Upcoming

* Homework 3 due March 22
* Literature review due today March 20
* Project plan assignment posted, due April 10

* Paper presentation instructions:
http:, cs.um: |

class/2018Spring/CS621/paper ion/pap ion.pdf

3/19/18

Repairing Automated Repair

64 Team Single Elimination

65 Team Single Elimination

3 o
n ¢ 5 31
. 3 w .
s
I - ’ — 18
- < n " p i
1 ~ i i — 15
. 9 : g =
. o 10
- e =
‘6 [= = 55
. o9 g _ .
@ 9 p— 23 s
s
2 2
o
»i'i 4‘:‘%“
.

.]
s £ 2 s
| ———|
. @ Winmer 3
T e
@ @
- oy ae o

: o 5
35 3
». w»
5 g | p— 3 "
09) =
1 14
T g
2 51
2 3 "
5
") s -
F 1 o N
“ s
» ,
» T 0 v
“ o
i @ g .
g 0
@ »

Generalizing

* How many games are there in a 78-team
bracket?

* What about an n-team bracket?

http://people.cs.umass.edu/~brun/class/2018Spring/CS621/paperPresentation/paperPresentation.pdf

Repairing Automated Repair

3/19/18

What do cobras have to do with
automated program repair?

repairing python programs?

the many repair tools

ClearView [Perkinds et al. 2009] GenProg [Weimer et al. 2009]
Prophet [Long and Rinard 2015] SPR [Long and Rinard 2015]
TDS [Perelman et al. 2014]
Par [Kim et al. 2013] AE [Weimer et al. 2013]
SemFix [Nguyen et al. 2013] AutoFix-E [Wei et al. 2010]

[Carzaniga et al. 2010] [Carzaniga et al. 2013]

[Jin etal. 2011] Coker and Hafiz et al. 2013]
[Debroy and Wong et al. 2010] [Lin and Ernst et al. 2004]
[Forrest et al. 2009] [Novark et al. 2007] [Demsky et al. 2006]

Cobra effect

Automated Program Repair

basic idea:

buggy program

N

passing tests —

failing tests

APR tool
mutate
evaluate mutants
repeat

—> patched program

Potential problem

buggy program

N

passing tests —

failing tests

APR tool
mutate
evaluate mutants
repeat

—> patched program

the patched program may pass all given tests,
but break other functionality

3/19/18

COMPUTE THE
MEDIAN OF THREE
NUMBERS

int median(int a, int b,
int result;
if ((b<=a && a<=c) ||
(c<=a && a<=b))
result = a;
if ((a<b && b <= ¢) |]
(c<=b && b<a))
result = b;
if ((a<c && c<b) ||
(b<c && c<a))
result = c;
return result;

int c)

{

result = a;

result = b;

result = c;

result = a;

(b<=a && a<=c)

result = a;

3/19/18

(c<=a && a<=b)
result = a;

((b<=a && a<=c) ||
(c<=a && a<=b))
result = a;
((a<b && b <= ¢) ||
(c<=b && b<a))
result = b;
((a<c && c<b) ||
(b<c && c<a))
result = c;

int med_broken(int a, int b, int c) {
int result;
if ((a==b) || (a==c) ||
(b<a && a<c) ||
(c<a && a<b))
result = a;
else if ((b==c) || (a<b && b<c) |
(c<b && b<a))
result = b;
else if (a<c && c<b)
result = c;
return result;

(b<a && a<c) ||
(c<a && a<b))

(a<b && b<c) ||
(c<b && b<a))

(a<c && c<b)

(b<a && a<c) ||
(c<a && a<b))

(a<b && b<c) ||
(c<b && b<a))

(a<c && c<b)

int med_broken(int a, int b, int c) {

int result;
' [input | Expected | Pass? |

if ((a==b) || (a==c) ||

(b<a && a<c) || 22? ? ;

(c<a && a<b)) 0:0:1 T ”
result = a; 010 0 v
else if ((b==c) || (a<b && b<c)goq 4 v
(c<b && b<a)) 023 2 v

result = b;

else if (a<c && c<b)
result = c;

return result;

[input | Expected | Pass? |

th<a—&& " 000 O v

201 1 X

001 O v

0,10 O v

if (b < a) 021 1 v
result = c; 023 2 v

int med_broken(int a, int b, int c) {
int result;
if ((a==b) || (a==c) ||
(b<a && a<c) ||
(c<a && a<b))
result = a;
if ((b==c) || (a<b && b<c) ||
(c<b && b<a))
result = b;
if (a<c && c<b) m
result = c; 268 6 v
return result; 2,86
} 6,2,8
6,8,2
8,2,6
8,6,2
9,9,9

o O O O O O
BN RS

3/19/18

int med_broken(int a, int b, int c) {
int result;

it (oot || (ammc) || [input | expoctes | pase?

th<a—&6 A 0,00 O v

201 1 X

(c<a && a<b)) 004 0 v

result = a; 010 0 v

if (b < a) 021 1 v

result = c; 023 2 v
else if (b<a) (b==c) || (a<b && b<c) ||

(c<b && b<a))
result = b;
else if (a<c && c<b)
result = c;
return result;

int med_broken(int a, int b, int c) {

int result;
' [input | Expected | Pass? |

if ((a==b) || (a==c) || — T ”

2,0,1 1 v

(c<a && a<b)) 004 0 v

result = a; 010 0 v

if (b < a) 021 1 v

result = c; 023 2 v
else if (b<a) (b==c) || (a<b && b<c) ||

(c<b && b<a))
result = b;
else if (a<c && c<b)
result = c;
return result;

int med_broken(int a, int b, int c) {
int result;

it (tamet) || (ammc) || [input | expoctes | pase?

