
Paper Review On
Angelix: Scalable Multiline Program Patch
Synthesis via Symbolic Analysis

By Sandeep Polisetty, Xiaoyi Duan, Yuzhi Xiao

Introduction
Automated repair tools today:
GenProg, PAR, relifix,Semfix and so on.

Search-based vs sematics-based

Search base: GenProg, PAR and SPR
Semantic-base:SemFix, Nopol and Direct Fix

Important attributes for automated program
repair
● Scalability
● Repairability
● Quality of repair

Balance and trade-offs between two types of
repairs
SPR (search-based repair)generates more repairs and has good scalability.

Semantic-based repair has high repair quality but low scalability.

But for Angelix, it can also scale up to the same level as the most advanced
search-based repair tool, using lightweight repair constraint, angelic forest
and fault localization.

How does this semantic-based repair scale?

The repair constraint, angelic forest, has a size that is independent of the
size of the program.

Phases of Program Repair

1. Semantic Transformation to expand class of defects repaired

2. Fault localization through heuristic based identification of possible suspicious expressions and

added symbols in place

3. Constraint Generation

4. Repair generation which satisfies constraint

Example

Buggy Problem:
Int modulus_subtract(a,b):

If (a>b) {
Return a-b
}

Else{
Return a-b;
}

Correct Problem
Int modulus_subtract(a,b):

If (a>b) {
Return a-b
}

Else{
Return b-a;
}

Going to Step 2 Directly (Fault Localization)

Hierustic: All Statement assignments

Buggy Problem:
Int modulus_subtract(a,b):

If (a>b) {
Return alpha;
}

Else{
Return Beta;
}

Test Cases

T1: <a=1,b=2,out=1>

T2:<a=2,b=1,out=1>

Evaluate modified algorithm for each testcase

Algorithm 2 Path at the point of each symbol evaluation
Is the snapshot of all visible variables

{a: 1, b: 2} for test case 1

Constraint Equation generation

=> (alpha = 1) /\ (x=1) /\ (y=2)

This can be satisfied and is appended to the

angelic path of the test t1

If this constraint cant be satisfied then it is

implied that modifying these symbols would not

pass the testcase

Angelic Forest
Angelic Value of suspicious expression; The value of the expression that passes a particular test case

For testcase {a:1,b:2} -> alpha:1

Angelic Path: The list of all tuples <Symbol,Angelic Value. Snapshot of Visible variables> . The list of the

symbol and the snapshot of all variables when a symbol is evaluated (to aid in the selection of

components)

TestCase1: {alpha,1, {a:1,b:2}},

TestCase2: {Beta ,1,{a:2,b:1}}

Angelic Forest -> {TestCase 1:Path1,Path2 }, {TestCase 2: Path3}

Repair Generation

((x= 1) /\ (y=2)/\ (alpha =1))/\

((x= 2) /\ (y=1)/\ (Beta =1))

The generated repair must satisfy at least one path

for each test case and component must be chosen

to satisfy the output with the visible variable

chosen as input states

Scalability??

Size of the forest is a function of number of suspicious expressions N and not of program size.

Multi line fixes can be repaired as the impact of one repair on an another is captured through the

constraint equation

Can be started with a small subset of the testsuite which is later expanded.

It does not explore cases where there is no Angelic Path

Experimental Results

RQ1. Can our repair method generate repairs from large-scale real word software

RQ2. Can our repair method fix multi-location bugs?

Comparison with other tools

Repairability

Repair quality

Multi-location bugs

Angelix is not only scalable but also less frequently generates functionality-deleting repairs than the

existing tools such as SPR and GenProg.

Only repair tool for generating (non-functionality-deleting) fixes for multi-location bugs in large-scale

real-word software

Heartbleed Bug

Threats to Validity

1) Subject programs in the existing benchmark previously used to evaluate GenProg, AE and SPR.

The validity of the experimental results are limited.

2) Configurations (the maximum number of suspicious locations)

3) Components particular to the chosen defect class

Conclusion

A semantic-based repair method

Novel lightweight repair repair constraint called ‘angelic forest’

Better repair quality

Successfully fixed multi-location bugs

Questions

1. By using the MaxSMT how can it guarantee minimal change, as the solver by definition would try to

satisfy as many components as possible ? This should increase the size of the change

2. Would this work on composite components ?

3. How is loop unrolling done for For loops ?

4. Would the search space increase exponentially as the number of inputs to components increase ?

5. When solving the constraint, can expressions that are satisfied by existing code removed from the
constraint equation ?

Thank you!

