
Program Boosting: Program
Synthesis via Crowd-Sourcing

Presented by: Sam Witty, Shehzaad Dhuliawala and Samer Nashed

Robert A. Cochran, Loris D’Antoni, Benjamin Livshits,
David Molnar and Margus Veanes

Outline
Introduction (Research Question, Key Ideas, Contributions)

Background (Genetic Programming and Regular Expressions)

Motivating Example

Evaluation

Discussion

Research Question
Can Crowd-Sourced solutions to programming tasks be combined automatically to
boost performance?

Key Idea
Many common programming tasks are

1. Surprisingly complex, such that even expert programmers may struggle

Key Idea
Many common programming tasks are

1. Surprisingly complex, such that even expert programmers may struggle
2. Easily specified (at least to a good approximation) in English

Key Idea
Many common programming tasks are

1. Surprisingly complex, such that even expert programmers may struggle
2. Easily specified (at least to a good approximation) in English
3. Nuanced enough that different programmers will fail in different ways

These attributes make tasks prime candidates for genetic programming towards
program synthesis

Conventional Programming

Image sources - 4H, The Economist

Blood, sweat, and tears

Mostly working program

Program Boosting

Image sources - 4H, The Economist

Genetic
Programming

Flawed programs

The one true solution

Contributions
1. Proposal of new technique: Program Boosting

Contributions
1. Proposal of new technique: Program Boosting
2. Implementation of genetic programming for regular expressions using

custom-designed crossover and mutation operations

Contributions
1. Proposal of new technique: Program Boosting
2. Implementation of genetic programming for regular expressions using

custom-designed crossover and mutation operations
3. Proposal of a new genetic programming paradigm in which the fitness

function is evolved along with the candidate programs

Contributions
1. Proposal of new technique: Program Boosting
2. Implementation of genetic programming for regular expressions using

custom-designed crossover and mutation operations
3. Proposal of a new genetic programming paradigm in which the fitness

function is evolved along with the candidate programs
4. Release of the tool, CROWDBOOST

Contributions
1. Proposal of new technique: Program Boosting
2. Implementation of genetic programming for regular expressions using

custom-designed crossover and mutation operations
3. Proposal of a new genetic programming paradigm in which the fitness

function is evolved along with the candidate programs
4. Release of the tool, CROWDBOOST
5. First use of genetic programming on automata over complex alphabets, in this

case UTF-16

Contributions
1. Proposal of new technique: Program Boosting
2. Implementation of genetic programming for regular expressions using

custom-designed crossover and mutation operations
3. Proposal of a new genetic programming paradigm in which the fitness

function is evolved along with the candidate programs
4. Release of the tool, CROWDBOOST
5. First use of genetic programming on automata over complex alphabets, in this

case UTF-16
6. Evaluation of the proposed method on 465 regular expressions

Outline
Introduction (Research Question, Key Ideas, Contributions)

Background (Genetic Programming and Regular Expressions)

Motivating Example

Evaluation

Discussion

Background: Genetic Programming
Genetic Programming is a technique wherein a computer program is evolved from
some seed using a generic algorithm (often).

Background: Genetic Programming
Genetic Programming is a technique wherein a computer program is evolved from
some seed using a generic algorithm (often).

Three main components

Background: Genetic Programming
Genetic Programming is a technique wherein a computer program is evolved from
some seed using a generic algorithm (often).

Three main components

Crossover - Merge candidate programs

Background: Genetic Programming
Genetic Programming is a technique wherein a computer program is evolved from
some seed using a generic algorithm (often).

Three main components

Crossover - Merge candidate programs

Mutation - Stochastically alter candidate programs

Background: Genetic Programming
Genetic Programming is a technique wherein a computer program is evolved from
some seed using a generic algorithm (often).

Three main components

Crossover - Merge candidate programs

Mutation - Stochastically alter candidate programs

Fitness - Evaluate candidate programs

Animation
Click Me

Source: Rafael Matsunaga

http://rednuht.org/genetic_cars_2/

Background: SFA and Regex

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 5

[0-9]
 6

[0-9]
 7

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 4
{-} [0-9]

Corresponding regex: [0-9]{3}(-)?[0-9]{7}

Outline
Introduction (Research Question, Key Ideas, Contributions)

Background (Genetic Programming and Regular Expressions)

Motivating Example

Evaluation

Discussion

Motivating Example
Determine whether a string is a valid phone number.