o<a—&s& " 0,00 O v
201 1 v
(c<a && a<b)) 004 0 v
result = a; 010 0 v
if (b < a) 021 1 v
result = c; 023 2 v
else if (b<a) (b==c) || (a<b && b<c) ||
(c<b && b<a)) [input | Expoctod | Pass? |
result = b; 268 6 v
else if (a<c && c<b) 286 6 v
result = c; 6,28 6 X
return result; 682 6 v
} 826 6 v
862 6 X
999 9 v

3/19/18

Potential solution

APR tool

\ mutate

passing tests evaluate mutants
repeat

buggy program

—> patched program

failing tests

Use an independent test suite to measure
quality of the patch

Focus of prior evaluations

* Most evaluations are interested in whether tools
work
— produce patches

* Some interest in other factors

— human acceptance of patches
[Durieux et al. 2015] [Fry et al. 2012] [Kim et al. 2013]

— plausibility [Qi et al. 2015]

— ...but these don't fully assess functional correctness
* No evaluations test functional correctness of

repair outputs independently of repair inputs

What do we need?

* We need bugs with 2 test suites
— and the test suites need to be good

Why?

* it’s hard enough to find one good test suite,
good luck finding programs with two

Make your own!

http://repairbenchmarks.cs.umass.edu

998 student-written buggy C programs
— simple (very small)
— have 2 test suites

* white-box (generated by KLEE)
* black-box (written by instructor)

Some programs fail some wb tests, others bb
tests, others, some of both

RQ1:
What is the base incidence of overfitting?

Give a repair tool the buggy program and the
black-box test suite, try to repair it, see what
fraction of the white-box tests the patches pass.

RQ1:
What is the base incidence of overfitting?

but first, how often can we actually generate
patches?

patch production %

GenProg 466/778 = 59.9%

TrpAutoRepair 444/778 =57.1%

http://repairbenchmarks.cs.umass.edu

3/19/18

RQ1:
What is the base incidence of overfitting?

100%
80%- D ;

60%-

ed

40%-

20%-

% of white-box tests pass

0%

Ge“on o ge‘,a'\‘
S

RQ2: What effect do pre-repair test
failures have on overfitting?

GenProg TrpAutoRepair

o
T100%- § & $ & +
g’ r | 3 i "
g 7o%- : g 8.
-
: i vl
§ 50% - v & 1 i
[* + s
3 Y +
g 25% - s
I
o % =
5 ™ : : . ;
25% 503 75% 100%

before—-repair training passing rate

Programs that fail more tests before repair still fail more tests after repair

RQ2: What effect do pre-repair test
failures have on overfitting?

GenProg TrpAutoRepair

o
€ 10054
g 3 N
z i
ﬂ 50% !%
H i1
§ o%- } § 28 8 B
E st
2 [| P
g So%- $
£
&
S ~100%
= T T T T
o 25% 50% 75% 100%
before-repair training passing rate

Repair is at best unlikely to improve correctness, at worst likely to worsen it

RQ3: What effect does test suite
coverage have on overfitting?

* Randomly sample 25%, 50%, and 75% of
passing and failing tests for each buggy
program

* Attempt to repair programs
— with each level of test coverage

* If a repair is found, measure correctness of
repair

RQ3: What effect does test suite
coverage have on overfitting?

GenProg | TrpAutoRepair
100% -
2
e
2 755
§ 75%
% 50%—
< ¢ i
2 255 .
T 5%~
E . .
g .
0%~ - - -
T T T T : T T T T
25% 50% 75% 100% 25% 50% 75% 100%

available training suite coverage

Lower test suite coverage leads to more overfitting

RQ4: What effect does test suite
provenance have on overfitting?
* So far, all experiments have used human-written
black-box tests to build repairs
* Switch to using KLEE-generated white-box tests
* Attempt to repair programs

* If a repair is found, measure correctness of repair
— this time with black-box tests

3/19/18

RQ4: What effect does test suite
provenance have on overfitting?

GenProg TrpAutoRepair
©100% ‘ 5100%]
g 2 -
§ 80% 0 8 80%

) @
2 60% 2 60%:
bod . 5
2 40% 3 40% :
kel . o
E [
£ 20% £ 20%
‘6 o
°
A) ‘ T 0% l

ok * oot o 00"

dad‘*’b «“\\e)oo dac‘(x “‘\\\e

Automatically generated tests produced significantly buggier repairs
compared to human-written tests

RQ4: Do tools do better than novices?

100%-
80%- }7- ° ‘]

60%-

ed

40% —L— —— L

20%-

% of white-box tests pass

0% ' ; I

\\) 3\

e “? ‘Og o \)“\a O “eqa\
A%

Summary

* Qverfitting is a real concern

— median patch for either tool passed only 75% of
evaluation suite

* Qverfitting is hard to avoid
— minimization doesn't help on this dataset
— N-version voting only works in extreme cases

* Program repair is harder for buggier programs,
but likely to break more correct programs

* Novice developers don't significantly beat repair
tools

So is there no hope?

* SearchRepair, a brand new technique, reduces
overfitting to 97.2%.

* Most SearchRepair repairs pass 100% of the
held-out test suite.
(Select few poor repairs drop the overall rate.)

Read more about SearchRepair:

http://people.cs.umass.edu/~brun/pubs/pubs/Ke15ase.pdf

http://people.cs.umass.edu/~brun/pubs/pubs/Ke15ase.pdf

