a program

Elapsed Time Per Pair (minutes)

(o]
o
1

D
o
1

W
o
1

8

[
8 37.19

] ®

28.50
4.03 | .45 I

|

T I T 1

Phone Date Email Url




Results - Runtime

Runtimes are reasonable, especially
for synthesizing a program

This does not include the time
required to source the RegExs

D (o)
o o
1 1

Elapsed Time Per Pair (minutes)
w
o

28.50

4.03

37.19

5.45

I

T
Phone

I
Date

T
Email

Url




Results - Runtime

Runtimes are reasonable, especially
for synthesizing a program

This does not include the time
required to source the RegExs

It is not clear from the paper whether
this result includes time required for
mechanical turkers

D (o)
o o
1 1

Elapsed Time Per Pair (minutes)
w
o

28.50

4.03

i ]
Phone

il
Date

37.19

5.45

Email

Url




Results - Cost

Overall, costs are reasonable

$12
° ®
i [
[ ]
$8 -
$4 - ‘
8
‘ $2.59 AL
$0.41 | $0.50 |
$0 !
] | I 1
Phone Date Email Url




Results - Cost

Overall, costs are reasonable

Phone and email are cheap. Why?

$12-+
$8 -
$4 -
$0.41
$0 - ‘ \

$2.59

l

‘ $0.50 \
T

$3.00

]
Phone

1
Date

I
Email

Url




Outline

Introduction (Research Question, Key Ideas, Contributions)
Background (Genetic Programming and Regular Expressions)
Motivating Example

Evaluation

Discussion



Discussion Questions

1. What kind of ethical issues might arise by involving crowd sourcing in
development?



Discussion Questions

2. What are some practical limitations of using large numbers of untrained workers
such as mechanical turkers?



Discussion Questions

3. What are some new research questions posed by this new paradigm wherein
the fitness function is evolves along with the population?



Discussion Questions

4. What are some weaknesses of genetic programming that persist even through
crowd-sourcing?



Discussion Questions

5. What other open problems might you imagine applying a similar (crowdsourcing
followed by some form of program synthesis) approach to?