Ex: 111-111-1111, 1111111111

Method Overview

Crossover

Mutation

Crowdsource the fitness

Evaluate New Gen

A1 A2

B1 B2

A1 A2

B1 B2

A1 A2

B1 B2

A1 A2

B1 B2

Identifying components

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 5

[0-9]
 6

[0-9]
 7

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 4
{-} [0-9]

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 4

[0-9]
 5

[0-9]
 6

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 7
{-} [0-9]

Strongly Connected Components

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 5

[0-9]
 6

[0-9]
 7

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 4
{-} [0-9]

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 4

[0-9]
 5

[0-9]
 6

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 7
{-} [0-9]

Stretches

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 5

[0-9]
 6

[0-9]
 7

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 4
{-} [0-9]

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 4

[0-9]
 5

[0-9]
 6

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 7
{-} [0-9]

Stretches

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 5

[0-9]
 6

[0-9]
 7

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 4
{-} [0-9]

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 4

[0-9]
 5

[0-9]
 6

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 7
{-} [0-9]

Single Entry - Single Exit

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 5

[0-9]
 6

[0-9]
 7

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 4
{-} [0-9]

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 4

[0-9]
 5

[0-9]
 6

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 7
{-} [0-9]

Single Entry - Single Exit

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 5

[0-9]
 6

[0-9]
 7

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 4
{-} [0-9]

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 4

[0-9]
 5

[0-9]
 6

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 7
{-} [0-9]

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 5

[0-9]
 6

[0-9]
 7

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 4
{-} [0-9]

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 4

[0-9]
 5

[0-9]
 6

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 7
{-} [0-9]

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 5

[0-9]
 6

[0-9]
 8

[0-9]
 9

[0-9]
10

[0-9]
11

 7
{-} [0-9]

 4
{-} [0-9]

Resulting Regex: [0-9]{3}-?[0-9]{2}-?[0-9]{4}

Mutations
1. Diminishing
2. Augmenting

Example Mutation

[0-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 5

[0-9]
 6

[0-9]
 7

[0-9]
 9

[0-9]
10

[0-9]
11

[0-9]
12

 8
{-} [0-9]

 4
{-} [0-9]

Negative example: 012-456-7890
Assume numbers cannot begin with 0

Example Mutation

[1-9]
 0 1

[0-9]
 2

[0-9]
 3

[0-9]
 5

[0-9]
 6

[0-9]
 7

[0-9]
 9

[0-9]
10

[0-9]
11

[0-9]
12

 8
{-} [0-9]

 4
{-} [0-9]

Negative example: 012-456-7890
Assume numbers cannot begin with 0

Fitness Function
● A simple approach to calculate fitness for regular expressions would be to

calculate accuracy on the training set, but this doesn’t scale well.

Fitness Function
● A simple approach to calculate fitness for regular expressions would be to

calculate accuracy on the training set, but this doesn’t scale well.
● Instead, evaluate cardinality of sets.

Fitness Function
● A simple approach to calculate fitness for regular expressions would be to

calculate accuracy on the training set, but this doesn’t scale well.
● Instead, evaluate cardinality of sets.

Fitness(A) = (L(A ∩ P) + L(N - A))/ L(P U N)

Outline
Introduction (Research Question, Key Ideas, Contributions)

Background (Genetic Programming and Regular Expressions)

Motivating Example

Evaluation

Discussion

Evaluation
Regular expressions were pulled from Regexlib.com, blogs, Stack Overflow, and a
Bountify task set by the authors

Evaluation
Regular expressions were pulled from Regexlib.com, blogs, Stack Overflow, and a
Bountify task set by the authors

In total, 465 program pairs were used for a variety of tasks (phone numbers,
dates, email addresses, URLs)

Evaluation
Regular expressions were pulled from Regexlib.com, blogs, Stack Overflow, and a
Bountify task set by the authors

In total, 465 program pairs were used for a variety of tasks (phone numbers,
dates, email addresses, URLs)

Mechanical turk was used to generate new examples, thus evolving the fitness
function. Examples were accepted of 60% of turkers reached consensus

Evaluation

Results - Accuracy

Results - Accuracy
Crowd Boosting does not help with the Golden Set

Results - Accuracy
Crowd Boosting does not help with the Golden Set

Results - Runtime

Runtimes are reasonable, especially
for synthesizing a program

Results - Runtime

Runtimes are reasonable, especially
for synthesizing a program

This does not include the time
required to source the RegExs

Results - Runtime

Runtimes are reasonable, especially
for synthesizing a program

This does not include the time
required to source the RegExs

It is not clear from the paper whether
this result includes time required for
mechanical turkers

Results - Cost

Overall, costs are reasonable

Results - Cost

Phone and email are cheap. Why?

Overall, costs are reasonable

Outline
Introduction (Research Question, Key Ideas, Contributions)

Background (Genetic Programming and Regular Expressions)

Motivating Example

Evaluation

Discussion

Discussion Questions
1. What kind of ethical issues might arise by involving crowd sourcing in
development?

Discussion Questions
2. What are some practical limitations of using large numbers of untrained workers
such as mechanical turkers?

Discussion Questions
3. What are some new research questions posed by this new paradigm wherein
the fitness function is evolves along with the population?

Discussion Questions
4. What are some weaknesses of genetic programming that persist even through
crowd-sourcing?

Discussion Questions
5. What other open problems might you imagine applying a similar (crowdsourcing
followed by some form of program synthesis) approach to?

